用户名: 密码: 验证码:
异常高压气藏储层介质变形机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异常高压气藏主要分布在我国中西部,如川东部大池干井气藏、四川泸州阳高寺气藏、塔里木克拉2气藏等都是典型的异常高压气藏。异常高压气藏具有压力系数高、压实程度低、渗流速度快等特征。异常高压气藏投入开发以后,随着地层孔隙压力的下降,近井区域储层岩石产生显著的弹性变形和塑性破裂,使得该区域孔隙性和渗透性急剧降低,造成异常高压气井初期产量递减快、气藏出水严重等问题,对提高异常高压气藏采出程度及维持气田稳定生产极为不利。产生上述问题的根源就是储层介质的变形问题。若要解决上述问题,首先须搞清异常高压气藏储层介质的变形机理。
     本文以异常高压气藏岩心应力敏感性实验为基础,利用大变形固结理论、位错理论、细观力学基础理论、细观损伤力学及流固耦合理论,建立了描述异常高压气藏储层介质变形的数学模型:基于空间描述和物质描述的大变形固结模型;基于微细宏观层次的变形与破裂模型;基于岩石损伤的渗流-应力-损伤耦合模型。通过数值计算程序对模型进行求解,获得表征异常高压气藏储层介质变形与破裂的相关参数变化规律。本文主要进行了以下几方面的研究:
     (1)基于异常高压气藏储层介质特征,利用岩石应力敏感性实验,分别研究无裂缝和裂缝性气藏储层介质变形特征,获得了储层物性参数(孔隙体积、孔隙度、压缩系数及渗透率)随净围压的变化规律。
     (2)基于连续介质力学基本概念,分析了储层介质有限变形应力张量及大变形本构关系;然后,在空间坐标和物质坐标下,分别建立了异常高压气藏储层介质大变形的空间描述方程组和物质描述方程组。应用有限离散和等参元插值原理,对连续性方程和平衡方程式分别进行了离散,形成了异常高压气藏储层介质大变形固结增量有限元法。
     (3)通过系统分析异常高压气藏储层介质变形特征及其影响因素,基于位错理论、细观力学及连续介质力学,建立了微细宏观层次上描述异常高压气藏储层介质变形与破裂的数学模型。
     (4)基于基元体概念,利用Weibull统计分布函数,描述了异常高压气藏储层岩石的非均质性;然后,基于异常高压气藏储层岩石应力-应变关系和气体渗流基本方程,建立了描述异常高压气藏储层介质变形的渗流-应力-损伤耦合模型。
     (5)在分析异常高压气藏储层介质变形机理的基础上,利用数值计算程序,分别设计了异常高压气藏储层介质大变形固结理论模块、异常高压气藏储层介质微细宏观上的变形与破裂模块和异常高压气藏储层介质渗流-应力-损伤耦合模块。
     (6)通过对异常高压气藏物理模型进行网格划分,基于编制的数值计算程序,研究本文方法和普通方法(未考虑气藏储层介质大变形、破裂及应力-损伤的数值模拟方法)计算的储层孔隙指数、孔隙度、水平位移、垂直位移及生产动态指标等,获得异常高压气藏早期水侵严重、气井产量递减快等问题的根源。
Abnormally pressured gas reservoirs are mostly in Midwest China, such as eastern Dachigan gas reservoir, Yanggaoshi gas reservoir in Luzhou, Sichuan, and Kela2gas reservoir in Talimu, all of which are symbolic abnormally pressured gas reservoirs. Abnormally pressured gas reservoir is high pressured, lowly compacted and fast permeated. When developing abnormally pressured gas reservoirs, the nearby reservoir rock could easily be deformed elastically or fractured plastically with the formation pore pressure going down, leading to the rapid reduction of porosity and permeability. As a result, production will decreased rapidly at the early stage of the abnormally pressured gas wells, and water will discharge seriously. These are critical disadvantage of production rate and stability maintenance for abnormally pressured gas reservoirs. The reason of those problems in this paper is considered to be deformation of reservoir rocks. To handle these problems, the first thing to do is to understand the cause of the deformation of abnormally pressured gas reservoirs.
     Based on the core experiments of stress sensitivity for abnormally pressured gas reservoirs, under the theories of large strain, dislocation, micromechanics basis, microscopic damage mechanics and coupling analysis, several models of abnormally pressured gas reservoirs deformation media are built:a model to describe large strain spatially and materially, a model of strain and fracture under the micro-, meso-, and macro-levels, a model of the coupling analysis of permeability, stress and damage for damaged rocks. These models are solved through numerical methods, and the variation characteristics of the parameters of the medium deformation and fracture for abnormally pressured gas reservoirs are obtained. Main topics involved in the thesis are as follows:
     (1) Abnormally pressured gas reservoirs can be classified as cracked and non-cracked reservoirs. This paper studies their reservoir medium deformation characteristics by rock stress sensitivity experiments, such as change rule for rock pore volume, porosity, compressibility coefficient, permeability along with the net confining pressuur.
