用户名: 密码: 验证码:
基于三维荧光光谱和小波分析的油品种类识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的不断发展和对能源需求的增加,海洋石油工业和海上石油运输得到蓬勃发展,导致我国的海洋石油污染情况日趋严重。近年,我国海上不明溢油源污染事故频频发生。2006年初以来,渤海海域每年春冬季节,先后多次发现不明来源的污染物,2008年6月秦皇岛海岸线、2010年4月青岛近海海域分别发现不明来源溢油。我国政府防止石油污染海洋,保护海洋生态环境和资源的任务非常艰巨。溢油鉴别是确定海上溢油事故污染源的重要的科技手段之一,在污染事故调查处理中发挥着非常重要的作用。在溢油鉴别工作中,当发现海上不明溢油源时,首先要进行的便是油种鉴定工作。海上常见的油品种类有原油、柴油、船舶燃料油和船舶机舱污油,海上不同油种的来源不同,溢油来源的查找方向也不同,因此,快速、准确的油种鉴定工作能够为事故调查人员快速指明调查方向,缩小调查范围,缩短调查周期,提高事故调查效率,是海上不明溢油源调查工作成功开展的重要前提和基础。
     本研究针对我国海上溢油事故中常见的4大类6种油品的三维荧光光谱开展了系统的油种识别技术研究,通过小波分析、光谱相似度比较、Fisher判别分析、Bayes判别分析确定了适合于油品三维荧光光谱数据的小波特征谱;开展了油品模拟风化实验,考察了油品三维荧光光谱的风化变化规律,并评价了风化过程对油品三维荧光光谱的改变是否会对油种识别结果产生影响;利用系统聚类法,对不同油种油品的小波特征谱进行归类,并建立油种的标准特征谱;建立了基于油品三维荧光光谱标准特征谱的油种识别方法,并在海上不明溢油源事故中得到应用。取得的主要成果如下:
     (1)通过bior族小波基、db族小波基、symmlet族小波基、coiflet族小波基共4种小波函数对油品三维荧光光谱特征谱的重构效果比较,并借助Fisher判别法和Bayes判别法对特征谱分类识别能力的研究,发现油样Em矩阵db7小波ca3特征谱和Ex矩阵db7小波ca3特征谱的油种识别能力比较理想,可作油种识别中的特征谱。特征谱对轻油的识别正确率为86.54%、船舶污油的识别正确率为61.70%,原油的识别正确率为66.67%,燃料油大类识别正确率为的94.44%。
     (2)通过开展风化模拟实验,发现风化过程不会改变油样三维荧光光谱的分布特征,但能够改变荧光特征峰的相对强度,变化趋势与特征峰的位置有关。风化过程对油品三维荧光光谱特征谱的变化,要小于不同油种之间三维荧光光谱特征谱之间的差异,短期的风化过程不会对油种识别结果产生影响。
     (3)建立了柴油、120CST燃料油、180CST燃料油、380CST燃料油、船舶污油、原油共4大类6种油种的三维荧光光谱标准特征谱,其中Em矩阵ca3特征谱获得21条标准特征谱、Ex矩阵ca3特征谱获得19条标准特征谱。
     (4)初步建立了基于油品三维荧光光谱标准特征谱的油种识别方法,并在海上不明溢油源事故中成功应用。结果表明,油种标准特征谱对燃料油的识别正确率为100%。对于识别正确的油样,其三维荧光光谱特征谱与标准特征谱的相似度指数均达到0.9700以上。可以考虑将光谱相似度指数0.9700作为油种识别正确与否的判别标准,相似度指数≥0.9700时识别结果有效,从而实现对识别结果正确性的初步评价。
With the rapid economic development and the increased energy demand of China,marine petroleum industry and marine petroleum transportation develops rapidly,which lead to the serious oil pollution situation of Chinese marine environment.Unknown source oil spill accidents happened frequently in China in these years:spilled oil was found in Bohai area every winter-spring season since2006; unknownsource oil pollution happened around Qinhuangdao coast in June2008and Qingdaocoast in April2010. It is a hard work for China government to prevent oil pollutionand to protect marine ecology environment and resources. Oil fingerprintingidentification is one of the technology methods to search the source of spilled oil,which plays an important role in pollution accident investigates. During oilfingerprinting identification, the first step is usually to identify spilled oil types, whichcould provide clear direction for investigation personnel. A correct oil type could helpto reduce investigation range and time and enhance investigation efficiency, which isthe premise and foundation of the success of accident investigation.
     This paper aims to study the3D fluorescence spectroscopy characters of differentoil types. Six kinds of oil that are diesel oil,120CST fuel oil,180CST fuel oil,380CST fuel oil, vessel waste oil and crude oil, which belongs to four type of oil, areselected. The fingerprint characters of the3D fluorescence spectroscopy are extractedand analyzed by the wavelet analysis, Fisher discriminant analysis and Bayesdiscriminant analysis to select the reference spectra extracted by wavelets. Aweathering experiment is presented to research the fingerprinting characters changedby weathering and to evaluate whether the oil types discriminating result could bechanged by the influence of weathering. The standard reference spectrum are obtainedby clustering analysis and applied in oil pollution accident investigation. The mainconclusions of this paper are as follows:
     (1) The correlation of the original spectra and reconstruct spectra obtained by Bior wavelets, Coiflet wavelets, Daubechies wavelets and Symmlet wavelets and the oiltype discriminating ability of reference spectrum are researched, which shows that thedb7wavelets third scale-series discriminating characteristic spectra both for thematrix transported from emission direction and matrix transported from excitationdirection has a better distinguish ability. The discriminating correct rates of thereference spectrum are66.67%(crude oil),86.54%(diesel oil),94.44%(fuel oil) and61.70%(vessel waste oil).
