用户名: 密码: 验证码:
若干仿生算法的理论及其在函数优化和图像多阈值分割中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最优化方法作为一个重要的科学分支,一直受到人们的广泛重视,它对多个学科产生了重大影响,并在诸多工程领域得到迅速推广和应用,己成为不同领域中以及人们的日常工作与生活中不可或缺的工具。很多优化问题己被证明是NP完全问题,至今没有有效的多项式时间解法,用传统的最优化方法求解,需要的计算时间与问题的规模成指数关系。因此,人们转而求其次,发展了很多仿生算法,希望在有限的时间内求得问题的次优解或近优解,如遗传算法、分布估计算法、粒子群算法、禁忌搜索以及其混合优化策略等。本文的研究紧紧围绕几种仿生算法的理论及其在函数优化、图像阈值分割上面的应用展开,具体地说,本文的研究内容及主要解决的问题如下所述。
     1)首先介绍了仿生算法之遗传算法的基础理论研究概况和遗传算法的各种改进策略及其已取得的成果。然后在此基础上,我们深入分析了一种伪遗传算法所采用的二进制编码互补双亲策略初始化种群的方法;证明了以此种方式初始化种群能使变异算子极限搜索概率提高1/|HL|2;并且也分析了它的优良模式的生存能力和全局收敛性。接下来,基于上述的分析对伪遗传算法进行了二个方面的改进,改进后的算法称为GACPS算法。经过对一类自变量非对称的测试函数的仿真实验证实,改进后的算法在求解精确度、稳定性和收敛速度等方面都有很明显的提高。此外,我们也指出了GACPS算法研究的意义和下一步研究的内容。
     2)在上文关于遗传算法理论研究的基础上,结合近年来仿生算法应用于图像阈值分割的概况,我们把遗传算法应用到图像分割领域,提出一种自动多阈值图像分割算法AMT-BSGA。首先将一幅图像看成是由像素值组成的总体,运用分块采样得到若干子样本;其次在每一个子样本中运用遗传算法来使样本的均值与方差比极大化;再基于获得的样本信息对阈值数目和阈值进行自动预测;最后利用一种确定性的算法对阈值数目和阈值做进一步的优化。该算法无需事先考虑图像的纹理和分割数等先验信息,具有较高的易用性;其计算复杂性对图像阈值个数敏感性较低;无需进行灰度直方图分析。在Berkeley图像分割数据集上的大量仿真实验结果表明,本章所提算法能获得较准确、快速和稳定的图像分割。此外,我们也指出了AMT-BSGA的进一步研究的思路和方向。
     3)在上文对遗传算法理论及其在函数优化、图像多阈值分割中应用的深入研究基础上,结合遗传算法的发展过程,我们研究了分布估计算法。首先介绍了分布估计算法基本原理和流程,分布估计算法基础理论研究和分布估计算法的种类及其改进。接下来我们基于贝叶斯定理和最优解的概率分布提出了一种新的分布估计算法即贝叶斯预测型进化算法(BFEA)。它通过预测最优解所在的子空间来导引算法的搜索,即按照一定的规则在含有最优解概率较大的子空间产生较多的个体,在最优解概率较小的子空间产生较少的个体。它可方便的引入专家知识、能高效利用所有先前代蕴含的信息且能以很快的速度收敛到最优解子空间。文中从理论上分析了它的收敛性、收敛速度和逆收敛算子。我们发现它是有效解决遗传算法中的连锁和欺骗问题的一种新方法。文中的理论分析与对比实验证实了贝叶斯预测型进化算法求解较精确、稳定和快速。此外,我们也指出了贝叶斯预测型进化算法的下一步研究的思路和内容。
     4)受到上文把贝叶斯定理和遗传算法相结合的启发,我们尝试把贝叶斯定理和粒子群算法相结合。在研究了粒子群算法的流程、特点和应用情况以及粒子群算法的理论和改进方法的基础上,接下来,我们结合贝叶斯定理和灰度图像阈值分割的特点提出了一个高效并且更简单的改进粒子群算法,称为贝叶斯粒子群算法(Bayesian ParticleSwarm Optimization algorithm, BPSO)。在贝叶斯粒子群算法中,我们设计了一种方法去自动地和分别地指派粒子群算法中“社会影响”(social influence)部分的收缩系数(constriction coefficient)的大小,以至于各个粒子们可以根据历史信息以及与当前最优粒子之间距离的大小而拥有不同程度的探索和开发能力。另外,我们根据图像多阈值分割时阈值从小到大排列的特点设计了一种种群初始化策略,这种策略使算法搜索效率更高。相对于现有的三种先进的算法来说,大量的在Berkely图像数据集上的仿真实验显示了贝叶斯粒子群算法可以得到高效的、稳定的和比较平滑的分割结果。此外,我们也指出了贝叶斯粒子群算法进一步研究的方向和内容。
     在本文的结论部分,我们对全文主要研究内容进行总结,讨论了现有工作中的不足之处,并且指出了在本文研究基础之上的后续研究内容和思想方法。
Optimization which has greatly influenced many disciplines and obtains rapid promotionand applications in so many engineering domains has received widespread attention as animportant scientific branch. Optimization has become an indispensable tool for many differentareas. Many optimization problems have been proved to be NP-Complete problems (NPC).So far there is no effective method of Polynomial time for NPC, and the computing time of atraditional optimization method grows exponentially with the scale of the problem. Thus,instead, researchers hoping to achieve optimal or near-optimal solutions in limited time havedeveloped a lot of Bionical algorithms such as, Genetic Algorithms, Estimation OfDistribution Algorithms, Particle Swarm Optimization, Tabu Search, hybrid optimizationstrategies and so on. This thesis focuses on Bionical Algorithms and Their Application onFunction Optimization and Multilevel Thresholding. The main works and innovative pointsare as follows:
     1) Traditional Genetic Algorithms initialize their individuals stochastically and generatetoo many eccentric and homogeneous individuals. This will cause premature convergence andslow down the speed. In this thesis this important problem is studied via thecomplementary-parent strategy of initializing population in PGA. We analyze it and concludethat the limiting probability of the traditional mutation operator based on this strategy is1/|HL|2higher than on the traditional one. This strategy is more efficient by applying toCoarse-grained parallel genetic algorithm which develops the parallelism among populations.For PGA, we also discuss the reproductive capacity of excellent schemata based on theschema theorem and demonstrate the global convergence using homogeneous finite Markovchain. And then, we present an improved algorithm named GACPS. With some of typicalunsymmetrical functions tested, simulation show the quality of GACPS is much higher thanPGA on precision, stability and convergence rate.
