用户名: 密码: 验证码:
多度量QoS驱动的选路机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽带网络技术的迅猛发展与多媒体应用的快速普及,使网络应用服务类型与网络用户数量呈爆炸性增长,流媒体业务正成为多媒体通信业务中发展最为迅速、竞争最为激烈的领域。然而,当前互联网并不能对用户服务质量(Quality of Service, QoS)需求提供良好的保障,以致成为互联网发展的主要瓶颈之一。因此,建立一套高效的QoS保障机制与控制策略,为不同类型的用户请求提供性能保证和服务区分,是当今学术界与工业界关注的焦点。
     多度量QoS选路(或多约束QoS路由)作为网络QoS保障研究的核心问题之一,已成为宽带网络技术发展所关注的重点,和突破当前互联网发展瓶颈的关键。尽管当前针对多度量QoS选路问题求解已提出相当典型的算法和计算结果,但是这些算法计算过程过于复杂而未能在实际网络中得以应用。为此,本文以求解“多度量QoS选路”问题典型算法为起点,结合互联网发展趋势,提出符合工程实践条件的多QoS度量参数选路算法,并探讨算法在不同网络场景下的理论应用。本文的主要的贡献和创新点包括如下几个方而:
     ·根据当前求解“多度量QoS选路”问题性能最优的算法存在的缺陷与不足,首次提出了一种基于“图扩展”的“驱动式”近似求解方案。通过“图扩展”技术,算法可将多个QoS度量参数有机的统一起来。并且,本文从全新的理论研究视角,对算法的性能及其理论性质展开了深入的探讨。通过与已知性能最优的算法在理论与数值实验两方面对比,结果显示:本文算法在求解时间与所求解的质量两方面均占优。该近似算法的提出有力地推动了多度量QoS选路理论的发展。
     ·通过对本文所提近似求解方案设计过程的重新审视,结合向量线性组合与非线性组合的几何特征,本文提出一种求解“多度量QoS选路”的“驱动式”启发式算法。在该算法中,本文首次引入非线性组合技术将原问题进行化简,然后再调用所提近似算法求解化简后的问题。理论分析与仿真实验表明,所提启发式算法确能有效地降低算法的时空复杂度,在运行时间与求解质量两方而取得一个良好的均衡。此外,本文还分析讨论了该算法在网络协议中的部署问题与细节,为算法在实际网络环境中的部署奠定了理论基础。
     ·首次将“多度量QoS选路”近似算法应用于构造多约束QoS组播路由树。本文将向量非线性组合的概念引入到已知求解该问题性能最好的算法中,提出启发式求解方案;然后,针对QoS组播路由树的特征,以所提近似算法为蓝本,提出近似求解算法的代数解析形式,化路径计算为树计算。最后从理论和实验两个角度,分析算法性质,对比算法性能。该项研究为多约束QoS组播路由树的快速构建开辟了一条新的计算途径。
     ·基于所提近似算法,首次提出下一代互联网端到端QOS路由理论框架。在该框架下,首次从“自底向上”的模式对底层基础设施服务保障能力建模,并给出一个端到端QoS路由的通用模型。然后,基于所建立的端到端跨域QoS路由模型提出一种特殊形式的确定性算法和近似算法。其中,确定性算法以“最优性原理”为准则,通过建模所获关键参数对路由请求进行过滤,结合向量线性组合技术所设计。近似算法则是通过对原所提近似算法进行修正而得到。并且,在该研究中首次对所捉框架在下一代网络典型试验床的部署情况展开分析和讨论。理论分析与实验测试说明所提理论框架合理高效,为下一代互联网跨域QoS保障机制提供设计依据。
     ·运用所提近似算法对网络虚拟化环境下的服务进行选择。首次利用网络微积分理论对服务提供的敏感参数(带宽和时延)建模,基于所建立的模型提出一种一般形式的确定性算法和所提近似算法的改进形式对网络虚拟化环境下的服务资源进行选择。通过理论分析与实验仿真,证明了模型与算法的有效性,为下一代互联网或云计算环境下服务提供商选择、组合服务提供理论技术支撑。
     综上所述,本文对“多度量QoS选路”机制及其在构造多约束QoS组播路由树、下一代互联网端到端跨域QoS保障、以及网络虚拟化环境下的服务选择等几个关键问题展开了深入的研究和积极的探索,给出了一些新的理论计算结果,极大地充实了“多度量QoS选路”理论体系。为推动相关理论发展,促进学科交叉与融合作出了有益的尝试。
The rapid development of broadband networking technology and multi-media services lead the number of users to increase significantly. The streaming services are playing vital role in broadband networks and multimedia commu-nication. Within streaming service area, Quality of Service (QoS) mechanism is a dispensable ingredient for multimedia services provisioning. However, the current Internet cannot provide any QoS guarantees, which becomes the major barrier to the Internet evolution. Therefore, establishing an effective mechanis-m to provide QoS guarantees is realized as an open topic by both industrial and academia.