     (2) The weathering experiment research shows that weathering couldn’t changeoil fluorescence spectroscopy characters but could change relative intensity offluorescence signal peak, whose change direction is depended on the peak position.Change of fluorescence spectroscopy characters during the weathering experiment islittle than the fluorescence spectroscopy difference between different oil types. Thedistinguish ability of reference spectrum couldn’t be influenced by Short-termweathering.
     (3) Standard reference fluorescence spectra of diesel oil,120CST fuel oil,180CSTfuel oil,380CST fuel oil, vessel waste oil and crude oil are constructed. There are21characteristic spectra of the db7wavelets third scale-series for the matrix transportedfrom emission direction and19characteristic spectra of the db7wavelets thirdscale-series for the matrix transported from excitation direction.
     (4) Oil type discriminating method based on the fluorescence spectroscopy andwavelets analysis is set up and applied in four oil pollution accidents investigation.The discriminating correct rate of the reference spectrum to fuel oil is100%. In thediscriminating results, the similarity indexes between the standard reference spectraand the reference spectra of testing oil samples that has a right discriminating resultare all above0.9700. The similarity index0.9700could be used as a standard toevaluate whether the discriminating result is correct. Similarity index of a correctresult should be not less than0.9700.
引文
[1] Uhler A D, Stout S A, and Douglas G S. Chemical Heterogeneity in Modern MarineResidual Fuel Oils. In: Wang Z, Sout S A. Oil spill Environmental Forensics:Fingerprinting and Source Identification. Academic Press,2007:327-348.
    [2] Aleksandra M,Dejan R,Miodrag P. On the Selection of an Optimal Wavelet Basis forTexture Characterization. Faculty of Electrical Engineering,IEEE.1998,2:678-682.
    [3] Analytical Methods for Petroleum Hydrocarbons, Publication No. ECY97–602,Washington State Department of Ecology, Olympia, WA,1997.
    [4] Atlas, R M. Petroleum biodegradation and oil spill bioremediation. Mar. Pollut. Bull.,1995,31,178-182.
    [5] Barry K L. Source identification of underground fuel spills by pattern recognition analysisof high-speed gas chromatograms Analytical Chemistry,1995,67:3846-3852.
    [6] Beall, P W, Stout S A, G.S. Douglas, and A.D. Uhler. On the role of process forensics in thecharacterization of fugitive gasoline. Env. Claims,2002,14,487-506.
    [7] Bobra A M, Mackay D, and Shiu W Y. Distribution of hydrocarbons among oil, water andvapor phases during oil dispersant toxicity tests. Bull. Environ. Contam. Toxical.,1979,23,558-565.
    [8] Boehm P D and Fiest D L, Subsurface distribution of petroleum from an offshore wellblowout. The Ixtoc I Blowout, Bay of Campeche. Environ. Dci. Technol.,1982,16,67-74.
    [9] Burns K A, Codi S, Duke N C. Gladstone,Australia field studies: weathering anddegradation of hydrocarbons in oiled mangrove and salt marsh sediments with and withoutthe application of an experimental bioremediation protocol. Marine Pollution Bulletin,2002,41:392-402.
    [10] Burns W A, Mankiewicz P J, Bence A E, et al. Parker. A principal component and leastsquares method for allocating polycyclic aromatic hydrocarbons in sediment to multiplesoures. Environ. Toxicol. Chem.,1997,16(6):1119-1131.
    [11] Christensen J H. Application of multivariate data analysis for assessing the early fate ofpetrogenic compounds in the marine environment following the Baltic Carrier oil spill.Polycyclic Aromatic Compounds,2002,22(3-4):703-714.
    [12] Christensen J H, Hansen A B, Tomasi G, et al. Integrated methodology for forensic oil spillidentification. Environmental Science&Tech.,2004,38(10):2912-2918.
    [13] Christensen J H, Hansen A B, Karlson U, et al. Multivariate statistical methods forevaluating biodegradation of mineral oil. Chromatography A,2005a,1090(1-2):133-145.
    [14] Concawe. Characteristics of petroleum and its behavior at sea. Report No.1983:8-83.
    [15] Daling, P S and Brandvik P J. A study of the formation and stability of water-in-oilemulsions. In: Proc.11th AMOP Technical Seminar, Vancouver, BC. Canada. EnvironmentCanada, Ottewa, Canada,1988,488-499.
    [16] Daling, P S, Faksness L G, Hansen A B, et al. Stout. Improved and standardizedmethodology for oil spill fingerprinting. Environ. Forensics,2002,3,263-278.
    [17] Daubechics L. The wavelet transform, time-frequency localization and signal analysis.IEEE Trans. on Info. Theory,1990,36(5):961-1005
    [18] Daubechies I. Orthonormal Bases of Compactly Supported Wavelets. Comm. Pure andApplied Mathematics,1988,41(7):909-996.
    [19] Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps. J. Fourier Anal.Appl,1994,4(3):247-269.
    [20] Douglas G S, Bence A E, Prince R C, et al. Environmental stability of selected petroleumhydrocarbon source and weathering ratios. Environ. Sci. Technol.,1996,30,2332-2339.
    [21] Dutta, T K and Hatayama S. Fate of crude oil by the combination of photooxidation andbiodegradation. Environ. Sci. Technol.,2000,34,1500-1505.
    [22] Ehrhardt M G. Burns K A. and Bicego M C. Sunlight-induced compositional alterations inthe seawater-soluble fraction of a crude oil. Mar. Chem.,1992,37,53-64.
    [23] Ehrhardt M G, and Burns K A. Petroleum-derived dissolved organic compoundsconcentrated from inshore waters in Bermuda. J. Exper. Mar. Biol. Ecol.;1990,138.35-47.