     2) Multilevel thresholding is an important technique for image compression, imageanalysis and pattern recognition. However, it is still a hard problem to determine the numberof thresholds automatically. So, a new multilevel thresholding method called as AutomaticMultilevel Thresholding Algorithm For Image Segmentation based on Block Sampling and Genetic Algorithm (AMT-BSGA), which can automatically determine the appropriate numberof thresholds and the proper threshold values, is proposed on the basis of Block Sampling andGenetic Algorithm. In AMT-BSGA, an image is treated as a population with the gray valuesof pixels as the individuals. First, an image is evenly divided into several blocks, and a sampleis drawn from each block. Then, genetic algorithm based optimizing is applied to each sampleso as to maximize the ratio of mean and variance for the sample. Based on the optimizedsamples, the number of thresholds and threshold values are preliminarily determined. Finally,a deterministic method is implemented to further optimize the number of thresholds andthreshold values. AMT-BSGA can work without knowing in advance other auxiliaryinformation, such as contextual or textual properties, and the number of thresholds. It has alower computing complexity which is almost independent from the number of thresholds andcan avoid the burden of analyzing histograms. AMT-BSGA can produce effective, efficientand smoother results, which has been verified by extensive simulations on Berkeley datasets.
     3) Based on Bayesian theorem and the probability distribution of promising solutionsand integrating with the basic principle of evolutionary computation, we proposes a novelalgorithm named Bayesian Forecasting Evolutionary Algorithm (BFEA). Our proposedmethod guides the exploration of the search space according to the prediction probability ofevery subspace including the optimal solutions. Moreover, prior information about theproblem is incorporated into the algorithm easily and much more information in the generatedpopulations is used. More importantly, BFEA is a new method to solve linkage problem anddeceptive problem effectively. This algorithm can converge faster to the subspaces withoptimal solution and its convergence, convergence rate and counteraction operator are alsoanalyzed theoretically. Theoretical analyses and tests have demonstrated the proposed methodhas a simpler algorithm model, lower computing complexity and higher computationaccuracy.
     4) A simpler and efficient PSO algorithm based on Bayesian theorem and the charactersof intensity images is proposed, called as Bayesian Particle Swarm Optimization algorithm(BPSO). In BPSO, a new method is designed to assign the constriction coefficient of the“social influence” term for each particle automatically and separately based on Bayesiantheorem, so that they can have different levels of exploration and exploitation capabilities. And a new population initialization strategy is adopted to make the search more efficient,according to the characters of multilevel thresholding in an image arranged from a low graylevel to a high one. The experimental results indicate that BPSO can produce effective,efficient and smoother segmentation results in comparison with three existing methods onBerkely datasets.
引文
[1] Poole D, Mackworth A, Goebel R.. Computational Intelligence: A Logical Approach [M].Oxford: Oxford University Press,1997
    [2]张军,詹志辉,陈伟能,等.计算智能[M].北京:清华大学出版社,2009
    [3]李娜娜.仿生算法及其在专家分配问题中的应用[D].天津:天津大学,2008
    [4] Diosan L, Oltean M. Observing the Swarm Behaviour during Its Evolutionary Design[A].GECCO’07[C], London, England,2007,2667-2674
    [5] Banzhaf W, Foster J. Biological applications of genetic and evolutionary computation [J].Genetic Programming and Evolvable Machines,2004,5(2):119-241
    [6]徐宗本,张讲社,郑亚林.计算智能中的仿生学:理论与算法[M].北京:科学出版社,2003:1-106
    [7]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2004
    [8] Nilsson N J.人工智能[M].郑扣根,庄越挺译.北京:机械工业出版社,2000
    [9] Haykin S. Neural Networks: A Comprehensive Foundation [M]. Prentice Hall PTR UpperSaddle River,1998
    [10] Zadeh L A. Fuzzy logic [J]. Computer,1998,21(4):83-93
    [11] Holland J H. Adaptation in Natural and Artificial Systems [M].1sted.,1975,2nded.,Cambridge, MA: MIT press,1992
    [12] Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning [M].Addison Wesley,1989
    [13] Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to thetraveling salesman problem [J]. IEEE Transactions Evolutionary Computation,1997,1(1):53-66
    [14] Dorigo M, Stützle T. Ant colony optimization [M]. MIT Press,2004
    [15] Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[A], InProceedings of the sixth international symposium on micro machine and human science [C],Nagoya, Japan. Piscataway: IEEE.1995:39-43
    [16] Kennedy J, Eberhart R C. Particle swarm optimization[A]. Proc. IEEE Int. Conf. NeuralNetworks [C],1995(4):1942-1948
    [17] De Castro L N, Timmis J. Artificial Immune Systems: A New Computational IntelligenceApproach [M]. London: Springer-Verlag,1996
    [18] Mühlenbein H, Paa G. From recombination of genes to the estimation of distributions I.Binary parameters [J], Parallel Problem Solving from Nature-PPSN IV, Berlin: SpringerVerlag,1996:178-187
    [19] Moscato P. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts:towards Memetic Algorithms [R]. California Institute of Technology, Technical ReportCaltech Concurrent Computation Program158-179,1989
    [20] Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulated annealing, Science[J],1983,220(4598):671-680
    [21] Glover F, Tabu Search-Part I [M], ORSA Journal on Computing1989(1),190-206.