     (2) With the knowledge of continuum mechanics, stress tensor under limited strain, and constitutive relation of large strain, spatial and physical large strain equations of abnormally pressured gas reservoirs are built in spatial and physical coordinate system; finite discreteness method and isoparametric element interpolation method are used to do the discreteness for the continuum equation and the balance equation, evolving to an increment finite element method for large strain consolidation of abnormally pressured gas reservoirs.
     (3) Based on the characteristics and the analysis of the influence factors of abnormally pressured gas reservoirs, the mathematical deformation and fracture model are built for abnormally pressured gas reservoirs, by the help of dislocation theories, meso-mechanics and continuum mechanics and developed from micro-, meso-, and macro-views.
     (4) By the definition of basic element and the Weibull statistic distribution function, this paper describes the heterogeneity of abnormally pressured gas reservoirs rock; then, based on the stress-strain relation of abnormally pressured gas reservoirs and gas permeability equation, the coupling model of permeability-stress-damage for abnormally pressured gas reservoirs are built.
     (5) Based on the annlyse for the deformation mechanism of abnormally pressured gas reservoirs, large strain consolidation module of abnormally pressured gas reservoirs, the module of the micro-meso-macro deformation and fracture, and the module of the coupling analysis of permeability-stress-damage are built by numerical program.
     (6) A physical model and the grid for abnormally pressured gas reservoirs are built. With the results obtained by the numerical program of this paper and the common computation (which doesn't take into account the large strain of gas reservoir, fracture and stress-damage), pore index of the reservoir, porosity, horizontal displacement, vertical displacement and dynamical production index acquire why water encroachment is serious in the early stage and rapid production decrease of the gas wells.
引文
[1]罗平亚.油气田开发工程[M].北京:中国石化出版社,2003.
    [2]李士伦,孙雷.低渗致密气藏、凝析气藏开发难点与对策[J].新疆石油地质,2004,25(2):166-168.
    [3]陈颙.地壳岩石的力学性能[M].北京:地震出版社,1988.
    [4]Hall H N. Compressibility of Reservoir Rocks [J]. JPT, Vol.5, No.l,1953:16.
    [5]Fatt I, Davis D H. Reduction in Permeability with overburden Pressure [J]. JPT,1952, 4(12):34-41.
    [6]Fatt I. Pore Volume Compressibilities of Sandstone Reservoirs Rocks [J]. AAPG,1958, 42(8):1924-1957.
    [7]S C Jones. Two-Point Determinations of Permeability and PV vs Net Confining Stress [C]. SPE15380:235-241.
    [8]Jose G. Numerical Simulation of Coupled Fuid-flow-Geomechanical Behavior of Tight Gas Reservoirs with Stress Sensitive Permeability [C]. SPE39055,1997:1-15.
    [9]M Latchie A S, Hemstick R A, Joung L W. The effective compressibility of Reservoir Rock and Its Effect on Permeability [J]. JPT,1952,10(6):49-51.
    [10]A.T.戈尔布诺夫.异常油田开发[M].北京:石油工业出版社,1987.
    [11]阮敏,王连刚.低渗油田开发与压敏效应[J].石油学报,2002,23(3):73-76.
    [12]张新红,秦积舜.低渗岩心物性参数与应力关系的试验研究[J].石油大学学报(自然科学版),2001,25(4):56-57.
    [13]朱中谦,王振彪,李汝勇.异常高压气藏岩石变形特征及其对开发的影响[J].天然气地球科学,2003,14(1):60-64.
    [14]崔迎春,张琰.低渗气层损害评价室内试验条件的研究[J].钻采工艺,2000,23(4):12-14.
    [15]李传亮.多孔介质的双重有效应力[J].自然杂志,1999,21(5):288-292.
    [16]李传亮.多孔介质应力关系方程[J].应用基础与工程科学学报,1998,6(2):145-148.
    [17]李传亮.多孔介质的有效应力及其应用研究[D].中国科技大学博士学位论文,2000.
    [18]张琰,崔迎春.砂砾性低渗透气藏应力敏感性的试验研究[J].石油钻采工艺,1999,21(6):1-6.
    [19]张琰,崔迎春.低渗气藏应力敏感性及评价方法的研究[J].现代地质,2001,25(4):453-457.
    [20]张琰,崔迎春.低渗气藏主要损害机理及保护方法的研究[J].地质与开发,2000,36(5):76-78.
    [21]范学平,徐向荣.地应力对岩心渗透率伤害实验及机理分析[J].石油勘探与开发,2002,29(2):117-119.
    [22]刘建军,刘先贵.有效压力对低渗透多孔介质孔隙度、渗透率的影响[J].地质力学学 报,2001,7(1):41-44.
    [23]向阳,向丹,杜文博.致密砂岩气藏应力敏感的全模拟试验研究[J].成都理工学院学报,2002,29(6):617-619.
    [24]秦积舜,张新红.变应力条件下低渗透储层近井地带渗流模型[J].石油钻采工艺,2001,23(5):41-44.
    [25]秦积舜.变围压条件下低渗砂岩储层渗透率变化规律研究[J].西安石油学院学报,2002,17(4):28-31.