     Multi-metrical QoS path selection (or known as multiconstrained path) problem, as the key component of QoS provisioning, has been attracted much attention recent years. Though much progress has been made toward solving this problem efficiently, they are too complex to deploy in real-world networks. This paper investigates the problem of multi-metrical QoS path selection from a more practical perspective. The research study emphasizes the algorithmic design and its application in various networking scenario on the problem. The contributions made in this paper includes
     ●A proactive approximation algorithm based on the graph-extending tech-nique and the theoretical analysis on the proposed algorithm, where the graph-extending could unify all QoS metrics in a single one graph and the theoretical analysis gives the performance of proposed algorithm. Through comparison between the proposed algorithm and previous best-known algorithms, it is found that the algorithm presented in this paper is superior to the best-known algorithms in terms of both execution time and the quality of solution. The proposal is effective and efficient, thus enriching the QoS routing research.
     ●By re-considering the design of the proposed approximation algorithm and observing the geometrical properties of linear combination and non-linear combination, a proactive heuristic, which is the first to employ the technique of nonlinear combination, is proposed. A deployment analysis of heuristic on the practical network protocol is conducted. Both theoreti-cal analysis and experimental results show that the proposed heuristic can reduce the time and space complexity dramatically, that is, the proposed heuristic achieves a good trade-off between execution time and quality of solution. The research study forms the basis of application of QoS routing algorithms in real-world networking systems.
     ●A heuristic and an approximation algorithm for constructing QoS-aware multicast routing tree, in which the heuristic is presented by introducing nonlinear combination in a best-known algorithm, and approximation al-gorithm is given by an algebraic extension of the proposed algorithm.To the best of author's knowledge, this is the first work to apply approxima-tion algorithm in resolving multiconstrained QoS-aware multicast rout-ing tree problem. The comparison is conducted between heuristic and approximation algorithm from both theoretical analysis and experiments show that the research presented provides new ways for establishing QoS-aware multicast routing tree.
     ●A theoretical Framework for end-to-end QoS routing in future Internet is presented. The framework presented in this paper emphasizes modeling, algorithms as well as analysis on end-to-end QoS routing. That is, mod-eling the serving capability of underlying resources from a "bottom-up" perspective; developing efficient algorithms including a special case of an exact algorithm and a variant form of the proposed approximation algo-rithm to select the optimal routes for each routing request; and analyzing how these algorithms deploy and work in future Internet. The theoreti-cal derivations and experimental results show that the modeling technique and the algorithms developed in this paper are general and flexible; thus are applicable to the various networking systems in future Internet.
     ●A model for the end-to-end multimedia service delivery in network virtu-alization environments, proposal of efficient algorithms embracing an ex-act and an improved approximation algorithm for selecting paths travers-ing the network infrastructure for QoS provisioning in virtual networks, and analysis of the effectiveness and efficiency of the proposed algorithm-s are presented. Both theoretical analysis and experimental results show that the modeling technique and the algorithms proposed in this paper are general and flexible, and therefore applicable to the delivery of multime-dia content in various heterogeneous networking systems
     In conclusion, this thesis investigates the problem of multi-metrical QoS path selection and its application in QoS-aware multicast routing tree, end-to-end QoS provisioning, and service selection in network virtualization. Some new computing results are given in this work, which systematically enrich the theory of "multi-metrical QoS path selection". The research presented in this thesis sets a good example for developing related theory.