    [24] Emsbo-Mattingly S M, Uhler A D, Stout S A, et al. Determining the source of PAHs insediment. Second International Symposium and Exhibition on the Redevelopment ofManufactured Gas Plant Sites (MGP2006),2006.
    [25] European Committee for Standardization. CEN/TR15522-2:2006. Oil spill identification.Waterborne petroleum and petroleum products. Analytical methodology and interpretationof results. Brussels: British Standards Institution,2008-3-31.
    [26] Chau F T, Shih T M, Gao J B, et al. Application of the Fast Wavelet Transform Method toCompress Ultraviolet-Visible Spectra. Applied Spectroscopy,1996,50:339-348.
    [27] Fedorak P M and Waestlake D W S. Degradation of sulfur heterocycles in Prudhoe Baycrude oil by soil enrichments. Water, Air, Soil Pollut.,1984,21,225-230.
    [28] Fingas M. and Fieldhouse B. Water-in-oil emulsions results of formation studies andapplicability to oil spill modeling[A]. Marine environmental modeling seminar’98[C].Lillehammer, Norway:1998, March3-5.
    [29] Fingas M. A literature review of the physics and predictive modeling of oil spillevaporation. J. Hazard Mat.,1995,42,157-175.
    [30] Gaines R B, Hall G J, Frysinger G S, et al. Multi-purpose Multi-way data analysis. Environ.Forensics,2006(7):77.
    [31] Gary J K, David F M, Mark A M et al. Optical discrimination of a phytoplankton species innatural mixed populations. Limnol. Oceanogr.,2000,45(2):467-471.
    [32] Gürgey, K.2002, An attempt to recognize oil populations and potential source rock types inPaleoleum Goelogists. AAPG Methods in Exploration Series No.9.
    [33] Hossein A, Thomas E, Bettina S. Fingerprinting of hydrocarbon fuel contaminants:literature review. Environmental Forensics,2003,4:25-38.
    [34] Hughes W B and Holla A G. Relationship between crude oil quality and biomarker patterns.Org. Geochem.,1987,13,15-30.
    [35] Hunt J M. Petroleum Geochemistry and Geology,2nd ed. Freeman Press, USA;1996
    [36] Irvine G V, Mann D H, and Short J W. Multi-year persistence of oil mousse on high energybeaches distant from Exxon Valdez oil source. Mar. Pollut. Bull.,1999,38,572-584.
    [37] ISO, Standard8217Specifications of marine fuels, in Petroleum products–Fuels (Class F)3rd ed.2005-11-01. International Organization for Standardization (ISO), Geneva,Switzerland,2005.
    [38] ITOPF. HANDBOOK,2011/2012. London,2011.
    [39] Karinen J F, Babcock M M, Brown D W, et al. Hydrocarbons in Intertidal Sediments andMussels from Prince William Sound, Alaska,1977–1980: Characterization and ProbableSources, US Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-9,1993(revised December1994).
    [40] Lay J O, Gross M L, Zwinselman J J, et al. A field ionization and collisionally activateddissociation/chargest ripping study of some [C9H10]+ions. Org. Mass Spectrom,1983,18(1):16-21.
    [41] Christensen J H, Hansen A B, Mortensen J, et al. Characterization and matching of oilsamples using fluorescence spectroscopy and parallel factor analysis. Analytica Chemica,2005,77(7):2210-2217.
    [42] Jordan R E and JPayne R. Fate and Weathering of Petroleum Spills in the MarineEnviorment; Ann Arbor Science Press, Ann Arbor, Michigan,1980.
    [43] Kaplan I R, Lu S T, Alimi H M, et al. Fingerprinting of high boiling hydrocarbon fuels,asphalts and lubricants. Environ. Forensics,2001,2,231-248.
    [44] Kaplan I R, Galperin Y, Lu S T, et al. Forensic environmental geochemistry: Differentiationof fuel-type, their sources and release time. Org. Geochem.,1997,27:289-317.
    [45] Wan K X, Vidavsky I, Gross M L. Comparing similar spectra: from similarity index tospectral contrast angle. J. Am. Soc Mass Spectrum,2002,(13):85-88.
    [46] Kinghorm R R F. An Introduction to the Physics and Chemistry of Petroleum. J. Wiley&Sons, New York, NY,1983.
    [47] Kvenvolden K A, Hostettler F D, Carlson P R, et al. Ubiquitous tar balls with aCalifornia-source signature on the shorelines of Prince William Sound, Alaska. Environ, Sci,Technol,1995,29,2684-2694.
    [48] Drahos L and Vekey K. Quantification of isomeric differences in mass spectra. RapidCommun. Mass Spectrom.,1996,10:1309-1315.
    [49] Kaur L, GuPta S, Chauhan R C, et al. Medical Ultrasound Image Compression Using JointOptimization of Thresholding Quantization And Best-Basis Selection Of Wavelet Packets.Digital Signal Processing17,189-198, June2006.
    [50] Li J, Steven F, Julie C, et al. Matching fluorescence spectra of oil spills with spectra fromsuspectsources. Analytica Chimica Acta,2004,514:51-56.
    [51] Lu X and Mo J. Spline wavelet Multi-resolution Analysis for High-noise Digital SignalProcessing in Ultraviolet-Visible Spectrophotometry. Analyst,1996,121(8),1019-1024.
    [52] Fingas M. The basics of oil spill cleanup2nd. New York: Lewis Publishers,2001.
    [53] Bos M, Vrielink J A M, Chemom. Intell. Lab. Syst.,1994,23:115-122.
    [54] Mackay D and McAuliffe C D. Fate of hydrocarbons discharged at sea. Oil Chem. Pollut.,1988,5,1-20.