    [22] Glover F, Tabu Search-Part II [M], ORSA Journal on Computing1990(2):1,4-32
    [23] Abbass H A, A monogenous MBO approach to satisfiability [A], in: Proceeding of theInternational Conference on Computational Intelligence for Modelling, Control andAutomation [C], CIMCA’2001, Las Vegas, NV, USA,2001
    [24] Abbass H A, MBO: marriage in honey bees optimization-A Haplometrosis polygynousswarming approach [A], in: The Congress on Evolutionary Computation (CEC2001)[C],2001, pp.207-214
    [25] Head T. Formal language theory and DNA: an analysis of the generative capacity ofspecific recombinant behaviors [J]. Bulletin of Mathematical Biology,1987,49:737-759.
    [26] Adleman L. Molecular computation of solution to combinatorial problems [J]. Science,1994,266(11):1021-1024.
    [27] Pǎun G. Computing with membranes [J]. Journal of Computer and System Sciences (Firstcirculated at TUCS Research Report No.208,1998),2000,61(1):108-143.
    [28] Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring [A],Proceedings of the35th Annual Symposium on Foundations of Computer Science [C]. NewYork, USA: IEEE Computer Society Press.1994:124-134.
    [29] McCullonch W S, Pitts W A. A Logical Calculus of the Ideas Immanent In NervousActivity [J], Bulletin of Mathematical Biology,1943,5(4):115-133
    [30] Hebb D O. The Organization of Behavior: A Neuropsychological Theory [M]. New York:Wiley,1949
    [31] Rosenblatt F. The Perceptron: A Probabilistic Model for Information Storage andOrganization in the Brain [J]. Psychological Review,1958,65(6):386-408
    [32] Widrow B, Hoff M E. Adaptive Switching Circuits, Institute of Radio Engineers, WesternElectronic Show and Convention [J]. Convention Record,1960, Part4,96-104
    [33] Minsky M, Papert S. Perceptrons: An Introduction to Computational Geometry [M].Cambridge, MA: MIT Press,1969
    [34] Hopfield J J. Neural Networks and Physical Systems with Emergent CollectiveComputational Abilities [A], Proceedings of the National Academy of Sciences of the UnitedStates of America [C].1982,79(8):2554-2558,[part1: Biological Sciences]
    [35] Hopfield J J. Neurons with Graded Response Have Collective Computational Propertieslike Those of Two-State Neurons [A], Proceedings of the National Academy of Sciences ofthe United States of America[C].1984,81(10):3088-3092,[part1: Biological Sciences]
    [36] Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by errorpropagation[J]. Parallel Distributed Processing,1986(1):318-362
    [37] L A Zadeh. Fuzzy sets. Information and Control [J].1965,8(3):338-353
    [38] Zadeh L A. Outline of a new approach to the analysis of complex systems and decisionprocesses [J]. IEEE Transactions on Systems, Man, and Cybernetics,1973(3):28-44
    [39] Zadeh L A. Soft Computing and Fuzzy Logic [J]. IEEE Software,1994,11(6):48-56
    [40] Holland J H. Outline for a logical theory of adaptive system [J]. Journal of theAssociation for Computing Machinery,1962(3):297-314
    [41] Holland J H. A new kind of turnpike theorem [J]. Bulletin of the American MathematicalSociety,1969:1311-1317
    [42] Holland J H. Genetic algorithms and the optimal allocations of trials [J]. SIAM Journalof Computing,1973,2(2):88-105
    [43] Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[A],Proceedings of1stEuropean Conference on Artificial Life [C].1991:134-142
    [44] Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperatingagents [J]. IEEE Transactions on Systems, Man, and Cybernetics-part B,1996,26(1):29-41
    [45] Dorigo M. Optimization, Learning and Natural Algorithm [D], ph. D. Thesis, Departmentof Electronics, Politecnico di Milano,1992
    [46] Stützle T, Hoos H H. Improving the ant system: a detailed report on the MAX-MIN antsystem [R]. Technical report AIDA-96-12,1996
    [47] Stützle T, H H Hoos. MAX-MIN ant system, Future Generation Computer Systems [J].2000,16(8):889-914
    [48] Blum C, Dorigo M. The hyper-cube framework for ant colony optimization [J]. IEEETransactions on Systems, Man, and Cybernetics-part B,2004,34(2):1161-1172
    [49] Mathur M, Karale S B, Priye S, et al. Ant colony approach to continuous functionoptimization [J]. Ind. Eng. Chem. Res,2000(39):3814-3822.