    [26]郝春山,李治平,杨满平.变形介质的变形机理及物性特征研究[J].西南石油学院学报,2003,25(4):19-21.
    [27]王秀娟,赵永胜,文武.低渗透储层应力敏感性与产能物性下限[J].石油与天然气地质,2003,24(3):162-165.
    [28]孙龙德,宋文杰,江同文.克拉2气田储层应力敏感性及对产能影响的实验研究[J].中国科学D辑,2004,34(增刊Ⅰ):134-142.
    [29]Biot M A. General theory of three-dimensional consolidation [J]. J. Appl. Phys,1941, 12(5):155-164.
    [30]Terzaghi K. Theoretical Soil Mechanics [M]. Tihn Willey, New York,1943.
    [31]Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid [J]. J. Appl. Phys,1955,26(2):182-191.
    [32]Biot M A. Genearl Solution of the Equation of elasticity and consolidation for a porous material [J]. J. Appl. Phys,1956,27(3):91-96.
    [33]Geertsma J. The Effect of Fluid Pressure Decline on Volumetric Changes of Porous Rocks [J]. Trans. AIME,1957,21(10):331-340.
    [34]Zienkiewiez O C, Shiomi T. Dynmaic behavior of saturated porous media the generalized Biot of mutation and its numerical solution [J]. Int. J. Number Anal Methods. Geomeeh. 1984,8:71-96.
    [35]Alamgir M, Miura N, Proorooshasb H B. Deformation analysis of soft ground reinforced by columnar inclusion [J]. Computers and Geotechnies,1996,18(4):267-289.
    [36]Abu-Hejleh A N, Znidareie D, Barnes B L. Consolidation characteristics of phosphatic clays [J]. Journal of Geotechnical Engineering,1996,122(4):295-301.
    [37]Ahmed Z. Large strain primary and secondary consolidation of soft clay using finite element method [D]. University of Florida, PhD Dissertation,1999.
    [38]Barden L, Berry P L. Consolidation of normally consolidated clay [J]. Journal of the Soil Mechanics and Foundation Division, ASCE,1965,91(SM5):15-35.
    [39]Barden L. Consolidation of clay with non-linear viscosity [J]. Geotechnique,1965, 15(4):345-362.
    [40]Bathe K J, Khoshgoftan M R. Finite element for surface seepage analysis without mesh iteration [J]. Int. J. Num. Anal. Methods in Geomechanics,1979,3(l):3-22.
    [41]Borja R I, Alarcon E. A mathematical framework for finite strain elastoplastic consolidation part I:balance laws, variational of formation, and linearization [J]. Computer Methods in Applied Mechanics and Engineering,1995,122:145-171.
    [42]Borja R 1, Tamagnini C, Alarcon E. Elastoplastic consolidation at finite strain part II: finite element implementation and numerical examples [J]. Computer Methods in Applied Mechanics and Engineering,1998,159:103-122.
    [43]Burlnad J B. Ninth Iaurits Bjerrum memorial lectural:"small is beautiful" The stiffness of soils at small strains [J]. Canadian Geotechnical Journal,1989,26(4):499-516.
    [44]Cagrill K W. Predietion of consolidation of very soft soil [J]. Journal of Geotechnical Engineering, ASCE,1984,110(6):775-795.
    [45]Carter J P, Small J C, Booker J R. A theory of finite elastic on consolidation [J]. International Journal of Solids and structure,1977,13:467-478.
    [46]Chai J C, Shen S L, Miura N. Simple method of modeling PVD-improved subsoil [J]. J. Geotechnical and Geoenvironmental Engineering, ASCE,2001,27(11):965-972.
    [47]Gibson R E, Sehiffiman R L, Cargill K W. The theory of one-dimensional consolidation of saturated clays 2:finite nonlinear consolidation of thick homogeneous layers [J]. Canadian Geotechnical Journal,1981,18(2):280-293.
    [48]Giovine P. A continuum theory of soil:viewed as peculiar immiscible mixtures [J]. Mathematical and computer modeling,2003,37:525-532.
    [49]Gurtin M E. An introduction to continuum mechanics [M]. New York:Academic Press, 1981.
    [50]Hawlader B C, Muhunthan B, Imai Goro. Viscosity effects on one-dimensional consolidation of clay [J]. International Journal of Geomechanics,2003,3(1):99-110.
    [51]Morland L W, Foulser R, Gagr SK. Mixture theory for a fluid-saturated isotropic elastic matrix [J]. Int. J. Genomic, ASCE,2004,4(3):207-215.
    [52]Morris P H. Analytical methods of linear finite-strain one-dimensional consolidation [J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(4):319-326.
    [53]Truesdell C A. First course in rational continuum mechanics (Volume 1) [M]. New York: Academic Press,1977.
    [54]Truesdell C. The elements of continuum mechanics [M]. New York:Springer Velar,1985.
    [55]Xie K H, Leo C J. Analytical solutions of one-dimensional large strain consolidation of saturated and homogeneous clays [J]. Computers and Geotechnics,2004,31:301-314.