    [55] Matthew G,Abdelhak M. Selection of the Best Wavelet Basis for a Time-Varying VolterraModel. Digital object Identifier. Page(s),2000,2:1082-1086.
    [56] McAuliffe C D. Evaporation and solution of C2to C10hydrocarbons from crude oil on thesea surface. In: D. Wolfe (ed.), Fate and Effects of Petroleum Hydrocarbons in MarineOrganisms and Ecosystems; Pergamon Press, NY;1977,19-35.
    [57] Mello M R, Koutsoukos E A M, et al. Late cretaceous anoxic events in the Braziliancontinental margin, Organic Geochemistry,1990,14,529-542.
    [58] Michel J and Galt J, Conditions under which floating oil slicks can sink in marine settings.Proc.1995Intl. Oil Spill Conf., Washington, DC,1995, pp.573-576.
    [59] Moldowan J M, Seifert W K, and Gallegos E J. Ralationship between petroleumconposition and depositional enbironment of petroleum source rocks. Am. Assoc. Petrol.Geol. Bul.,1985,69:1255-1268.
    [60] National Academy of Sciences, Spill of Nonfloating Oils: Risk and Response. Committeeon Marine Transportation of Heavy Oil. Washington, DC: National Academy Press,1999.
    [61] Neff J M. Composition and fate of petroleum and spill-treating agents in the marineenvironment. In: J.Geraci and D. St. Aubin (eds.), Sea Mannals and Oil: Confronting theRisks; Academic Press, New York.1990,1-33.
    [62] Neff J M, Stout S A, Beall P, and G.S. Durell, Review of environmental challenges of heavyoils. Report prepared by Battelle Memorial Institute for Statoil, Trondheim, Norway,2003.
    [63] Nicodem D E, Fernades M C Z, Guedes C L B, et al. Photochemical processes and theenvironmental impact of petroleum spills. Biogeochem.,1997,39,121-138.
    [64] NOAA, Oil beneath the water surface and review of currently available literature on GroupV oils: An annotated bibliography. Report HMRAD95-8. January1997update. Seattle, WA:Hazardous Materials Response and Assessment Division NOAA,1997.
    [65] Steaehr P A, Cullen J J. Detection of Karenia mikimotoi by spectral absorption signatures.Journal of Plankton Research,2003,25(10):1237-1249.
    [66] Page D S, Boehm P D, Douglas G S, et al. Identification of hydrocarbon sources in thebenthic sediments of Prince William Sound and the Gulf of Alaska following the ExxonValdez oil spill. In: P.G. Wells, J.N. Butler, and J.S. Hughes(eds.), Exxon Valdez oil spill:Fate and Effects in Alaska Waters; ASTM STP1219; Am. Soc. Testing Materials, Phil., PA,1995,41-83.
    [67] Pardlikar R J. Real time radioseopy and digital image Processing techniques for on-lineinspection of welds in boiler tubes [A/CD]. Proceeding of lsth WCNDT,ROMA,2000.
    [68] Payne J R and McNabb G D. Weathering of petroleum in the marine environment, Mar.Technol. Soc.,1985,18,1-19.
    [69] Payne J R, Phillips G D, and Hom W. Transport and transformations: Water columnprocesses. In: D.F. Bosch and N.N. Rabalais (eds.), Long Term Environmental Effects ofOffshore Oil and Gas Development; Elsevier Applied Science Publ., London,1987,175-231.
    [70] Peter K E, Scheuerman G L, Lee C Y, et al. Effects of refinery processes on biologicalmarkers. Energy&Fuels,1992,6,560-577.
    [71] Peters K E and Moldowan J W. The biomarker Guide: Inerpreting Molecular Fossils inPetroleum and Ancient Sediments, Prentice Hall, Englewood Cliffs, New Jersey.1993.
    [72] Peters K E, Walters C C and Moldowan J M. The Biomarker Guide,2nd ed. CambridgeUniversity Press, Cambridge, UK,2005.
    [73] Stark P B, Herron M M, and Matteson A. Empirically Minimax Affine MineralogyEstimates from Fourier Transform Infrared Spectrometry Using a Decimated Wavelet Basis.Appl. Spectrosc.,1993,47,1820-1829.
    [74] Pieri N, Jacquot F, Mille G, et al. GC-MS identification of biomarkers in road asphalts andin their parent crude oil. Relationships between crude oil maturity and asphalt reactivitytowards weathering. Org, Geochem.,1996,25,51-68.
    [75] Price R C, Owens E H, and Sergy G A. Weathering of an arcic oil spill after20years: TheBIOS experiment revisited, Mar. Pollut. Bull.,2002a,44,1236-1242.
    [76] Price R C, Garrett R M, Bare R E, et al. The roles of photooxidation and biodegradation inlong-term weathering of crude oil and heavy fuel oils. Spill Sci. Technol. Bull.,2003,8,145-156.
    [77] Radke M. Application of aromatic compounds as maturity indicators in source rocks andcrude oils. In Advances in Organic Geochemistry-1986; Butterworth&Co. Ltd., London,1988.
    [78] Radke M, Willsch H, and Leythaeuser D. Aromatic components of coal: Relation ofdistribution pattern to rank. Geochinm. Cosmochim. Acta,1982,46,1831-1848.
    [79] Henrik R. A multi-component oil spill model for calculation of evaporation and dissolutionof condensate.1994environmental modeling seminar.1994,179-189.
    [80] Mallat S. A theory for multi-resolution signal decomposition: The wavelet representation.IEEE Trans. Pattem. Anal. Machine Intell,1989,21(7):674-633.
    [81] Stout S A and Wang Z. Chemical Fingerprinting of Spill or Discharged Petroleum-Methodand Factors Affecting Petroleum Fingerprints in the Environment. In: Wang Z, Sout S A.Oil spill Environmental Forensics: Fingerprinting and Source Identification. AcademicPress,2007,1-45.
