1. [地质云]滑坡
BSG基因功能性SNP与银屑病易感性的关联分析及生物学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]
     银屑病(PS;MIM#177900)是一类以红斑、鳞屑为主要表现的慢性、炎症性、免疫介导的皮肤疾病。目前认为,银屑病是由遗传、免疫及环境等因素共同引起的多因素、复杂疾病,皮损的基因表达谱分析发现有超过1300个基因的表达水平发生了改变;利用家系谱系分析,共发现了至少9个银屑病易感基因位点,但其确切的发病机制还有待明确。BSG(MIM109480),又称CD147,是一类免疫球蛋白超家族成员的跨膜糖蛋白,在胸腺T细胞发育、外周T细胞活化等免疫途径中发挥重要作用。BSG基因位于人类染色体19p13,这个区域通过全基因组扫描及非参数连锁分析鉴定为银屑病易感位点6(PSOR6)。重要的是,在我们前期的研究中发现,在银屑病皮损及原代T细胞中,CD147的表达水平明显增高。基于以上背景,本研究选择编码CD147蛋白分子的BSG基因作为银屑病基因多态性研究的一个候选基因,从遗传学层面来验证BSG基因与银屑病易感性的相关性,并进一步验证BSG基因功能性SNP位点在银屑病发病机制中发挥的生物学效应。
     [研究方法和结果]
     1.运用real-time PCR及、Vestern blotting的方法,我们证实银屑病患者的PBMCs中BSG的mRNA和蛋白表达水平均较正常人明显增高(p=0.005andp=0.042)。
     2.运用病例-对照的方法,随机选取散发性寻常型银屑病患者668例和正常对照1,143例,采用PCR-RFLP的方法,研究了位于BSG基因3'UTR区的多态性位点rs8259:T>A与银屑病易感性的关联。在基因型频率符合Hardy-Weinberg平衡的基础上,我们发现rs8259T等位基因(TT+AT基因型)在银屑病病例较对照组的频率显著降低(63.0%vs68.2%,p=0.0009),进一步根据年龄、性别、吸烟及饮酒史和家族史等银屑病危险因素校正后,证实rs8259多态位点的T等位基因(OR=0.758,95%CI=0.638-0.901;p=0.002)能减低罹患银屑病的风险。
     3.基于生物信息学在线软件预测及数据库比对的方法,发现BSG基因3'UTR区的多态性位点rs8259:T>A位于miR-492结合的“种子”序列上,推测rs8259位点的可变等位基因,可能通过影响miR-492与BSGmRNA的结合能力而改变基因表达水平。
     4.运用real-time PCR,检测银屑病患者和正常人PBMCs中miR-492均有表达,其两组间表达量并无统计学差异p=0.557);构建包含多态位点rs8259不同等位基因片段的荧光素酶报告基因载体,通过荧光素报告基因分析方法,观察rs8259多态位点的不同等位基因是否能影响BSG表达,在外源给予不同浓度'mimic miRNA-492'(1.0nM;2.5nM;5.0nM; and10nM)序列和包含rs8259多态位点的荧光素酶报告基因载体共同转染HEK293T细胞的实验中,证实BSG基因rs8259多态位点存在的T等位基因,可以影响miRNA-492与之结合的能力,并呈剂量依赖性的抑制了荧光素酶报告基因的活性,而携带A等位基因的载体不表现出抑制荧光素酶活性的能力。
     5.进一步验证功能性SNP位点rs8259:T>A对BSG表达的影响。分别检测了携带rs8259T、A等位基因的银屑病纯合子患者PBMCs中BSG表达情况,证实TT基因型银屑病患者PBMCs中BSG的蛋白表达水平明显低于AA基因型银屑病患者(p=0.027),但其BSG mRNA的表达水平在两组之间并无统计学差异(p=0.237)。且银屑病患者PBMCs中BSG蛋白表达水平与miR-492的相对表达呈负相关(p=0.034,r=—0.639)。
     [结论]
     位于BSG基因3'UTR区的多态性位点rs8259:T>A与银屑病易感性相关联;功能性SNP位点rs8259:T>A通过改变miR-492介导的抑制作用,从转录后水平调控BSG的表达。
Background
     Psoriasis (PS; MIM177900) is a chronic inflammatory immune-mediated skin disorder characterized by red lesions with silver whitish scales. Although the disease is believed to be caused by a combination of genetic, immunologic and environmental factors, the expression of more than1,300genes is observed to be altered in psoriatic lesions. Family-based studies have also suggested genetic basis of the disease. At least nine chromosomal psoriasis susceptibility loci have been identified presently, but its complete etiology has not been fully understood. BSG (MIM109480), aliase CD147, is a transmembrane glycoprotein belongs to the member of the immunoglobulin superfamily, it plays fundamental roles in thymic T cell development as well as peripheral T cell activation. Interestingly, the BSG gene is located on chromosome19p13, a novel psoriasis-susceptibility locus (PSOR6) identified by a genome-wide scan and nonparametric linkage analysis. Important, we have also observed that CD147is highly expressed in skin lesions and primary T cells of psoriasis patients. Therefore, we focused on the gene BSG coding for CD147protein, to identify whether the gene BSG is a susceptibility gene for psoriasis, and to determine whether the functional SNP in BSG gene associates with the biological effect in the pathogenesis of psoriasis.