    [50] Lin Y, Cai H C, Xiao J, et al. Pseudo parallel ant colony optimization for continuousfunctions[A]. Proceedings of the3stInternational Conference on Natural Computation2007
    [C].2007(8):494-498
    [51] Hu X M, Zhang J, Li Y. Orthogonal methods based ant colony search for solvingcontinuous optimization problems[J]. Journal of Computer Science and Technology,2008,23(1):2-18
    [52] Eberhart R C, Shi Y. Guest editorial: special issue on particle swarm optimization[J].IEEE Transactions on Evolutionary Computation,2004,8(3):201-203
    [53] Eberhart R C, Shi Y. Particle swarm optimization: developments, applications andresources [A]. Proceedings of the2001Congress on Evolutionary Computation [C].2001,Vol.1, pages:81-86
    [54] Hu X H, Shi Y, Eberhart R C. Recent advances in particle swarm [A]. Proceedings of the2004Congress on Evolutionary Computation [C].2004, Vol.1, pages:90-97
    [55] Li X D, Engelbrecht A P. Particle swarm optimization: an introduction and its recentdevelopments[A]. Genetic Evol. Comput. Conf.[C].2007:3391-3414
    [56] Del Valle Y, Venayagamoorthy G K, Mohagheghi S, et al. Particle swarm optimization:basic concepts, variants and applications in power system [J]. IEEE Transactions onEvolutionary Computation,2008,12(2):171-195
    [57] Jerne N K. The immune system[J]. Scientific American,1973,229(1):52-60
    [58] Jerne N K. Towards a network theory of the immune system, Annales D'immunologie [J].1974,125C(1-2):373-389
    [59] Jerne N K. The immune system: A web of V-domains [J]. Harvey Lectures,1974,70Series:93-110
    [60] Farmer J, Packard N, Perelson A. The immune system, adaptation and machine learning[J]. Physica D: Nonlinear Phenomena,1986,22(1-3):187-204
    [61] Baluja S. Population-Based Incremental Learning: A Method for Integrating GeneticSearch Based Function Optimization and Competitive Learning[R]. Technical reportCMU-CS-94-163, Carnegie Mellon University,1994
    [62] De Bonet J S, Isbell C L, Paul Viola Jr. MIMIC: Finding Optima by EstimatingProbability Densities [J]. Advances in Neural Information Processing Systems, Cambridge:The MIT Press,1997
    [63] Baluja S, Davies S. Using optimal dependency-trees for combinatorial optimization:Learning the structure of the search space [A]. Proceedings of the14thInternationalConference on Machine Learning [C]. Morgan Kaufmann,1997:30-38
    [64] M ü hlenbein H, Mahnig T. The factorized distribution algorithm for additivelydecomposable functions[A]. Proceedings of the1999Congress on Evolutionary Computation
    [C].1999,1:752-759
    [65] Pelikan M, Goldberg D E, Cantú-Paz E. BOA: The Bayesian Optimization Algorithm
    [A]. Wolfgang Banzhaf, Jason Daida, et al. Proceedings of the Genetic and EvolutionaryComputation Conference (GECCO-99)[C].California: Morgan Kaufmann,1999:525-532
    [66] Pe a J M, Robles V, Larra aga P, et al. GA-EDA: Hybrid Evolutionary Algorithm UsingGenetic and Estimation of Distribution Algorithms [A]. In the17th International Conferenceon Industrial and Engineering Applications of Artificial Intelligence and Expert Systems [C].2004:361-371
    [67] Sun J, Zhang Q, Tsang E. DE/EDA: A new evolutionary algorithm for globaloptimization [J]. Information Sciences,2005,169(3):249-262
    [68] Zhang Q, Sun J, Tsang E, Ford J. Hybrid estimation of distribution algorithm for globaloptimization [J]. Engineering Computations,2004,21(1):91-107
    [69] Wang J, Zhang Y, Zhou Y, et al. Discrete quantum-behaved particle swarm optimizationbased on estimation of distribution for combinatorial optimization [A]. IEEE Congress onEvolutionary Computation [C].2008:897-904
    [70] Oh I S, Lee J S, Moon B R. Hybrid genetic algorithms for features selection [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2004,26(11):1424-1437
    [71] Liu B, Wang L, Jin Y H. An effective PSO-based memetic algorithm for flow shopscheduling [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,2007,37(1):18-27
    [72] Krasnogor N, Smith J. A tutorial for competent memetic algorithms: model, taxonomy,and design issues [J]. IEEE Transactions on Evolutionary Computation,2005,9(5):474-488
    [73] Ong Y S, Lim M H, Zhu N, et al. Classification of adaptive memetic algorithm: acomparative study [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2006,36(1):141-152
    [74] Metropolis N, Rosenbluth A, Rosenbluth M, et al. Equation of state calculations by fastcomputing machines [J]. Journal of Chemical Physics,1953,21(6),1087-1092
    [75] Johnson D S, Aragon C R, McGeoch L A, et al. Optimization by simulated annealing: anexperimental evaluation, partⅠ, graph partitioning [J]. Operations Research,1989,37(6):865-892
    [76] Johnson D S, Aragon C R, McGeoch L A, et al. Optimization by simulated annealing: anexperimental evaluation, partⅡ, graph coloring and number partitioning [J]. OperationsResearch,1991,39(3):378-406
    [77] Fleischer M. Simulated annealing: past, present, and future [A]. In Proceedings of the27th conference on Winter Simulation [C]. Arlington, Virginia, United States,1995:155-161
    [78] Laarhoven P J M, Aarts E H L. Simulated annealing: theory and applications [M].Norwell: Kluwer Academic Publishers,1987