    [82] Song C, Introduction to chemistry of diesel fuels. In C.Song, C.S. Hsu, and I. Mochida(eds), Chemistry of Diesel Fuel. Boca Raton, FL: Taylor&Francis, Inc.,2000, pp.1-60.
    [83] Sout S A, Wang Z. Chemical Fingerprinting of Spilled or Discharged Petroleum-Methodsand Factors Affecting Petroleum Fingerprints in the Environment. In: Wang Z, Sout S A.Oil spill Environmental Forensics: Fingerprinting and Source Identification. AcademicPress,2007,1-53.
    [84] Speight J G. The Chemistry and Technology of Petroleum,2nd ed., Marcel Dekker, Inc.,New York, NY;1991.
    [85] Stiver W and Mackay D. Evaporation rates of spills and hydrocarbons and petroleummixtures. Environ. Sci. Technol.,1984,18,834-840.
    [86] Stout S A, Uhler A D, and McCarthy K J. A strategy and methodology for defensiblycorrelating spilled oil to source candidates. Environ. Forensics,2001,2:87-98.
    [87] Stout S A, Uhler A D, and McCarthy K J. Middle distillate fuel fingerprinting usingdrimene-based bicyclic sesquiterpanes, Environ. Forensics,2004,2,87-98.
    [88] Stout S A, Uhler A D, and Emsbo-Mattingly S D. Characterization of PAH source insediments of the Thea Foss/Wheeler Osgood Waterways, Tacoma, Washington. Soil&Sed.Contam.,2003,12,815-834.
    [89] Stout S A, Uhler A D, McCarthy K J, et al. Chemical fingerprinting of hydrocarbon. In: B.L.Murphy and R.D. Morrison (eds.), Introduction to Environment Forensics; Academic PressBoston, MA,2002a,137-260.
    [90] Stout S A, Uhler A D, and McCarthy K J. Middle distillate fuel fingerprinting usingdrimane-based bicyclic sesquiterpanes. Environ. Forensics,2005,6:241-252.
    [91] Stout S A, Douglas G S, and Uhler A D. Automotive gasoline. In: R.D. Morrison and B.L.Murphy(eds.), Environmental Forensics, Contaminant Specific Guide; Academic Press,Boston,2006a,465-531.
    [92] Stout S A, Douglas G S. Diamondiod hydrocarbons application in the chemicalfingerprinting of natural gas condensate and gasoline. Environ. Forensics,2004,5,225-235.
    [93] Syndes L K, Hemmingsen T H, Lonning S, et al. Seasonal variations in weathering andtoxicity of crude oil on seawater under arctic conditions. Environ. Sci. Technol.,2001,19,1076-1081.
    [94] Tissot B P and Welte D H. Petroleum Formation and Occurrence,2nd ed. Springer-Verlag,New York, NY;1984.
    [95] Uhler A D, and Emsbo-Mattingly S M, Environmental stability of PAH source indices inpyrogenic tars. Bull. Environ. Contam. Tox.2006,76:689-696.
    [96] Volkman J K. Biological marker compounds as indicators of the depositional environmentsof petroleum source rocks. In: A.J. Fleets, K. Kelts, and M.R. Talbot(eds.), LacustrinePetroleum Source Rocks, Geol. Soc. Spec. Publ. No.40; Blackwell Scientific Publishers,Oxford,1988,103-122.
    [97] Walczak B, Vanden B B, Resine L. Application of Wavelet Packet Transform in PatternRecognition of Near-IR Data. Anal.Chem.1996,68:1742.
    [98] Wang Z, Yang C, and Hollebone B. Characterization and application of diamondoid toenvironmental forensic studies, Symposium of environmental forensics, Pacidichem2005,American Chemical Society, Hawaii,2005b.
    [99] Wang Z, Yang C, Fingas M, et al. Petroleum Biomarker Fingerprinting for Oil SpillCharacterization and Source Identification. In: Wang Z, Sout S A. Oil spill EnvironmentalForensics: Fingerprinting and Source Identification. Academic Press,2007,73-146.
    [100] Wang Z, Fingas M, Lambert P, et al. Characterization and identification of the Detroit rivermystery oil spill2002. Journal of Chromatography A,2004,1038:201-214.
    [101] Wang Z, Fingas M. Development of oil hydrocarbon fingerprinting and identificationtechniques. Marine Pollution Bulletin,2003,47:423-452.
    [102] Wang Z, Fingas M. Developments in the analysis of petroleum hydrocarbons in oilspetroleum products and oil-spill-related environmental samples by gaschromato-graphy[J]. Chromatography A,1997,774:51-78.
    [103] Wang Z, Fingas M, Sigouin L. Using multiple criteria for fingerprinting unknown oilsamples having very similar chemical composition. Environmental Forensics,2002,3:251-262.
    [104] Wang Z, Fingas M, Lanadriault M, et al. Source identification of an unknown spilled oilfrom Quebec by unique biomarkers and diagnostic ratios of”sourcespecific marker”compounds. Environmental Technology,1998,20:851-862.
    [105] Wang Z, Fingas M, Lanadriault M, et al. Identification of alkylbenzenes and directdetermination of BETX and (BETX+C3-Benzenes) in oils by GC/MS[J]. AnalyticalChemistry,1995,67:3491-3500.
    [106] Wang Z and Fingas M, Development in the analysis of petroleum hydrocarbons in oils,petroleum products and oil spill-related environmental samples by gas chromatography. J.Chromatogr.,1997,774,51-78.
    [107] Wang Z. and Fingas M. Study of the effects of weathering on the chemical composition of alight crude oil using GC/MS and GC/FID. J. Microcolumn Sepatations,1995b,7:617-639.