引文
[1]中国互联网络信息中心.第29次中国互联网络发展状况统计报告[EB/OL].2012[2012-01-16]. http://www.cnnic.cn/research/bgxz/tjbg/201201/t20120116_23668.html.
    [2]Shetty N, Schwartz G, Walrand J. Internet QoS and regulations [J]. IEEE/ACM Transactions on Networking, 2010, 18(6): 1725-1737.
    [3]Ibarrola E, Xiao J, Liberal F. et al. Internet QoS regulation in future networks: a user-centric approach [J]. IEEE Communications Magazine, 2011, 49: 148-155.
    [4]Meddeb A. Internet QoS: Pieces of the puzzle [J]. IEEE Communications Magazine, 2010, 48: 86-94.
    [5]GENI WebSite. http://www.geni.net/
    [6]FIRE Web Site, http://corciis.europa.eu/fp7/ict/fire/home_en.html.
    [7]EuQoS Web Site. http://www.c-lab.de/en/research-projects/ completed-research-projects/euqos/index.html.
    [8]中华人民共和国科学技术部.国家“十二五”科学和技术发展规划[EB/OL].2011 [2011-07-04]. http://www.most.gov.cn/rnostinfo/xinxifenlei/gjkjgh/ 201107/t201107133_88230.ht.
    [9]Crawley E. Nair R, Rajagopalan B, et al. A framework for QoS-based routing in the Internet. August 1998. http://www.ietf.org/rfc/rfc2386.txt.
    [10]Duan Q. Model ing and analysis of end-to-end quality of service prov isioning in virtualization-based future Internet [C]. In International Conference on Computer Communications and Networks 2010, (ICCCN 2010), 2010:1-6.
    [11]Hosfeld T, Fiedler M, Zinner T. The QoE provisioning-delivery-hysteresis and its importance for service provisioning in the Future Internet [C]. In 7th EURO-NGI Conference on Next Generation Internet Networks 2011, (NGI 2011), 2011: 1-8.
    [12]Dramitinos E, Lassous I G. Auction-based Bandwidth Allocation Mechanisms for Wireless Future Internet [J]. Computing Research Repository, 2010, abs/1001.5: 1-17.
    [13]Wang Z, Crowcroft J. Quality-of-Service routing for supporting multimedia applications [J]. IEEE Journal on Selected Areas in Communications, 1996, 14: 1228-1234.
    [14]Huang J, Tanaka Y. QoS routing algorithms using fully polynomial time approximation scheme [C]. In International Workshop on Quality of Service 2011, (IWQoS 2011), 2011: 19:1-19:3.
    [15]Tafazolli R. QoS-avvare routing and admission control in shadow-fading environments for multirate MANETs [J]. IEEE Transactions on Mobile Computing, 2011, 10: 622-637.
    [16]How K C, Ma M, Qin Y. Routing and QoS provisioning in cognitive radio networks [J]. Computer Networks, 2011, 55: 330-342.
    [17]Huang J, Liu Y. MOEAQ: A QoS-aware multicast routing algorithm for MANET [J]. Expert Sys-tems With Applications, 2010, 37: 1391-1399.
    [18]Tien P-L, Ke B-Y. Parallel QoS scheduling for WDM optical interconnection system Using a New Ranked Hopfield Neural Network [J]. IEEE/OSA Journal of Lightwave Technology, 2011, 29: 2436-2446.
    [19]刘芳,冯小军.免疫组播路由选择算法[J].计算机学报,2003,26 t6):676-681.
    120]刘芳,杨海潮.参数可调的克隆多播路由算法[J].软件学报,2005,16(1):145-150.
    [21]Wang H, Meng X, Li S, et al. A tree-based particle swarm optimization for multicast routing [J]. Computer Networks, 2010, 54: 2775-2786.
    [22]Kumar N, Iqbal R, Chilamkurti N. et al. An ant based multi constraints QoS aware service .selection algorithm in Wireless Mesh Networks [J]. Simulation Modelling Practice and Theory, 2011, 19: 1933-1945.
    [23]Sun J, Fang W, Wu X, et al. QoS multicast routing using a quantum-behaved particle swarm opti-mization algorithm [J]. Engineering Applications of Artificial Intelligence. 2011, 24: 123—131.
    [24]Meisel M, Pappas V, Zhang L. A taxonomy of biologically inspired research in computer networking [J]. Computer Networks, 2010, 54: 901-916.