    [56]Yavuz C M, Tokdemir T. Deformations and stresses in finite porous media [J]. Engng. Mech. Proc, ASCE,1982,108(EM6):1130-1151.
    [57]Zienkiewiez O C, Shiomi T. Dynamic behavior of saturated porous media, the generalized Biot formulation and its numerical solution [J]. Int. J. NumerAnal. Methods. Geomech.,1984,8:71-96.
    [58]何开胜,沈珠江.两种Lagrangian大变形比奥固结有限元法及其与小变形法的比较[J].岩土工程学报2000,22(1):30-34.
    [59]张继发,谢新宇,郑俊杰.维大应变固结理论的一类解析解[J].固体力学学报,2003,24(4):384-390.
    [60]何满潮,王树仁.变形数值方法在软岩土程中的应用[J].岩土力学,2004,25(2):185-188.
    [61]谢康和,郑辉,Lio C J.软粘土一维非线性大变形固结解析理论[J].岩土工程学报,24(6):680-684.
    [62]罗晓辉,白世伟.深基坑大变形耦合分析与数值模拟[J].岩土力学,2003,24(6):974-978.
    [63]赵雪莲,李政,黄志峰.微焦点X射线测量微细颗粒沉淀两相流[J].清华大学学报(自然科学版),2005,45(2):224-227.
    [64]庄迎春.软土非单调压缩固结试验与理论研究[D].浙江大学博士学位论文,2005.
    [65]蔡袁强,陈超,徐长节.强夯加固回填土地基的三维数值模拟[J].岩土力学,2007,28(6):1108-1112
    [66]丁洲祥,龚晓南,谢永利.基于不同客观本构关系的路基大变形固结分析[J].岩土力学,2006,27(9):1485-1489.
    [67]丁洲祥,龚晓南,谢永利.欧拉描述的大变形固结理论[J].力学学报,2005,37(1):92-99.
    [68]谢康和,齐添,胡安峰.基于GDS的钻土非线性渗透特性试验研究[J].岩土力学.2008,29(2),420-424.
    [69]Shao J F, Bederiat M, Schroeder C H. Elastic visco-plastic modeling of a porous chalk [J]. Mechanics Research Communications,1994,21(1):63-75.
    [70]A Dahou, J F Shao, MBederiat. Experimental and numerical investigations on transient creep of porous chalk [J]. Mechanics of Materials,1995,21:147-158.
    [71]K S Chan, N S Brodsky, A F Fossum. Damage-induced nonassociated inelastic flow in rock salt [J]. International Journal of Plasticity.1994,10(6):623-642.
    [72]J C Robinet, A Rahbaoui, F Plas. A constitutive thermo mechanical model for saturated clays [J]. Engineering Geology,1996,41:145-169.
    [73]Udo Hunsche, Andreas Hampel. Rock salt-the mechanical properties of the host rock material for a radioactive waste repository [J]. Engineering Geology,1999,52:271-291.
    [74]Zhengmeng Hou. Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities [J]. International Journal of Rock Mechanics & Mining Sciences,2003,40:725-738.
    [75]A S Chiarelli, J F Shaoa, N Hoteit. Modeling of elastoplastic damage behavior of a clay stone [J]. International Journal of Plastieity.2003,19:235-252.
    [76]Philippe Kolmayer, Romeo Fernandes, C Chavant. Numerical implementation of a new archeological law for argillites [J]. Applied Clay Science,2004,26:499-510.
    [77]Nathalie Conil, Irini Djeran-Maigre, Richard Cabrillac, et al. Thermo dynamics modeling of plasticity and damage of argillite [J]. C. R. Mecanique,2004,33(2):841-848.
    [78]N Conil, I Djeran-Maigre, R Cabrillac, et al. Poroplastic damage model for clay stones [J]. Applied Clay Science,2004,26:473-87.
    [79]Geraldine Fabre, Frederic Pellet. Creep and time-dependent damage in argillaceous rocks [J]. International Journal of Rock Mechanics & Mining Sciences,2006,43:950-960.
    [80]J Sulem, H Ouffroulth. Shear banding in drained and untrained triaxial tests on a saturated sandstone:Porosity and permeability evolution [J]. International Journal of Rock Mechanics & Mining Sciences,2006,43:292-310.
    [81]Chunliang Zhang, Tilmann Rothfuchs. Experimental study of the thermo-hydro-mechanical behavior of indurated clay [J]. Physics and Chemistry of the Earth,2007,32:957-965.
    [82]Y Jia, X C Song, G Duveau, et al. Elastoplastie damage modeling of argillite in partially saturated condition and application [J]. Physics and Chemistry of the Earth,2007, 32:656-666.
    [83]A Abou Chakra Guery, F Cormery, J F Shao. A micromechanical model of elastoplastic and damage behavior of a cohesive geometrical [J]. International Journal of Solids and Structures,2008,45:1406-1429.
    [84]赵法锁,张伯友,卢全中.某厂程边坡软岩三轴试验研究[J].辽宁工程技术大学学报,2001,20(4):478-80.
    [85]张芳枝,陈晓平,吴煌峰,黄国怡.风化泥质软岩变形特性及邓肯模型参数的试验研究[J].岩土力学,2003,24(4):610-613.