    [108] Wang Z, Yang C, Fingas M, B. Hollebone, X. Peng, A.B. Hansen, and L. Christensen.Characterization, weathering, and application of source identification of spilled lighterpetroleum products. Environ. Sci. Technol.,2005,39,8700-8707.
    [109] Wang Z, Stout S A, and Fingas M. Biomarker fingerprinting for spill oil characterizationand source identification(Review). Environ. Forensics,2006,7(2),105-146.
    [110] Wang Z, Stout S A, and Fingas M. Forensic fingerprinting of biomarkers for oil spillcharacterization and source identification, Environmental Forensics,2006,7(2),105-146.
    [111] Wolf D A, Lee M J. Identification and geochemical significance of some aromaticcomponents of coal. Geochim. Cosmochim. Acta,1980,44,1825-1832.
    [112] Wu Q, Gray M R, Pickard M A, et al. Biocatalytic ring opening of dibenzothiophene andphenanthrene as model substrates dissolved in crude oil. Petrol. Chem. Div. Preprints No.615061; Am. Chem. Soc.,2002,47.
    [113] Yan L,Liu G,Guo J. Selection of the best wavelet base for speech signal. Proceedings ofInternational Symposium on Intelligent Multimedia,Video and Speech Processing. HongKong: IEEE Press,2004:218-221.
    [114] Yang G P, Zhao Y H. Adsorption of methomyl on marine sediment. Colloid and Surgaces A:Physicochem. Eng. Aspects,2005,264:179-186.
    [115] Wang Z, Internal Report98-02, ESD, Environment cal Canada, Ottawa,1998.
    [116] Zheng J, Gao M, Fu Y, et al. A Study of Multi-order Semidifferential OscillographicChronopotentiometry. Chinese Chemical Letters,1998,9(8):753-756.
    [117]鲍伦军,莫金垣,唐祖英.样条小波和Fourier变换联用技术在分析化学中的应用.高等学校化学学报,1998,19(2):193-197.
    [118]曹立新,于沉鱼,林伟,等.美国海岸警备队的溢油鉴别系统.交通环保,1999,20(2):39-42.
    [119]陈锋,祝绍琪.基于fisher准则的判别分析.中国卫生统计,1994,11(3):5-8.
    [120]陈淑梅,赵云英.影响荧光法鉴别海面溢油的各种因素研究.大连水产学院学报,2000,15(1):35-40.
    [121]陈伟琪,张骆平.鉴别海面溢油的正构烷烃气相色谱指纹法.厦门大学学报:自然科学版,2002,41(3):346-348.
    [122]陈伟琪,张骆平.气相色谱指纹法在海上油污染源鉴别中的应用.海洋科学,2003,27(7):67-70.
    [123]陈伟琪,张骆平.正构烷烃气相色谱指纹法鉴别海面溢油源:事例研究.台湾海峡,2002,21(3):328-331.
    [124]陈银节,姚亚明,赵欣.利用三维荧光技术判识油气属性物探与化探,2007,31(2):138-148.
    [125]陈哲,冯天瑾.小波分析与神经网络结合的研究进展.电子科学学刊,2000,22(3):496-504.
    [126]程海鸥.海面溢油风化与鉴定技术研究.中国海洋大学硕士论文.2009.
    [127]程丽华,吴金林.石油产品基础知识.中国石化出版社.2006.
    [128]戴云从.用红外光谱法鉴别海面溢油源.海洋环境科学,1983,2(2):133-141.
    [129]丁平,曾元儿,何智健,等.不同产地阳春砂挥发油气相色谱指纹图谱研究.中国药学杂志,2004,39(6):418-420.
    [130]段亚丽,苏荣国,刘宝,等.基于db7小波的活体浮游植物荧光识别分析技术研究.海洋通报,2010,29(6):629-637.
    [131]范志杰.海洋溢油预测模型中几个问题的研讨.交通环保.1994,15(2):12-17.
    [132]范志杰.近岸海洋溢油处理系统的比较.交通环保,1991,12(1):35-40.
    [133]方曦,杨文.海洋石油污染研究现状及防治.环境科学与管理,2007,32(9):78-80.
    [134]付晓泰,王振平,毕丽飞.用高效液相色谱法预测两油层合采过程中单层的产量分数.色谱,2000,18(4):318-321.
    [135]甘居利,贾晓平.溢油“指纹”的判别方法.海洋科学,1998,29(3):70-72.
    [136]高亚召,李亚安,徐德民.小波收缩语音增强中的小波基选择方法,电声技术,2008,32(12):58-62.
    [137]葛哲学,沙威.小波分析理论与Matlab R2007实现.北京:电子工业出版社,2007.3-24
    [138]关履泰.小波方法与应用.北京:高等教育出版社,2007:35-37.
    [139]郭菁菁.海上溢油风化过程中油指纹变化规律.[大连海事大学硕士学位论文].大连:大连海事大学环境科学与工程,2009.
    [140]国家海洋局2003.2004.2005中国环境质量公报.
    [141]何晓媛,石金辉,辛海虹.南海区平台石油的特征荧光光谱分析.海洋环境科学,2004,23(4):60-63.
    [142]胡序朋,苏荣国,张传松.基于光谱相似性指数的赤潮藻荧光识别技术.中国激光,2008,35(1):115-119.
    [143]胡泽建,王克闵,冉绍春.三维荧光谱参量化方法及其在油种鉴别中的应用.黄渤海海洋,1998,16(4):35-41.
    [144]李洪,吕吉斌,周传光,等.用荧光光谱和毛细管GC-FID法鉴别海面溢油.海洋通报,1998,17(6):66-70.