    [79]康立山,谢云,等.非数值并行算法(第一册):模拟退火算法[M].北京:科学出版社,2003:22-31
    [80] Rui Chibante. Simulated Annealing Theory with Applications [M]. Rijeka: Sciyo,2010
    [81] Glover F, Tabu Search: A Tutorial, Special Issue on the Practice of MathematicalProgramming [J]. Interfaces,1990,20(1):74-94
    [82] Glover F, Artificial Intelligence, Heuristic Frameworks and Tabu Search [J]. Managerialand Decision Economics,1990,11(5):365-375
    [83] Glover F, Laguna M. Tabu Search [M]. Boston, Kluwer Academic Publishers,1997
    [84] Glover F, Hanafi S. Tabu Search and Finite Convergence [J]. Discrete AppliedMathematics,2002,119(1-2):3-36
    [85] Faigle U, Kern W. Some Convergence results for probabilistic Tabu Search [J]. ORSAJournal on Computing,1992,4(1):32-37
    [86]王凌,智能优化算法及其应用[M].北京:清华大学出版社,2001
    [87] Ji M, Tang H. Global optimizations and Tabu search based on memory [J]. Appliedmathematics and computation,2004,159(2):449-457
    [88]温万惠,刘光远.一种基于可变禁忌长度的多用户检测方法[J].信号处理,2005,21(4):389-391
    [89] Sexton R S, Alidaee B, Dorsey R E, et al. Global optimization for artificial neuralnetworks: A tabu search application [J]. European Journal of Operational Research,1998,106(2-3):570-584
    [90] Józefowska J, Waligóra G, W glarz J. Tabu list management methods for adiscrete-continuous scheduling problem [J]. European Journal of Operational Research,2002,137(2):288-302
    [91] Jiang T, Yang F. An evolutionary tabu search for cell image segmentation [J]. IEEETransactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2002,32(5):675-678
    [92] Lee Y H, Kang J, Ryu K R, et al. Optimization of Container Load Sequencing by aHybrid of Ant Colony Optimization and Tabu Search [A]. The First International Conferenceon Natural Computation (ICNC2005), LNCS3611[C]. Springer-Verlag, Berlin, Heidelberg,2005:1259-1268
    [93] Song H, Zhang D, Liu J. An Adaptive Hybrid Immune Genetic Algorithm for MaximumCut Problem [A]. The First International Conference on Natural Computation (ICNC2005),LNCS3611[C]. Springer-Verlag, Berlin, Heidelberg,2005:863-866
    [94]贺一.禁忌搜索及其并行化研究[D].重庆:西南大学,2006
    [95] Bozorg Haddad O, Afshar A, MBO (Marriage Bees Optimization), A new heuristicapproach in hydrosystems design and operation [A]. in: Proceedings of1st InternationalConference On Managing Rivers In The21st Century: Issues and Challenges [C]. Penang,Malaysia,2004:499-504
    [96] Fathian M, Amiri B, Maroosi A. Application of honey-bee mating optimization algorithmon clustering [J]. Applied Mathematics and Computation,2007,190(2):1502-1513
    [97] Horng M-H. A multilevel image thresholding using the honey bee mating optimization[J]. Applied Mathematics and Computation,2010,215(9):3302-3310
    [98] Sadjadi S J, Soltani R. Alternative design redundancy allocation using an efficientheuristic and a honey bee mating algorithm [J]. Expert Systems with Applications,2012,39(1):990-999
    [99] Yang C, Chen J, Tu X. Algorithm of Fast Marriage in Honey Bees Optimization andConvergence Analysis [A].2007IEEE International Conference on Automation and Logistics
    [C].2007:1794-1799
    [100] Lipton R. DNA solution of hard computational problems [J]. Science,1995,268(28):542-545
    [101] Ouyang Q, Kaplan P D, Liu S, et al. DNA solution of the maximal clique problem [J].Science,1997,278(17):446-449
    [102] Head T, Rozenberg G, Bladergroen R B, et al. Computing with DNA by operating onplasmids [J]. BioSystems,2000,57:87-93
    [103]高琳,马润年,许进.基于质粒DNA匹配问题的分子算法[J].生物化学与生物物理学进展,2002,29(5):820-823
    [104] Benenson Y, Gil B, Ben-Dorl Uri, et al. An autonomous molecular computer for logicalcontrol of gene expression [J]. Nature,2004,429(27):423-429
    [105]肖建华.仿生型DNA计算编码算法研究[D].武汉:华中科技大学,2008
    [106] Pǎun G. Membrane computing: an introduction [M]. Springer-Verlag,2002
    [107] Nishida T Y. An application of P system: a new algorithm for NP-complete optimizationproblems [A]. Proceedings of8th world multi-conference on systems, cybernetics andinformation [C].2004:109-112
    [108]赵进慧.膜计算仿生优化算法及应用研究[D].杭州:浙江大学,2010
    [109] Feynman R P. Quantum Mechanical Computers [J]. Found. Phys.,1986,16(6):507-531
    [110] Deutsch D, Quantum Computational Networks [A]. Proceedings of the Royal Society
    [C]. London A,1989,425(1868):73-90
    [111] Grover L K. A fast quantum mechanical algorithm for database search [A]. Proc. of the28th Annual ACM Symp. on Theory of Computing[C]. New York, USA: ACM Press.1996:212-219
    [112] Ventura D. Quantum computing and neural information processing [J]. InformationSciences,2000,128:147-148
    [113] Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class ofcombinatorial optimization [J]. IEEE Transactions on Evolutionary Computation,2002,6(6):580-593
    [114] Martoňák R, Santoro G E, Tosatti E. Quantum annealing of the Traveling Salesmanproblem [J]. Physical Review E70,2004,057701
    [115]李盼池.量子计算及其在智能优化与控制中的应用[D].哈尔滨:哈尔滨工业大学,2009
    [116] Fu K S, Mui J K. A survey on image segmentation [J]. Pattern Recognition,1981,13(1):3-16
    [117] Gonzaler R C, Woods R E. Digital Image Processing [M].3rd., Addison-Wesley,1992