    [86]许宝田,阎长虹,许宏发.三轴试验泥岩应力-应变特性分析[J].岩土工程学报,2004,26(6):863-865.
    [87]肖学沛,李大斌.某滑坡炭质软岩抗剪强度受含水量影响分析[J].水土保持研究,2005,12(1):75-78.
    [88]封志军,周德培,周应华,王毅敏.红层软岩三轴应力-应变全过程试验研究[J].路基工程,2005,123(6):32-35.
    [89]周应华,周德培,封志军.三种红层岩石常规三轴压缩下的强度与变形特性研究[J].工程地质学报,2005,13(4):477-480.
    [90]刘新喜,夏元友,刘祖德,陈向阳.复杂应力下强风化软岩湿化变形试验研究[J].岩石力学与工程学报,2006,25(5):926-930.
    [91]李荣,孟英峰,罗勇.泥页岩二轴蠕变实验及结果应用[J].西南石油大学学报,2007,29(3):57-59.
    [92]廖红建,蒲武川,卿伟雇.基于应变空间硅藻质软岩的软化本构模型[J].岩土力学,2006,27(11):1861-1866.
    [93]许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报,1997,16(3):246-251.
    [94]唐立强,谭英杰,郑贵.泥岩本构方程的研究[J].哈尔滨工程大学学报,2004,25(1):90-93.
    [95]黄小兰,刘建军,杨春和.考虑泥岩软化特性的油藏渗流场与地应力场耦合分析[J].西安石油大学学报,2007,22(2):48-51.
    [96]黄明利.岩石多裂纹相互作用破坏机制的研究[J].岩石力学与工程学报,2001,20(3):40-43.
    [97]田开铭.开展对低渗透介质的水文地质学研究[J].水文地质工程地质,2000,27(2):27-28.
    [98]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质工业出版社,1997.8.
    [99]杨鹏,冯武林.神府东胜矿区浅理煤层涌水溃沙灾害研究[J].煤炭科学技术,2002,30(增):65-69.
    [100]杨天鸿,唐春安,刘红元.地铁开挖引起地表沉陷过程的数值模拟[J].岩石力学与工程学报,2002,21(11):1620-1626.
    [101]杨满平,王正茂,李治平.影响变形介质气藏储层渗透率变化的主要因素[J].天然气地球科学,2003,14(5):386-388.
    [102]杨满平,李治平,李允,王正茂.油气储层多孔介质的变形理论及实验研究[J].天然气工业,2003,23(6):110-113.
    [103]刘建军,耿万东.地下水渗流的固液耦合理论及数值方法[J].勘察科学技术,2004,(4):7-9.
    [104]阳仿勇.变形介质气藏流固耦合渗流理论及应用研究[D].西南石油学院博士学位论,2005.
    [105]Sun Hedong, Xiao Xiangjiao, Yang Jianping, and Zhangfeng. Study on Productivity Evaluation and Performance Prediction Method of Overpressured, Stress-Sensitive Gas Reservoirs [J]. SPE,108451-MS,2007.
    [106]F Rodriguez, Graciela Olea, Daniel Delpino. Overpressured Gas Systems Modeling in the Neuquen Basin Center [C]. AAPG Annual Convention & Exhibition,2008.
    [107]J M Thompson, M Nobakht, D M Anderson, F Associates. Modeling Well Performance Data from Overpressured Shale Gas Reservoirs [C]. SPE 137755,2010.
    [108]B E Law, C V Spencer, R R Charpentier. Estimates of Gas Resources in Overpressured Low-Permeability Cretaceous and Tertiary Sandstone Reservoirs [J]. Greater Green River Basin, Wyoming, Colorado, and Utah,2010:269-280.
    [109]Jose G Osorio. Numerical simulation of the impact of flow-induced geotechnical response on the production of stress-sensitive reservoirs [C]. SPE 51929,1999.
    [110]Susan E Minkoff, Charlesm Stone. Staggered in time coupling of reservoir flow simulation and geotechnical deformation:step 1-one-way coupling [C]. SPE 51920, 1999.
    [111]Claudia L Pinzon, Her-Yuan Chen, and Lawrence W. Numerical well test analysis of stress-sensitive reservoirs [C]. SPE 71034,2001:1-10.
    [112]Susan Hippler, Thomas Finkbeiner, Amie Lucier, Mark D Zoback. Controls on Oil and Gas Distribution in Over-Pressured Reservoirs [C]. ARMA,2004:474-487.
    [113]杨天鸿,岩石破裂过程渗流与应力耦合作用研究[D].东北大学博士学位论文,2001.
    [114]杨天鸿,唐春安,梁正召.脆性岩石破裂过程损伤与渗流耦合数值模型研究[J].力学学报,2003,35(5):533-541.
    [115]刘长武,陆十良.泥岩遇水崩解软化机理的研究[J].岩土力学,2000,21(1):28-30.
    [116]杨超,崔新明,徐水平.软岩应变软化数值模型的建立与研究[J].岩土力学,2002,23(6):695-701.