    [145]李素梅,庞雄奇,孙爱艳.不同成因原油全扫描定量荧光特征及其影响因素.地质学报,2007,81(2):230-235.
    [146]刘宝,苏荣国,宋志杰.基于coif2小波的浮游植物活体三维荧光光谱识别技术研究.光谱学与光谱分析,2010,30(1):1275-1278.
    [147]刘慧颖,韦锐,熊春华.用傅里叶变换红外光谱测定汽油有关性质.分析化学,2001,29(6):731-734.
    [148]刘倩,孙培艳,高振会,等.衰减全反射傅里叶变换红外光谱技术结合模式识别进行油品鉴别.光谱学与光谱分析,2010,30(3):663-666.
    [149]刘莎,朱虹,楮小立,等.汽油族组成的近红外光谱快速测定.分析测试学报,2002,21(1):40-43.
    [150]刘素美,李书光.超声检测信号处理的小波基选取.无损探伤,2004,28(6):12-15.
    [151]刘伟,王永明,潘忠孝,等.小波神经网络用于钼和钨的同时测定.分析化学,1997,25:1189.
    [152]刘星,王震,马新东,等.典型消油剂对溢油鉴别生物标志物指示作用的影响.环境化学,2010,29(2):299-304.
    [153]卢小泉,莫金垣,康敬万,等.信号处理方法在电分析化学中的应用.分析化学,1998,26(5):597-602.
    [154]卢小泉,莫金垣.分析化学计量学中的新方法—小波分析.分析化学,1996,24(9):1100-1106.
    [155]马永安,李洪,徐恒振等.毛细管色谱技术在鉴别海面溢油源中的应用.海洋环境科学,1988,7(3):82-89.
    [156]闵顺耕,谢秀娟,周学秋,等.近红外漫反射光谱的小波变换滤波.分析化学,1998,26(1):34-37.
    [157]庞士平,郑晓玲,何鹰,等.近红外光谱识别模拟海面溢油.海洋科学进展,2007,25(1):91-94.
    [158]邵利民,唐兵,邵学广,等.小波变换用于高效液相色谱的噪声滤除.分析化学,1997,26(1):15-18.
    [159]邵学广,侯树泉,方能虎,等.小波变换用于植物激素重叠色谱峰中组分的定量分析.分析化学,1998,26(1):106-110.
    [160]申俊,苏荣国,刘宝,等.小波分析在活体浮游植物荧光光谱识别技术中的应用.中国海洋大学学报,2010,40(6):108-114.
    [161]沈颖.信号相关分析及其在工程测试中的应用,石油仪器,2001,16(6):39-42.
    [162]宋继梅,唐碧莲.原油样品的三维荧光光谱特征研究.光谱学与光谱分析,2000,20(1):115-118.
    [163]宋家慧.美国《1990年油污法》及船舶油污损害赔偿机制概述.交通环保,1999,22(3):21-23.
    [164]苏淳.概率论.北京:科学出版社,2004.
    [165]孙培艳,包木太,高振会,等.渤海海上原油气相色谱指纹鉴别.中国海洋大学学报,2004,34(增):23-26.
    [166]孙培艳,包木太,王鑫平,等.国内外溢油鉴别及油指纹库建设现状及应用.西安石油大学学报(自然科学版),2006,21(5):72-78.
    [167]孙培艳,高振会,崔文林等.油指纹鉴别技术发展及应用.北京:海洋出版社,2007.76-81.
    [168]孙培艳,王修林,邹洁,等.原油红外光谱鉴别中的小波分析法.青岛海洋大学学报,2003,33(6):969-974.
    [169]谈爱玲,毕卫红,赵勇.基于稀疏非负矩阵分解和支持向量机的海洋溢油近红外光谱鉴别分析.光谱学与光谱分析,2011,31(5):1250-1253.
    [170]田广军,尚丽平,史锦珊.油类三维荧光谱测量及其指纹图统计特征.仪器仪表学报,2004,25(4):819-823.
    [171]田广军,史锦珊.基于表观特征的三维荧光谱参量化油种鉴别.仪器仪表学报,2005,26(8):727-734.
    [172]田广军.水中矿物油三维荧光谱的特征提取与光谱重构.光谱学与光谱分析,2008,28(4):895-899.
    [173]汪新凡.小波基选择及其优化株洲工学院学报,2003,17(5):33-35.
    [174]王传远,贺世杰,王敏,等.海洋风化溢油鉴别中特殊芳烃标志物的应用.环境化学,2009,28(3):427-431.
    [175]王传远,侯西勇,贺世杰.甾萜烷和多环芳烃在风化溢油鉴别中的应用研究.海洋环境科学,2010,29(3):297-302.
    [176]王春艳,江华鸿,高居伟等.基于三维同步荧光光谱确定原油样品浓度的新方法.光谱学与光谱分析,2006,26(6):1080-1083.
    [177]王春艳,王新顺,王延华,等.基于不同光谱技术的原油样品的荧光分析.光谱学与光谱分析,2006,26(4):728-732.
    [178]王春艳.浓度参量荧光光谱油种鉴别技术研究.[中国海洋大学博士学位论文].青岛:中国海洋大学海洋信息探测与处理,2010.
    [179]王雷,魏明,张庆海.电晕放电辐射信号分析的小波基函数选取.军械工程学院学报,2006,18(3):11-13.
    [180]王丽,何鹰,王颜萍,等.近红外光谱技术结合主成分聚类分析判别海面溢油种类.海洋环境科学,2004,23(2):58-60.
    [181]王书涛,王玉田,车仁生,等.基于小波变换的叶绿素荧光光谱测量系统研究.应用光学,2005,26(1):49-52.
    [182]王玉田,张艳林,王金玉.基于三维荧光谱特征分析的油种鉴别技术的研究.光子学报,2010,39(7):1330-1333.