     Methods and Results
     First, using the real-time PCR and Western blotting, we confirmed up-regulation of BSG mRNA and protein expression in psoriasis peripheral blood mononuclear cells (PBMCs) as compared with the controls (p=0.005and p<0.042). Second, we performed a case-control study including668psoriasis patients and1,143healthy controls on random basis, through the PCR-RFLP, and investigated association of the polymorphism rs8259:T>A in BSG gene3'UTR with psoriasis susceptibility. Genotype frequencies fulfilled expectation of Hardy-Weinberg equilibrium, we observed that carriers of the rs8259T allele (TT plus AT genotype) were significantly less frequent in psoriasis cases than controls (63.0%vs68.2%,p=0.0009). When adjusted by psoriasis risk factors including age, sex, smoking history, alcohol drinking history, family history of psoriasis in the first degree of relatives, the rs8259T allele was associated with decreased risk for psoriasis, and OR (95%CI) was0.758(0.638-0.901, p=0.002). Third, based on the bioinformatic prediction (online softwares:miRBase and TargetScan) and database enquiries, the rs8259:T>A polymorphism was located in a miR-492seed region. We hypothesized that variations in this region could influence miRNAs binding to the mRNA of BSG and change BSG expression. To confirm our hypothesis, using the real-time PCR, we first detected that PBMCs from both psoriasis patients and controls expressed mature miR-492, however, no significant difference in mature miR-492expression levels in PBMCs between psoriasis patients and controls was observed (p=0.557), and we determined whether the SNP rs8259could influence BSG expression by luciferase reporter assay. Luciferase reporter constructs containing the SNP were co-transfected into HEK293T cell with the various concentration (1.0nM;2.5nM;5.0nM; and10nM) of mimic miRNA-492or control, the expression activity of BSG was determined through the double-luciferase assay. Our results showed that miR-492decreased luciferase activity in a dose-dependent manner when constructed with the BSG3'UTR bearing the rs8259T allele in the presence of mimic miRNA-492. But no significantly change was found in the expression level of luciferase reporter vector carrying the rs8259A allele. Final, to further explore the effect of rs8259:T>A on BSG expression, we detected BSG protein levels in PBMCs from psoriasis patients homozygous for rs8259T and A alleles, respectively. As compared with patients with rs8259AA genotype, PBMCs BSG protein expression in patients with rs8259TT genotype was significantly decreased (p=0.027), no difference in PBMCs BSG mRNA expression was observed between the two rs8259homozygous genotypes (p=0.237). Further analysis indicated that there had a negative correlation between BSG protein espression and the level of miR-492on the PBMCs of psoriasis patients (p=0.034, r=-0.639).
     Conclusion
     We suggest that the rs8259:T>A polymorphism in3'UTR of BSG gene is associated with decreased psoriasis susceptibility through altered miR-492-mediated repression of BSG at posttranscriptional level.
引文
1. Griffiths CE, Barker JN:Pathogenesis and clinical features of psoriasis. Lancet 2007, 370(9583):263-271.
    2. Fan X, Yang S, Huang W, Wang ZM, Sun LD, Liang YH, Gao M, Ren YQ, Zhang KY, Du WH et al: Fine mapping of the psoriasis susceptibility locus PSORS1 supports HLA-C as the susceptibility gene in the Han Chinese population. PLoS Genet 2008,4(3):e1000038.