    [117]周飞平,刘光廷.饱和软岩受压硬化、强度折减及本构模型[J].水利水运工程学 报,2002,(4):39-43.
    [118]周飞平,刘光廷,李鹏辉.复杂应力状态下的饱和体本构模型及内力变化[J].清华大学学报,2003,43(11):1576-1584.
    [119]廖红建,蒲武川,殷建华.软岩的应变速率效应研究[J].岩石力学与工程学报,2005,24(18):3218-3223.
    [120]周翠英,邓毅梅,谭祥韶,刘柞秋.饱水软岩力学性质软化的试验研究与应用[J].岩石力学与工程学报,2005,24(1):33-38.
    [121]柴肇云,康天合,李义宝.物化型软岩微结构单元特征及其胀缩性研究[J].岩石力学与工程学报,2006,25(6):1265-1269.
    [122]刘光廷,胡星,李鹏辉.软岩遇水软化膨胀特性及其对拱坝的影响[J].岩石力学与工程学报,2006,25(9):1729-1734.
    [123]郭富利,张顶立,苏洁,肖丛苗.地下水和围压对软岩力学性质影响的试验研究[J].岩石力学与工程学报,2007,26(11):2324-2332.
    [124]杨林德,门小波,刘成学.软岩渗透性、应变及层理关系的试验研究[J].岩石力学与工程学报,2007,26(3):473-477.
    [125]周翠英,邓毅梅,谭祥韶,刘柞秋.软岩在饱水过程中微观结构变化规律研究[J].中山大学学报,2003,42(4):98-102.
    [126]周翠英,邓毅梅,谭祥韶,林春秀.软岩在饱水过程中水溶液化学成分变化规律研究[J].岩石力学与工程学报,2004,23(22):3813-3817.
    [127]李杭州,廖红建,孔令伟,冷先伦.膨胀性泥岩应力-应变关系的试验研究[J].岩土力学,2007,28(1):107-110.
    [128]林元华,曾德智,施太和,杜仁德.软岩层引起的套管外载计算方法研究[J].岩石力学与工程学报,2007,26(3):538-543.
    [129]刘合,王秀喜.大庆油田泥岩粘弹性本构方程及套管受力计算[J].中国科学技术大学学报,2005,35(1):118-123.
    [130]何满潮,周莉,李德建,王春光.深井泥岩吸水特性试验研究[J].2008,27(6):11-13.
    [131]J M Thompson, M Nobakht, D M Anderson, F Associates. Modeling Well Performance Data from Overpressured Shale Gas Reservoirs [C]. SPE 137755,2010.
    [132]B E Law, C V Spencer, R R Charpentier. Estimates of Gas Resources in Overpressured Low-Permeability Cretaceous and Tertiary Sandstone Reservoirs [C]. Greater Green River Basin, Wyoming, Colorado, And Utah,269-278,2010.
    [133]Claudia L Pinzon, Her-Yuan Chen, and Lawrence W. Numerical well test analysis of stress-sensitive reservoirs [C]. SPE 71034,2001:1-10.
    [134]Waples D W. Generation and migration of petroleum from abnormally pressured fluid compartments:Discussion [J]. AAPG Bulletin,1991,75(2):326-327.
    [135]Sun Hedong, Xiao Xiangjiao, Yang Jianping, and Zhangfeng. Study on Productivity Evaluation and Performance Prediction Method of Overpressured [C]. Stress-Sensitive Gas Reservoirs, SPE,108451-MS,2007.
    [136]Tortike W S, Farouq Ali S M. A framework for multiphase nonisothermal fluid flow in a deforming heavy oil reservoir [C]. SPE 16030,1987.
    [137]F Rodriguez, Graciela Olea, Daniel Delpino. Overpressured Gas Systems Modeling in the Neuquen Basin Center [C]. AAPG Annual Convention & Exhibition,2008.
    [138]Chen H Y, Teufel L W. Coupled fluid flow and geomechanics in reservoir study-1: theory and governing equations [C]. SPE 30752,1995.
    [139]Jose G Osorio. Numerical simulation of the impact of flow-induced geomechanical response on the production of stress-sensitive reservoirs [C]. SPE 51929,1999.
    [140]C Mike Stoneb, Steve Bryantc, Malgorzata Peszynskac, Mary F Wheelerc. Coupled fluid flow and geomechanical deformation modeling [J]. Journal of Petroleum Science and Engineering,2003,38(1):37-56.
    [141]张洪武,钟万勰,钱令希.饱和土壤固结分析的算法研究[J].力学与实践,1993,15(1):20-22.
    [142]黎水泉,徐秉业.双重介质裂缝型油气藏油水两相流动与固体变形耦合数学模型[J].天然气工业,1999,19(4):43-45.
    [143]冉启全,顾小芸.弹塑性变形油藏中多相渗流的数值模拟[J].计算力学学报,1999,16(1):24-31.
    [144]谢兴华,速宝玉,高延法.岩石类脆性材料损伤断裂研究综述[J].建筑技术开发,2003,30(5):89-92.
    [145]王思敬.中国岩石力学与工程世纪成就[M].南京:河海大学出版社,2004:387-402.