    [25]Chinchuluun A, Pardalos P M. A survey of recent developments in muhiobjective optimization |J]. Annals of Operations Research, 2007, 154: 29-50.
    [26]Garroppo R G, Giordano S, Tavanti L. A survey on multi-constrained optimal path computation: Exact and approximate algorithms [J]. Computer Networks,2010, 54 (17): 3081-3107.
    [27]Sahni S. General Techniques for Combinatorial Approximation[J]. Operations Research.1977, 25 (6): 920-936.
    [28]Chen S, Song M. Sahni S. Two techniques for fast computation of constrained shortest paths [J|. IEEE/ACM Transactions on Networking. 2008, 16: 105-1 15.
    [29]Chen S. Nahrstedl K. On finding multi-constrained paths [C]. In IEEE International Conference on Communications 1998 (1CC98), 1998: 874-879.
    [30]Jaffe J M. Algorithms for finding paths with multiple constraints [J]. Networks, 1984, 14: 95-1 16.
    [311 Yuan X. Heuristic algorithms for multiconstrained quality-of-service routing [J]. IEEE/ACM Trans-actions on Networking.2002,10:244-256.
    [32]Song M, Sahni S. Approximation algorithms for muilticonstrained Quality-of-Service routing [J]. IEEE Transactions on Computers.2006,55:603-617.
    [33]Xue G, Sen A, Zhang W, et al. Finding a path subject to many additive QoS constraints [J]. IEEE/ACM Transactions on Networking,2007,15:201-211.
    [34]Xue G, Zhang W, Tang J, et al. Polynomial time approximation algorithms for multi-constrained QoS routing [J]. IEEE/ACM Transactions on Networking,2008,16:656-669.
    [1]龚向阳,金跃辉,王文东,et al.宽带通信网原理[M].北京邮电大学出版社,2007.
    [2]Wang Z, Crowcroft J. Quality-of-Service routing for supporting multimedia applications [J]. IEEE Journal on Selected Areas in Communications, 1996, 14: 1228-1234.
    [3]Huang J, Liu Y. MOEAQ: A QoS-aware multicast routing algorithm for MANET [J]. Expert Sys-tems With Applications, 2010, 37: 1391-1399.
    [4]Tien P-L, Ke B-Y. Parallel QoS scheduling for WDM optical interconnection system using a new ranked Hopfield neural network [J]. IEEE/OSA Journal of Lightwave Technology, 2011, 29: 2436-2446.
    [5]刘芳,冯小军.免疫组播路由选择算法[J].计算机学报,2003,26(6):676-681.
    [6]刘芳,杨海潮.参数可调的克隆多播路由算法[J].软件学报,2005,16(1):145-150.
    [7]Wang H, Meng X, Li S, et al. A tree-based particle swarm optimization for multicast routing [J]. Computer Networks, 2010, 54: 2775-2786.
    [8]Kumar N, Iqbal R, Chilamkurti N, et al. An ant based multi constraints QoS aware service selection algorithm in Wireless Mesh Networks [J]. Simulation Modelling Practice and Theory, 2011, 19: 1933-1945.
    [9]Sun J, Fang W, Wu X, et al. QoS multicast routing using a quantum-behaved particle swarm opti-mization algorithm [J|. Engineering Applications of Artificial Intelligence, 2011, 24: 123-131.
    [10]Chinchuluun A, Pardalos P M. A survey of recent developments in multiobjective optimization [J]. Annals of Operations Research,2007, 154: 29-50.
    [11]Garroppo R G, Giordano S, Tavanti L. A survey on multi-constrained optimal path computation: Exact and approximate algorithms [J]. Computer Networks, 2010, 54(17): 3081 -3107.
    [12]Azevedo J A, Costa M E O S. Martins E Q V. An algorithm for the ranking of shortest paths [J]. European Journal of Operational Research,1993, 69: 97-106.
    [13]Mote J. Murthy I, Olson D. A parametric approach to solving bicriterion shortest path problems [.!]. European Journal of Operational Research, 1991, 53: 81-92.
    [14| Raith A, Ehrgott M. A comparison of solution strategies for biobjective shortest path problems [J|. Computers & Operations Research, 2009, 36: 1299-1331.