    [118]林正春.无准则多维图像阈值分割算法——最优进化算法[D].广州:华南理工大学,2010
    [119] Sahoo P K, Soltani S, Wong A K C. A survey of thresholding techniques [J]. ComputerVision, Graphics, and Image Processing,1988,41(2):233-260
    [120] Sezgin M, Sankur B. Survey over image thresholding techniques and quantitativeperformance evaluation [J]. Journal of Electronic Imaging,2004,13(1):146-165
    [121]聂方彦.图像阈值化与目标分割方法中的若干问题研究[D].重庆:重庆大学,2010
    [122] Weszka J S, Rosenfeld A. Histogram modification for threshold selection [J]. IEEETransactions on Systems, Man and Cybernetics,1979,9(1):38-52
    [123] Nakib A, Oulhadj H, Siarry P. Fractional differentiation and non-Pareto multiobjectiveoptimization for image thresholding [J]. Engineering Applications of Artificial Intelligence,2009,22(2):236-249
    [124] Snyder W, Bilbro G, Logenthiran A, Rajala S. Optimal thresholding-A new approach [J].Pattern Recognition Letters,1990,11(12):803-809
    [125] Gupta L, Sortrakul T. A gaussian-mixture-based image segmentation algorithm [J].Pattern Recognition,1998,31(3):315-325
    [126] Yin P Y. A fast scheme for optimal thresholding using genetic algorithms [J]. SignalProcessing,1999,72(2):85-95
    [127] Zahara E, Fan S K S, Tsai D M. Optimal multi-thresholding using a hybridoptimization approach [J]. Pattern Recognition Letters,2005,26(8):1082-1095
    [128] Otsu N. A threshold selection method from gray-level histograms [J]. IEEETransactions on Systems, Man and Cybernetics,1979,9(1):62-66
    [129] Ng H F. Automatic thresholding for defect detection [J]. Pattern Recognition Letters,2006,27(14):1644-1649
    [130] Hou Z, Hu Q, Nowinski W L. On minimum variance thresholding [J]. PatternRecognition Letters,2006,27(14):1732-1743
    [131] Kittler J, Illingworth J. Minimum error thresholding [J]. Pattern Recognition,1986,19(1):41-47
    [132] Pun T. A new method for grey-level picture thresholding using the entropy of thehistogram [J]. Signal Processing,1980,2(3):223-237
    [133] Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholdingusing the entropy of the histogram [J]. Computer Vision, Graphics, and Image Processing,1985,29(3):273-285
    [134] Li C H, Lee C K. Minimum cross entropy thresholding [J]. Pattern Recognition,1993,26(4):617-625
    [135]张文修,梁怡.遗传算法的数学基础[M].西安:西安交通大学出版社,2003
    [136] Yu Y, Zhou Z. A new approach to estimating the expected first hitting time ofevolutionary algorithms [J]. Artificial Intelligence,2008,172(15):1809-1832
    [137]玄光男,程润伟.遗传算法与工程优化[M].于歆杰,周根贵,译.北京:清华大学出版社,2004
    [138] Chen Q, Zhong Y, Zhang X. A pseudo genetic algorithm [J]. Neural Computing&Applications,2009,19(1):77-83
    [139] Jiang Y, Hao Z, Tu K, Cai R. The Analysis and Improvement of ComputationalEfficiency for a Pseudo Genetic Algorithm [A].2009International Conference on Test andMeasurement [C].2009,2:413-417
    [140]王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社,2002:79-85
    [141]陈国良,王煦法,庄镇泉,等.遗传算法及其应用[M].北京:人民邮电出版社,1996
    [142]熊军,高墩堂,都思丹,等.变异率和种群数目自适应的遗传算法[J].东南大学学报,2004,34(4):553-556
    [143]刘习春,喻寿益.局部快速微调遗传算法[J].计算机学报,2006,29(1):100-105
    [144]张光卫,何锐,刘禹,等.基于云模型的进化算法[J].计算机学报,2008,31(7):1082-1090
    [145] Hammouche K, Diaf M, Siarry P. A multilevel automatic thresholding method based ona genetic algorithm for a fast image segmentation [J]. Computer Vision and ImageUnderstanding,2008,109(2):163-175
    [146] Bosco G L. A genetic algorithm for image segmentation [A]. Proceedings of IEEEInternational Conference on Image Analysis and Processing [C]. Los Alamitos: IEEEComputer Society Press, Palermo,2001:262-266
    [147]陈果,左洪福.图像分割的二维最大熵遗传算法[J].计算机辅助设计与图形学学报,2002,14(6):530-534
    [148]林正春,王知衍,张艳青.最优进化图像阈值分割算法[J].计算机辅助设计与图形学学报,2010,22(7):1201-1206
    [149] Yang Z H, Pu Z B, Qi Z Q. Relative entropy multilevel thresholding method based ongenetic algorithm [A]. Proceedings of IEEE International Conference on Neural Networksand Signal Processing [C]. Los Alamitos: IEEE Computer Society Press,2003:583-586
    [150] Lai C C, Tseng D C. A hybrid approach using Gaussian smoothing and geneticalgorithm for multilevel thresholding [J]. International Journal of Hybrid Intelligent Systems,2004,1(3-4):143-152
    [151] Lai C C, Chang C Y. A hierarchical evolutionary algorithm for automatic medicalimage segmentation [J]. Expert Systems with Applications,2009,36(1):248-259
    [152] Cao L, Bao P, Shi Z K. The strongest schema learning GA and its application tomultilevel thresholding [J]. Image and Vision Computing,2008,26(5):716-724
    [153] Gao H, Xu W, Sun J, et al. Multilevel thresholding for image segmentation through animproved quantum-behaved particle swarm algorithm [J]. IEEE Transactions onInstrumentation and Measurement,2010,59(4):934-946
    [154] Fan S K S, Lin Y, A multi-level thresholding approach using a hybrid optimalestimation algorithm [J]. Pattern Recognition Letters,2007,28(5):662-669
    [155] Yin P Y. Multilevel minimum cross entropy threshold selection based on particleswarm optimization [J]. Applied Mathematics and Computation,2007,184(2):503-513
    [156] Malisia A R, Tizhoosh H R. Image thresholding using ant colony optimization [A].Proceedings of the3rd Canadian Conference on Computer and Robot Vision [C]. LosAlamitos: IEEE Computer Society Press, Waterloo,2006:26-31