    [146]孙明,李治平,樊中海.流固耦合渗流数学模型及物性参数模型研究[J].石油天然气学报,2007,29(6):115-119.
    [147]李锡夔,朴光虎,邓子辰.考虑固结效应的结构-土壤相互作用分析及其有限元解[J].计算力学学报,1990,7(3):1-11.
    [148]张洪武,钟万勰,钱令希.土体固结分析的一种有效算法[J].计算力学学报,1991,8(4):389-395.
    [149]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(4):299-308.
    [150]董平川,徐小荷.储层流固耦合的数学模型及其有限元方程[J].石油学报,1998,19(1):64-70.
    [151]薛世峰,宋惠珍.非混溶饱和两相渗流与孔隙介质耦合作用的理论研究-数学模型[J].地震地质,1999,21(3):243-252.
    [152]件彦卿,柴军瑞.列席网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报,2000,16(1):1-5.
    [153]范学平,李秀生,张士诚,徐向荣.低渗透变形介质油气藏渗流流固耦合研究[J].新疆石油地质,2001,22(1):76-78.
    [154]范学平,李秀生,张士诚,徐向荣.低渗透气藏整体压裂流固耦合数学模拟[J].石油勘探与开发,2000,27(1):76-79,83.
    [155]熊伟,田根林,黄立信,周娟,高惠军.变形介质多相流动流固耦合数学模型[J].水动力学研究与进展,2002,17(6):770-776.
    [156]张居增,张烈辉,魏立新,李健.低渗透变形介质气藏数值模拟[J].新疆石油地质,2005,26(4):421-423.
    [157]C H Cappellec, D Pomorski, Y Yang. GPS/INS Data Fusion for Land Vehicle Localization [C]. IMACS Multi-conference on Computational Engineering in System Applications.2006:1-7.
    [158]J R Raol, G Girija. Sensor Data Fusion Algorithms Using Square-root Information Filtering A [C]. IEEE Proceedings on Radar, Sonar and Navigation.2003:102-157.
    [159]何光怀,李治平,宋艳波.考虑束缚水作用的气藏流固耦合渗流模型建立[J].石油天然气学报(江汉石油学院学报),2005,27(6):757-759.
    [160]刘晓旭,胡勇,李宁,朱斌.低渗砂岩气藏气体特殊渗流机理实验研究与分析[J].特种油气藏,2007,14(1):80-83.
    [161]孙雷,杨小松,戚志林,李士伦,孙良田.凝析油气体系流固耦合相平衡计算新方法[J].西南石油大学学报,2007,29(2):157-161.
    [162]杨凯,郭肖,廖敬,杨书港.低渗透气藏流固耦合综合数学模型[J].石油学报,2008,15(3):76-79.
    [163]沈海超,程远方,王京印,赵益忠,张建国.主方向差应变地应力测量方法[J].新疆石油地质.2008,29(2):250-252.
    [164]张广明,刘合,张劲,吴恒安,王秀喜.储层流固耦合的数学模型和非线性有限元方程[J].岩土力学,2010,31(5):1657-1662.
    [165]J F Shoa, J W Rudnicki. A micro crack based continuous damage model for brittle geometries [J]. Mechnaies and Materials,2000,(32):607-619
    [166]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [167]H Yoshida. Micromechanics based continuum model for a jointed rock mass and excavation analysis of a large-scale cavern [J]. Int. J. Rock Mech and Min. Sei.,2004, (41):119-145.
    [168]Murakami S, Kamiya K. Constitutive and damage evolution equations of elastic brittle materials based on irreversible thermo dynamics [J]. Int. J. Mech. Sci.,1997, 39(4):473-486.
    [169]Swoboda G, Yang G. An energy based damage model of geometrical formulation and numerical results [J]. Int. J. Solids Sureties,1999, (36):1719-1734.
    [170]Swoboda G, Yang G. An energy based damage model of geomaterials [J]. Deduetion of damage evolution laws [J]. Int. J. Solids Sureties,1999, (36):1735-1755.
    [171]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [172]Y FLu, J F Shao. Modelling of anisotropic damage in brittle rocks under compression dominated stresses [J]. Int. J. Numer Anal. Meth. Geomeeh,2002, (26):945-961.
    [173]D Halm, ADragon. An anisotropic model of damage and frictional sliding of brittle materials [J]. Eur J. Mech. A/Solid,1998, (17):439-460.
    [174]Homand Etienne, FHoxha D, Shao J F. A continuum damage law for brittle rocks [J]. Computers and Geotechnics,1998,22(2):135-152.
    [175]J Vychytil, H Horii. Micromechanics-based continuum model for hydraulic fracturing of jointed rock masses during HDR stimulation [J]. Mechanics of Material,1998, (28):123-135.
    [176]Vincent Pensee, Djimedo Kondo, Luc Dormieux. Micromechanics of anisotropic damage in rocks and concrete:unilateral effect modeling and coupling with friction [C]. 15th ASCE Engineering Mechanics Conference, Columbia Univesity New York,2002.