    [15]Climaco J C N, Martins E Q V. A bicriterion shortest path algorithm [J]. European Journal of Oper-ational Research,1982,11: 399-404.
    [16]Martins E Q V. On a multieriteria shortest path problem [J]. European Journal of Operational Re-search,1984,16: 236-245.
    [17]Brumbaugh-Smith J. An empirical investigation of some bicriterion shortest path algorithms [J]. European Journal of Operational Research, 1989,43: 216-224.
    [18]Martins E Q V, Santos J L E. The labeling algorithm for the multiobjective shortest path problem [J]. Pre-Publicacoes Centro de Matematica da Universidade de Coimbra,1999.
    [19]Skriver A J V, Andersen K A. A label correcting approach for solving bicriterion shortest-path problems [J]. Computers & Operations Research,2000,27:507-524.
    [20]Guerriero F, Musmanno R. Label Correcting Methods to Solve Multicriteria Shortest Path Problems [J]. Journal of Optimization Techniques and Applications,2001,111:589-613.
    [21]Climaco J C N, Craveirinha J M F, Pascoal M M B. A bicriterion approach for routing problems in multimedia networks [J]. Networks,2003,41:206-220.
    [22]Gandibleux X, Beugnies F, Randriamasy S. Martins' algorithm revisited for multi-objective shortest path problems with a MaxMin cost function [J]. A Quarterly Journal of Operations Research,2006, 4:47-59.
    [23]Pascoal M M B, Santos J L E D. A New Ranking Path Algorithm for the Multiobjective Shortest Path Problem [J]. Pre-Publicacoes Centro de Matematica da Universidade de Coimbra,2008,27.
    [24]Hansen P. Bicriterion Path Problems [J]. Multiple criteria decision making:theory and application, in Lecture Notes in Economics and Mathematical Systems,1980,177:109-127.
    [25]Ehrgott M, Gandibleux X. A survey and annotated bibliography of multiobjective combinatorial optimization [J]. Or Spektrum,2000,22:425-460.
    [26]Dell'olmo P, Gentili M, Scozzari A. On finding dissimilar Pareto-optimal paths [J]. European Jour-nal of Operational Research,2005,162:70-82.
    [27]Martins E Q V, Pascoal M M B, Santos J L E D. Deviation Algorithms for Ranking Shortest Paths [J]. International Journal of Foundations of Computer Science,1999,10:247-262.
    [28]Martins E Q V, Paixao J M, Rosa M S, et al. Ranking multiobjective shortest paths [J]. Pre-publicacoes do Departamento de Matematica,2007,11.
    [29]Ulungu E, Teghem J. The two-phases method:an efficient procedure to solve bi-objective com-binatorial optimization problems [J]. Foundations of Computing and Decision Sciences,1995,20: 149-165.
    [30]Mieghem P V, Kuipers F A. On the complexity of QoS routing [J]. Computer Communications, 2003,26:376-387.
    |31] Miiller-hannemann M, Weihe K. On the cardinality of the Pare to set in bicriteria shortest path prob-lems [J]. Annals of Operations Research,2006,147:269-286.
    [32]Kuipers F A. Mieghem P V. Non-dominance in QoS routing:an implementational perspective [J]. IEEE Communications Letters,2005,9:267-269.
    [33]Mieghem P V, Kuipers F A. Concepts of exact QoS routing algorithms [J|. IEEE/ACM Transactions on Networking,2004.12:851-864.
    [34]Sahni S. General Techniques for Combinatorial Approximation [J]. Operations Research,1977,25 (6):920-936.
    [35]Yuan X. Heuristic algorithms for multiconstrained quality-of-service routing [J]. IEEE/ACM Trans-actions on Networking,2002,10:244-256.
    [36]Chen S, Nahrstedt K. On finding multi-constrained paths [C]. In IEEE International Conference on Communications,1998:874-879.
    137] Orda A, Sprintson A. Precomputation schemes for QoS routing[J]. IEEE/ACM Transactions on Networking,2003,11:578-591.
    [38]Song M, Sahni S. Approximation algorithms for multiconstrained Quality-of-Service routing [Jj. IEEE Transactions on Computers,2006,55:603-617.