    [157] Tao W B, Jin H, Liu L M. Object segmentation using ant colony optimization algorithmand fuzzy entropy [J]. Pattern Recognition Letters,2007,28(7):788-796
    [158] Chang C Y, Chung P C. Medical image segmentation using acontextual-constraint-based Hopfield neural cube [J]. Image and Vision Computing,2001,19(9-10):669-678
    [159] Bhattacharyya S, Maulik U, Dutta P. Multilevel image segmentation with adaptiveimage context based thresholding [J]. Applied Soft Computing,2011,11(1):946-962
    [160] Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints basedon new kernel-induced distance measure [J]. IEEE Transactions on System Man andCybernetics,2004,34(4):1907-1916
    [161] Chuang K S, Tzeng H L, Chen S, et al. Fuzzy C-means clustering with spatialinformation for image segmentation [J]. Computerized Medical Imaging and Graphics,2006,30(1):9-15
    [162] Li M, Staunton R C. A modified fuzzy C-means image segmentation algorithm for usewith uneven illumination patterns [J]. Pattern Recognition,2007,40(11):3005-3011
    [163] Chang C I, Du Y, Wang J, et al. Survey and comparative analysis of entropy andrelative entropy thresholding techniques [J]. IEE Proceedings-Vision, Image and SignalProcessing,2006,153(6):837-850
    [164] Lin K C. Fast image thresholding by finding the zero(s) of the first derivative ofbetween-class variance [J]. Machine Vision and Applications,2003,13(5,6):254-262
    [165] Yen J C, Chang F J, Chang S. A new criterion for automatic multilevel thresholding [J].IEEE Transactions on Image Processing,1995,4(3):370-378
    [166] Ma yszko D, Stepaniuk J. Adaptive multilevel rough entropy evolutionary thresholding[J]. Information Sciences,2010,180(7):1138-1158
    [167]乔立山,陈松灿,王敏.基于相关向量机的图像阈值技术[J].计算机研究与发展,2010,47(8):1329-1337
    [168]何小娟.分布估计算法及其在生产调度问题中的应用研究[D].兰州:兰州理工大学,2011
    [169]周树德,孙增圻.分布估计算法综述[J].自动化学报,2007,33(2):113-124
    [170]曹嵩,孙富春,胡来红等.基于分布估计算法的离港航班排序优化[J].清华大学学报(自然科学版),2012,52(1):66-71
    [171] H hfeld M, Rudolph G. Towards a theory of population based incremental learning [A].In: Proceedings of the4th International Conference on Evolutionary Computation [C]. IEEE,1997
    [172] C González, J A Lozano, P Larra aga. Analyzing the population based incrementallearning algorithm by means of discrete dynamical systems [J]. Complex Systems,2001,12(4),465-479
    [173] Mühlenbein H. The equation for response to selection and its use for prediction [J].Evolutionary Computation,1997,5(3):303-346
    [174] Mühlenbein H, Mahnig T. Convergence Theory and Applications of the FactorizedDistribution Algorithms [J]. Journal of Computing and Information Technology,1999,7(1):19-32
    [175] Pelikan M, Sastry K, Goldberg D E, Evolutionary algorithms+graphical models=scalable black-box optimization [R]. Illinois Genetic Algorithms Lab., Univ. Illinois,Urbana-Champaign, IlliGAL Rep.2001029,2001
    [176] Zhang Q, Mühlenbein H. On the convergence of a class of estimation of distributionalgorithms [J]. IEEE Trans. Evol. Comput.,2004,8(2):127-136
    [177] Rastegar R, Meybodi M R. A study on global convergence time complexity ofestimation of distribution algorithms [A]. in Proc. Rough Sets Fuzzy Sets Data MiningGranular Comput.(RSFDGrC)[C]. LNAI3641.2005:441-450
    [178] Chen T, Tang K., Chen G., et al. On the analysis of average time complexity ofestimation of distribution algorithms [A]. In Proc. IEEE Congr. Evol. Comput.(CEC)[C].2007:453-460
    [179] Chen T, Chen G, Yao X. Analysis of computational time of simple estimation ofdistribution algorithms [J]. IEEE Transactions on Evolutionary Computation,2010,14(1):1-22
    [180] Chou C, Liu C. Approximating discrete probability distributions with dependence trees[J]. IEEE Transactions on Information Theory,1968,14(3):462-467
    [181] Larra aga P, Etxeberria R, Lozano J A, et al. Optimization in continuous domains bylearning and simulation of Gaussian networks [A]. In: Proceedings of the2000Genetic andEvolutionary Computation Conference Workshop Program [C]. Las Vegas, Nevada,2000:201-204
    [182] Sebag M, Ducoulombier A. Extending population-based incremental learning tocontinuous search spaces [A]. In: Back Th, Eiben G, Schoenauer M, Schwefel H P, editors,Proceedings of the5th Conference on Parallel Problem Solving from Nature-PPSN V[C].Springer-Verlag,1998:418-427
    [183] Mininno E, Neri F, Cupertino F, et al. Compact Differential Evolution [J]. IEEETransactions on Evolutionary Computation,2011,15(1):32-54
    [184] Chen Y P, Yu T L, Sastry K, et al. A survey of linkage learning techniques in geneticand evolutionary algorithms [R]. IlliGAL Report No.2007014, University of Illinois atUrbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL,2007
    [185] Smith J E. Self-adaptation in evolutionary algorithms for combinatorial optimization.Cotta C, et al (Eds.). Adaptive and Multilevel Metaheuristics [M]. India: SCI136,2008:pp.31-57
    [186]庄健,杨清宇,杜海峰,于德弘.一种高效的复杂系统遗传算法[J].软件学报,2010,21(11):2790-2801
    [187]陈皓,崔杜武等.族群进化算法[J].软件学报,2010,21(5):978-990