    [183]魏宝琴,李白萍.最优小波基的选取原则.甘肃科技,2007,23(10):42-43.
    [184]邬敏,刘智勇,李祚泳.基于贝叶斯方法的湖泊富营养化评价.成都信息工程学院学报,2008,23(5):533-536.
    [185]吴刚,魏一鸣.我国石油进口的海洋运输风险分析.中国能源,2009,31(5):9-12.
    [186]吴锡英.红外光谱法在船舶溢油鉴别中的应用.交通部上海船舶运输科学研究所学报,1993,16(1):102-108.
    [187]谢中华.Matlab统计分析与应用:40个案例分析.北京:北京航空航天大学出版社,2010.
    [188]徐广通,刘泽龙,杨玉蕊,等.近红外光谱法测定柴油组成及其应用.石油学报:石油加工,2002,18(4):65-71.
    [189]徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展.光谱学与光谱解析,2000,20(2):134-142.
    [190]徐恒振,周传光,马永安,等.特种生物标志物作为溢油指示物(或指标)的研究.交通环保,2001,22(6),5-11.
    [191]徐恒振,周传光,马永安,等.溢油指示物(指标)的HPLC模糊最大矩阵元研究.海洋环境科学,2000,19(1):11-14.
    [192]徐恒振,周传光,马永安,等.萜烷作为溢油指示物(或指标)的研究.交通环保,2001,22(4):15-20.
    [193]徐恒振,周传光,马永安,等.溢油海水环境化学行为的研究.交通环保,2000,21(6):7-11.
    [194]徐恒振,周传光,马永安,等.溢油指示物(或指标)的GC-FID研究.交通环保,2001,22(1):4-14.
    [195]徐恒振,周传光,马永安,等.溢油指示物(指标)的HPLC模糊最大矩阵元研究.海洋环境科学,2000,19(1):11-14.
    [196]徐恒振,周传光,马永安,等.甾烷作为溢油指示物(或指标)的研究.海洋环境科学,2002:21(1),14-20.
    [197]徐恒振,周传光,尚龙生,等.灰色关联分析鉴别海面溢油.海洋学报,1995,17(4):69-77.
    [198]徐恒振.灰色关联度聚类分析在溢油鉴别中的应用.中国环境科学,1995,15(1):22-28.
    [199]徐俊英,杨庆宵.影响海水石油烃溶解度的各种因素研究.海洋环境科学,1989,8(4):55-56.
    [200]阎丽,莫金垣.一种新型实时拓展小波滤波器处理电分析信号的研究.科学通报1995,40(17):1567-1570.
    [201]杨庆宵,徐俊英,李文森.海水石油蒸发过程的研究.海洋学报,1990,12(2):187-193.
    [202]叶立群,钟燕青.利用气相色谱—傅立叶红外光谱联合鉴别溢油污染源.交通环保,2002,23(4):25-27.
    [203]于大勇,袁祥岩,高万荣,等.频域迭代盲解卷积图像恢复方法及其算法实现.中国激光,2002,29(12):1101-1104.
    [204]袁中华.焊缝缺陷图像处理小波基选取研究.[武汉理工大学硕士学位论文].武汉:武汉理工大学轮机工程,2010.
    [205]张丹丹.海面溢油的荧光光谱鉴别法述评.环境保护科学,2000,26:34-36.
    [206]张德丰.Matlab小波分析.北京:机械工业出版社,2009.49-108.
    [207]张芳,王良,苏荣国,等.小波分析在活体浮游植物离散三维荧光光谱特征提取及识别中的应用研究.传感技术学报,2007,20(10):2143-2150.
    [208]张芳.小波分析在活体浮游植物离散三维荧光光谱特征提取及识别中的应用研究.[中国海洋大学博士学位论文].青岛:中国海洋大学海洋化学,2008.
    [209]张华,陈小宏,杨海燕.地震信号去噪的最优小波基选取方法.石油地球物理勘探,2011,46(1):70-76.
    [210]张前前.东海典型赤潮藻检测的荧光光谱特征研究.[中国海洋大学博士学位论文].青岛:中国海洋大学海洋化学,2005.
    [211]赵海英,纪超辉.小波变换降噪技术及其在Matlab中的实现.网络信息技术,2006,25(2):54-55.
    [212]赵恒强,陈军辉,韩彬,等.液相色谱稳定特征峰比值鉴别模拟渤海溢油.环境化学,2010,29(5):960-965.
    [213]赵凯,王宗花.小波变换三波长系数倍率法同时测定钒、钼和钛.分析化学,1998,26(5):620.
    [214]赵文仓,姬光荣,周立俭,等.浮游植物细胞图像识别方法的研究.计算机工程,2005,31(24):143-144,155.
    [215]赵彦,乔冰,张世元,等.风化对海面溢油三维荧光光谱的影响.中国科协2009年海峡两岸青年科学家学术活动月——海上污染防治及应急技术研讨会论文集,2009年,2009:381-386.
    [216]赵玉慧,杨桂朋,景伟文.有机污染在沉积物上吸附行为的研究[J].中国海洋大学学报,2004,234:156-162.
    [217]赵云英,马永安.荧光光谱法鉴别海面溢油源的研究进展.海洋环境科学,1997,16(2):29-35.
    [218]郑建斌,高鸿.示波测定中示波图的调节.西北大学学报(自然科学版),1995,25(3):309-314.
    [219]中华人民共和国国家质量监督检验检疫总局.GB/T21247-2007.海面溢油鉴别系统规范.北京:中国标准出版社,2007-10-18.
    [220]中华人民共和国海事局.《溢油应急培训教程》.北京:人民交通出版社,2004.9-10.
    [221]朱建平.应用多元统计分析.北京:科学出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700