    [39]Warburton A. Approximation of pareto optima in multiple-objective shortest-path problems [J]. Operations Research,1987,35:70-79.
    [40]Hassin R. Approximation schemes for the restricted shortest path problem [J]. Mathematics of Op-erations Research,1992,17:36-42.
    [411 Lorenz D H, Raz D. A simple efficient approximation scheme for the restricted shortest path problem [J]. Operations Research Letters,2001,28:213-219.
    [42]Ergun F, Sinha R K, Zhang L. An improved FPTAS for Restricted Shortest Path [J]. Information Processing Letters,2002,83:287-291.
    [43]Goel A, Ramakrishnan K G, Kataria D, et al. Efficient computation of delay-sensitive routes from one source to all destinations [C]. In IEEE INFOCOM,2001:854-858.
    [44]Chen S, Song M, Sahni S. Two techniques for fast computation of constrained shortest paths [J]. IEEE/ACM Transactions on Networking,2008,16:105-115.
    [45]Xue G, Sen A, Zhang W, et al. Finding a path subject to many additive QoS constraints [J|. IEEE/ACM Transactions on Networking,2007,15:201-211.
    [46]Xue G. Zhang W, Tang J, et al. Polynomial time approximation algorithms for multi-constrained QoS routing [J]. IEEE/ACM Transactions on Networking,2008,16:656-669.
    [1]Xue G, Sen A, Zhang W. et al. Finding a path subject to many additive QoS constraints [J]. IEEE/ACM Transactions on Networking.2007.15:201-211.
    [2]Xue G, Zhang W, Tang J, et al. Polynomial time approximation algorithms for multi-constrained QoS routing[J]. IEEE/ACM Transactions on Networking,2008,16:656-669.
    [3]Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to Algorithms, Second Edition [M]. 2001.
    [4]Ergun F, Sinha R K, Zhang L. An improved FPTAS for Restricted Shortest Path [J]. Information Processing Letters,2002.83:287-291.
    [5]Yuan X. Heuristic algorithms for multiconstrained quality-of-service routing [J]. IEEE/ACM Trans-actions on Networking,2002,10:244-256.
    [6]Warburton A. Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems [J]. Operations Research,1987,35:70-79.
    [7]Hassin R. Approximation schemes for the restricted shortest path problem [J]. Mathematics of Op-erations Research,1992,17:36-42.
    [8]Lorenz D H, RazD. A simple efficient approximation scheme for the restricted shortest path problem [J]. Operations Research Letters,2001,28:213-219.
    [9]Goel A, Ramakrishnan K G, Kataria D, et al. Efficient computation of delay-sensitive routes from one source to all destinations [C]. In IEEE INFOCOM,2001:854-858.
    [10]Chen S, Nahrstedt K. On finding multi-constrained paths [C]. In IEEE International Conference on Communications,1998:874-879.
    [11]WAXMAN B M. Routing of multipoint connections [J]. IEEE Journal on Selected Areas in Com-munications,1988,6:1617-1622.
    [1]Jaffe J M. Algorithms for finding paths with multiple constraints[J]. Networks,1984,14: 95-116.
    [2]Mieghem P V, Kuipers F A. Concepts of exact QoS routing algorithms [J]. IEEE/ACM Transactions on Networking,2004,12: 851-864.
    [3]Apostolopoulos G, Kama S, Williams D, et al. QoS Routing Mechanisms and OSPF Extensions. August 1999. http://www.ietf.org/rfc/rfc2676.txt
    [4]OSPF Cost,http://www.cisco.com/en/US/tech/tk365/technologies_white_paper09186a0080094e9e.shtml#t6.
    [5]Huang J, Huang X, Ma Y. Routing with multiple quality-of-services constraints:An approximation perspective [J]. Journal of Network and Computer Applications,2012,35 (1):469-479.
    [1]Bless R, Rohricht M. Advanced Quality-of-Service signaling for IP multicast [C]. In International Workshop on Quality of Service 2011, (IWQoS 2011),2011:1-9.
    [2]Szymanski T H. Future Internet video multicasting with essentially perfect resource utilization and QoS guarantees [C]. In International Workshop on Quality of Service 2011, (IWQoS 2011),2011: 1-3.