    [188] Cho S B. Combining modular neural networks developed by evolutionary algorithm [A].Proceedings of the1997IEEE International Conference on Evolutionary Computation [C].Indianapolis: IEEE,1997:647-650
    [189] Whitley D, Mathias K, Fitzhorn P. Delta coding: an iterative search strategy for geneticalgorithms [A]. Proceedings of the Fourth International Conference on Genetic Algorithms
    [C]. La Jolla, CA: Morgan Kaufmann,1991:77-84
    [190] Salah S A, Duarte-mermoud M A, BeltráN H. Probabilistic adaptive crossover (pax): anovel genetic algorithm crossover methodology [J]. International Journal on ArtificialIntelligence Tools,2008,17(6):1131-1160
    [191] Van Den Bergh F, Engelbrecht A P. A cooperative approach to particle swarmoptimization [J]. IEEE Transactions On Evolutionary Computation,2004,8(3):225-238
    [192]李敏强,寇纪松,林丹,李书全.遗传算法的基本理论与应用[M].北京:科学出版社,2002:364-365
    [193] Boyd R, Richerson P J. Why culture is common, but culture evolution is rare [A]. inProc. British Academy[C].1996:77-93
    [194] Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in amultidimensional complex space [J]. IEEE Transactions on Evolutionary Computation,2002,6(1):58-73
    [195] Yamaguchi T, Yasuda K. Adaptive Particle Swarm Optimization; Self-coordinatingMechanism with Updating Information [A]. IEEE International Conference on Systems, Manand Cybernetics [C]. Taipei,2006,3:2303-2308
    [196] Tripathi P K, Bandyopadhyay S, Pal S K. Adaptive mufti-objective particle swarmoptimization algorithm [A]. Proceedings of IEEE Congress Evolutionary Computation [C].Singapore,2007:2281-2288
    [197]田野.粒子群优化算法及其应用研究[D].吉林:吉林大学,2010
    [198] Poli R. An analysis of publications on particle swarm optimization applications [R].Technical Report. CSM-469, Department of Computer Science, University of Essex,2007
    [199]刘建华.粒子群算法的基本理论及其改进研究[D].长沙:中南大学,2009
    [200] Trelea I C. The particle swarm optimization algorithm: convergence analysis andparameter selection [J]. Information Processing Letters,2003,85(6):317-325
    [201] Kadirkamanathan V, Selvarajah K, Fleming P J. Stability analysis of the particledynamics in particle swarm optimizer [J]. IEEE Transactions on Evolutionary Computation,2006,10(3):245-255
    [202] Van Den Bergh F, Engelbrecht A P. A study of particle swarm optimization particletrajectories [J]. Information Sciences,2006,176(8):937-971
    [203] Angeline P J. Using Selection to Improve Particle Swarm Optimization [A].Proceedings of the IEEE Congress on Evolutionary Computation [C]. Anchorage, Alaska,1998:84-89
    [204] L vbjerg M, Rasmussen T K, Krink T. Hybrid Particle Swarm Optimizer with Breedingand Subpopulations [A]. Proceedings of International Conference on Genetic andEvolutionary Computation[C]. San Francisco, USA,2001:469-476
    [205] Zhang W J, Xie X F. DEPSO: Hybrid Particle Swarm with Differential EvolutionOperator [A]. Proceedings of IEEE International Conference on System, Man andCybernetics [C].2003,4:3816-3821
    [206] Sun J, Feng B, Xu W B. Particle Swarm Optimization with Particles Having QuantumBehavior [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. SanDiego, CA, USA,2004,325-331
    [207] L vbjerg M, Krink T. Extending particle swarm optimisers with self-organizedcriticality [A]. Proceedings of the IEEE Congress on Evolutionary Computation [C].Honolulu, Hawaii, USA,2002,1588-1593
    [208]秦全德.粒子群算法研究及应用[D].广州:华南理工大学,2011
    [209] Kennedy J, Eberhart R.C. A Discrete Binary Version of the Particle Swarm Algorithm
    [A]. IEEE International Conference on Systems, Man, and Cybernetics, ComputationalCybernetics and Simulation [C].1997,5:4104-4108
    [210] Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactivepower and voltage control considering voltage security assessment [J]. IEEE Transactions onPower Systems,2000,15(4):1232-1239
    [211] Salman A, Ahmad I, Al-Madani S. Particle Swarm Optimization for Task AssignmentProblem [J]. Microprocessors and Microsystems,2002,26(8):363-371
    [213] Clerc M. Discrete Particle Swarm Optimization Illustrated by the Traveling SalesmanProblem [R]. Technical Report, hppt://clerc.maurice.free.fr/pso/,2000
    [214] Hu X, Eberhart R C, Shi Y. Swarm Intelligence for Permutation Optimization: A CaseStudy on n-Queens Problem [A]. Proceedings of IEEE Swarm Intelligence Symposium [C].2003:243-246
    [215] Ye Z W, Chen H W, Li W, et al. Automatic threshold selection based on particle swarmoptimization algorithm [A]. In: International Conference on Intelligent ComputationTechnology and Automation [C].2008:36-39
    [216] Maitra M, Chatterjee A. A hybrid cooperative-comprehensive learning based PSOalgorithm for image segmentation using multilevel thresholding [J]. Expert Syst. Appl.,2008,34(2):1341-1350
    [217] Chander A., Chatterjee A., Siarry P. A new social and momentum component adaptivePSO algorithm for image segmentation [J]. Expert Systems with Applications,2011,38(5):4998-5004
    [218] Kennedy J. The particle swarm: Social adaptation of knowledge [A]. Proceedings of the1997IEEE International Conference on Evolutionary Computation [C]. Indianapolis, IN,1997:303-308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700