    [177]A S Chiarellia, J F Shaoa, N Hoteitb. Modeling of elastic plastic damage behavior of a clay stone [J]. International Journal of Plasticity,2003, (19):23-45.
    [178]W Z Chena, W S Zhub, J F Shao. Damage coupled time-dependent model of a jointed rock mass and application to large underground cavern excavation [J]. Int. J. Roek Mech. Min. Sci.,2004, (41):669-677.
    [179]J F Shao, R Khazraei. A continuum damage mechanics approach for time independent and dependent behavior of brittle rock [J]. Mechanics Research Communications,1996, 23(3):257-265.
    [180]J F Shoa. Poroelastic behavior of brittle rock materials with anisotropic damage [J]. Mechanics of Materials,1998, (30):41-53.
    [181]J F Shao, D Hoxhab, M Bart. Modelling of induced anisotropic damage in granites [J]. Int. J. Rock Mech. Min. Sci.,1999, (36):1001-1012.
    [182]J F Shao, Y F Lu, D Lydzba. Damage modeling of saturated rocks in drained and untrained conditions [J]. ASCE J. Engine. Mech,2004,130(6):733-740.
    [183]S Andre Zaoui. Materiaux heterorganic set composites [M].2000.Teaching material of Ecole Polytechnique, France.
    [184]王自明.热流固耦合模型研究及应用初探[D].西南石油大学博士学位论文,2002.
    [185]杨满平.油气储层多孔介质的变形理论及应用研究[D].西南石油大学博士学位论文,2004.
    [186]Poston S W, Berg R R. Overpressured gas reservoirs [M]. Society of Petroleum Engineers Inc, Richardson, Texas, U.S.A,1997:22-46.
    [187]田文忠.异常高压凝析气藏物质平衡及递减规律分析新方法[D].西南石油大学,2005.
    [188]张居增.气藏非线性渗流数值模拟技术研究[D].西南石油学院硕士学位论文,2004.
    [189]Fetkovich M J, Reese D E, Whitson C H. Application of a general material balance for high-pressure gas reservoirs[R]. SPE 22921,1998.
    [190]邓远忠.异常高压气藏开发特征的解析研究[J].石油学报,2002,23(2):53-57.
    [191]刘道杰,刘志斌,田中敬.异常高压有水气藏水侵规律新认识[J].石油天然气学报,2011,33(4):129-132.
    [192]刘道杰,刘志斌,田中敬.改进的异常高压有水气藏物质平衡方程[J].石油学报,2011,32(3):474-478.
    [193]Liu Daojie, Tian Zhongjing, Liu Zhibin. Description of reservoir percolation characteristics [C]. The International Workshop on Ecological Economy and Environment Engineering, May.13-15,2011, Guangzhou, China,679-683.
    [194]陈红玲.异常高压气藏产能分析方法研究[D].成都理工大学硕士学位论文,2008.
    [195]董平川.异常高压气藏应力敏感性研究[J].岩石力学与工程学报,2008,27(10):2087-2092.
    [196]贺玉龙,杨立中.围压升降过程中岩体渗透率变化特性的试验研究[J].岩石力学与工程学报,2004,23(3):415-419.
    [197]黄远智,王恩志.低渗透岩石渗透率对有效应力敏感系数的试验研究[J].岩石力学与工程学报,2007,26(2):410-414.
    [198]刘建军,刘先贵.有效应力对低渗透多孔介质孔隙度、渗透率的影响[J].地质力学学报,2001,7(1):41-44.
    [199]谢永利.大变形固结理论及其有限元法[M].北京:人民交通出版社,1998.
    [200]谢新宇.一维大变形固结理论的研究[D].浙江大学博士学位论文,1996.
    [201]丁洲祥.欧拉描述的大变形固结理论及其有限元法[D].长安大学硕士学位论文,2003.
    [202]李韬.U_L_描述的大变形固结理论及其有限元分析[D].长安大学硕士学位论文,2001.
    [203]罗瑞兰.深层气藏介质变形渗流机理及气藏工程应用研究[D].中国石油大学工学(北京)硕士学位论文,2006.
    [204]张居增,李健,苏坚.一个简易的变形介质气藏数值模拟方法[J].天然气地球科学,2005.4,16(2):221-223.
    [205]戚承志,钱七虎.岩体动力变形与破坏的基本问题[M].北京:科学出版社,2009.
    [206]江涛.基于细观力学的脆性岩石损伤—渗流耦合本构模型研究[D].河海大学博士学位论文,2003.
    [207]于洪丹Boom Clay渗流-应力耦合长期力学特性研究[D].中国科学院博士学位论文,2010.
    [208]周辉,邵建富,冯夏庭.岩石细观统计渗流模型研究(Ⅰ):理论模型[J].岩土力学,2004,25(2):169-173.
    [209]周辉,邵建富,冯夏庭.岩石细观统计渗流模型研究(Ⅱ):实例分析[J].岩土力学,2006,27(1):123-126.
    [210]Shao J F, Zhou H, Chau K T. Coupling between anisotropic damage and permeability variation in brittle rocks [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2005,29(12):1231-1247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700