    [3]Tavli B, Heinzelman W R. Energy-Efficient Real-Time Multicast Routing in Mobile Ad Hoc Net-works [J]. IEEE Transactions on Computers,2011,60:707-722.
    [4]yang Wu S, en He C. QoS-Aware Dynamic Adaptation for Cooperative Media Streaming in Mobile Environments [J]. IEEE Transactions on Parallel and Distributed Systems,2011,22:439-450.
    [5]Pradas D, Vazquez-Castro M A. NUM-Based Fair Rate-Delay Balancing for Layered Video Multi-casting over Adaptive Satellite Networks [J]. IEEE Journal on Selected Areas in Communications, 2011,29:969-978.
    [6]Takahashi H, Matsuyama A. An approximate solution for the steiner problem in graphs [J]. Mathe-matica Japonica,1980,9:573-577.
    [7]Zelikovsky A Z. The 11/6 approximation algorithm for the steiner problem on networks [J]. Algo-rithmica,1993,9:463-470.
    [8]Robins G, Zelikovsky A. Improved Steiner tree approximation in graphs [C]. In ACM-SIAM Sym-posium on Discrete Algorithms,2000:770-779.
    [9]Bharath-Kumar K, Jaffe J M. Routing to Multiple Destinations in Computer Networks [J]. IEEE Transactions on Communications,1983,31:343-351.
    [10]Khuller S, State P. Balancing Minimum Spanning Trees and Shortest-Path Trees [C]. In ACM-SIAM Symposium on Discrete Algorithms.1993:243-250.
    [11]Parsa M, Zhu Q, Garcia-Luna-Aceves J J. An iterative algorithm for delay-constrained minimum-cost multicasting [J]. IEEE/ACM Transactions on Networking,1998,6:461-474.
    [12]Xue G. Minimum-cost QoS multicast and unicast routing in communication networks [J]. IEEE Transactions on Wireless Communications,2003,51:817-824.
    [13]Hwang F K, Richards D S, Winter P. The steiner tree problem [J],1992,22:55-89.
    [14]Wang B, Hou J C. Multicast routing and its QoS extension:problems, algorithms, and protocols [J]. IEEE Network,2000,14:22-36.
    115] Cormen T H, Leiserson C E, Rivest R L. et al. Introduction to Algorithms, Second Edition [M]. 2001.
    [16]Huang J, Liu Y. MOEAQ:A QoS-Aware Multicast Routing algorithm for MANET [J]. Expert Sys-tems With Applications,2010,37:1391-1399.
    [1]Ibarrola E, Xiao J, Liberal F, et al. Internet QoS regulation in future networks:a user-centric ap-proach [J]. IEEE Communications Magazine,2011,49:148-155.
    [2]Lombardo A, Panarello C, Schembra G. Achieving energy savings and QoS in internet access routers [J]. Sigmetrics Performance Evaluation Review,2011,38:76-80.
    [3]Shenker S. Fundamental design issues for the future Internet [J]. IEEE Journal on Selected Areas in Communications,1995,13:1176-1188.
    [4]Bolla R, Bruschi R, Davoli F, et al. Energy Efficiency in the Future Internet:A Survey of Existing Approaches and Trends in Energy-Aware Fixed Network Infrastructures [J]. IEEE Communications Surveys & Tutorials,2011,13:223-244.
    [5]Pan J, Jain R, Paul S, et al. MILSA:A New Evolutionary Architecture for Scalability, Mobility, and Multihoming in the Future Internet [J]. IEEE Journal on Selected Areas in Communications,2010, 28:1344-1362.
    [6]Rexford J, Dovrolis C. Future Internet architecture:clean-slate versus evolutionary research [J]. Communications of The ACM,2010,53:36-40.
    [7]Bai Y, Chu Y, Ito M R. Dynamic end-to-end QoS support for video over the Internet [J]. Aeu-international Journal of Electronics and Communications,2011,65:385-391.
    [8]Rosberg Z, Matthews J, Russell C, et al. Fair and End-to-End QoS Controlled Internet [C]. In Inter-national Conference on Communication Theory, Reliability, and Quality of Service 2010, (CTRQ 2010),2010:85-91.
    [9]Kim K S, Uno S, Kim M W, et al. Adaptive end-to-end QoS mechanism for mobile Internet [C]. In Ultra Modern Telecommunications,2010:162-169.
    [10]OpenFlow Web Site. http://www.openflow.org/.
    [11]ToMaTo Web Site. http://dswd.github.com/ToMaTo/.
    [12]NSFNet Topology. http://code.google.com/p/efptas/downloads/lists.
    [13]Xue G. Zhang W, Tang J, et al. Polynomial time approximation algorithms for multi-constrained QoS routing [J]. IEEE/ACM Transactions on Networking,2008,16:656-669.
    [1]Hao F, Lakshman T V, Mukherjee S, et al. Enhancing dynamic cloud-based services using network virtualization [J]. Computer Communication Review,2010,40:67-74.
    [2]Chowdhury N M M K, Boutaba R. A survey of network virtualization [J]. Computer Networks, 2010,54:862-876.
    [3]Zaheer F-E, Xiao J, Boutaba R. Multi-provider service negotiation and contracting in network vir-tualization [C]. In IEEE Symposium on Network Operations and Management 2010 (NOMS 2010), 2010:471-478.
    [4]Duan Q. Modeling and Performance Analysis on Network Virtualization for Composite Network-Cloud Service Provisioning [C]. In IEEE Congress on Services, Los Alamitos, CA, USA,2011: 548-555.
    [5]Turner J S, Taylor D E. Diversifying the Internet [C]. In Global Telecommunications Conference, GLOBECOM. IEEE,2005.
    [6]Feamster N, Gao L, Rexford J. How to lease the internet in your spare time [J]. ACM Computer Communication Review,2007,37:61-64.
    [7]Creeger M. Moving to the edge:a CTO roundtable on network virtualization [J]. Communications of The ACM,2010,53:55-62.
    [8]Beloglazov A, Buyya R. Energy Efficient Resource Management in Virtualized Cloud Data Centers [C]. In Cluster Computing and the Grid,2010:826-831.
    [9]Duan Q. Modeling and Analysis of End-to-End Quality of Service Provisioning in Virtualization-Based Future Internet [C]. In International Conference on Computer Communications and Network-s,2010:1-6.
    [10]Kokku R, Mahindra R, Zhang H, et al. NVS:a virtualization substrate for WiMAX networks [C]. In Mobile Computing and Networking,2010:233-244.
    [11]Gu X, Nahrstedt K, Chang R N, et al. QoS-Assured Service Composition in Managed Service Over-lay Networks [C]. In International Conference on Distributed Computing Systems,2003:194-201.
    [12]yves Le Boudec J, Thiran P. Network Calculus:A Theory of Deterministic Queuing Systems for the Internet [M]. Springer,2001.
    [13]El Hog C, Djemaa R B, Amous I. AWS-WSDL:a WSDL extension to support adaptive web service [C]. In 13th International Conference on Information Integration and Web-based Applications and Services 2011 (iiWAS 2011),2011:477-480.
    [14]Peng B, Hammad A, Nejabati R, et al. A Network Virtualization Framework for IP Infrastructure Provisioning [C]. In 2011 IEEE Third International Conference on Cloud Computing Technology and Science (CloudCom 2011),2011:679-684.
    [15]Benaboud R, Maamri R, Sahnoun Z. Towards scalability of reputation and QoS based web ser-vices discovery using agents and ontologies [C]. In 13th International Conference on Information Integration and Web-based Applications and Services 2011 (iiWAS 2011),2011:262-269.
    [16]Hershberger J, Maxel M, Suri S. Finding the k shortest simple paths:A new algorithm and its implementation [J]. ACM Transactions on Algorithms,2007,3:851-864.
    [17]Huang J, Tanaka Y. QoS routing algorithms using fully polynomial time approximation scheme [C]. In International Workshop on Quality of Service 2011 (IWQoS 2011),2011:1-3.
    [18]Domoxoudis S, Kouremenos S, Loumos V, et al. Measurement, Modelling and Simulation of Video-conference Traffic from VBR Video Encoders [J],2004.
    [19]http://mailman.isi.edu/pipermail/ns-users/2006-August/056727.html.
    [20]Huang J, Liu Y. MOEAQ:A QoS-Aware Multicast Routing algorithm for MANET [J]. Expert Sys-tems With Applications,2010,37:1391-1399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700