    3. Schon MP:Animal models of psoriasis-what can we learn from them? J Invest Dermatol 1999, 112(4):405-410.
    4. Cameron AL, Kirby B, Fei W, Griffiths CE:Natural killer and natural killer-T cells in psoriasis. Arch Dermatol Res 2002,294(8):363-369.
    5. Di Cesare A, Di Meglio P, Nestle FO:The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol 2009,129(6):1339-1350.
    6. Capon F, Trembath RC, Barker JN:An update on the genetics of psoriasis. Dermatol Clin 2004, 22(4):339-347, vii.
    7. Capon F, Dallapiccola B, Novelli G:Advances in the search for psoriasis susceptibility genes. Mol Genet Metab 2000,71(1-2):250-255.
    8. Bowcock AM, Krueger JG:Getting under the skin:the immunogenetics of psoriasis. Nat Rev Immunol 2005,5(9):699-711.
    9. Lowes MA, Bowcock AM, Krueger JG:Pathogenesis and therapy of psoriasis. Nature 2007, 445(7130):866-873.
    10. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F et al: A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 2006,38(7):813-818.
    11. Zhang XJ, Huang W, Yang S, Sun LD, Zhang FY, Zhu QX, Zhang FR, Zhang C, Du WH, Pu XM et al: Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet 2009,41(2):205-210.
    12. Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, Matsunami N, Ardlie KG, Civello D, Catanese JJ et al: A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 2007,80(2):273-290.
    13. Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, Gudjonsson JE, Li Y, Tejasvi T, Feng BJ et al: Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 2009,41(2):199-204.
    14. Helms C, Cao L, Krueger JG, Wijsman EM, Chamian F, Gordon D, Heffernan M, Daw JA, Robarge J, Ott J et al: A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nat Genet 2003,35(4):349-356.
    15. Li Y, Liao W, Chang M, Schrodi SJ, Bui N, Catanese JJ, Poon A, Matsunami N, Callis-Duffin KP, Leppert MF et al: Further genetic evidence for three psoriasis-risk genes:ADAM33, CDKAL1, and PTPN22. J Invest Dermatol 2009,129(3):629-634.
    16. Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S, Lucian L, Geissler R, Brodie S, Kimball AB et al: IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 2006, 203(12):2577-2587.
    17. Kingo K, Mossner R, Ratsep R, Raud K, Kruger U, Silm H, Vasar E, Reich K, Koks S:Association analysis of IL20RA and IL20RB genes in psoriasis. Genes Immun 2008,9(5):445-451.
    18. Parkinson J, Charon C, Baker BS, Powles AV, Rogers S, Caird A, Smedley D, Halford S, Fry L, McCarthy MI:Variation at the IRF2 gene and susceptibility to psoriasis in chromosome 4q-linked families. J Invest Dermatol 2004,122(3):640-643.
    19. Lee YA, Ruschendorf F, Windemuth C, Schmitt-Egenolf M, Stadelmann A, Nurnberg G, Stander M, Wienker TF, Reis A, Traupe H:Genomewide scan in german families reveals evidence for a novel psoriasis-susceptibility locus on chromosome 19p13. Am J Hum Genet 2000, 67(4):1020-1024.
    20. Biswas C:Tumor cell stimulation of collagenase production by fibroblasts. Biochem Biophys Res Commun 1982,109(3):1026-1034.
    21. Renno T, Wilson A, Dunkel C, Coste I, Maisnier-Patin K, Benoit de Coignac A, Aubry JP, Lees RK, Bonnefoy JY, MacDonald HR et al: A role for CD147 in thymic development. J Immunol 2002, 168(10):4946-4950.
    22. Ruiz S, Castro-Castro A, Bustelo XR:CD147 inhibits the nuclear factor of activated T-cells by impairing Vavl and Racl downstream signaling. J Biol Chem 2008,283(9):5554-5566.
    23. Luczynski W, Kowalczuk O, Stasiak-Barmuta A, Ilendo E, Krawczuk-Rybak M, Chyczewski L: Acute lymphoblastic leukemia-derived dendritic cells express tumor associated antigens: PNPT1, PMPCB, RHAMM, BSG and ERCC1. Neoplasma 2009,56(5):428-434.
    24. Yang Y, Lu N, Zhou J, Chen ZN, Zhu P:Cyclophilin A up-regulates MMP-9 expression and adhesion of monocytes/macrophages via CD147 signalling pathway in rheumatoid arthritis. Rheumatology (Oxford) 2008,47(9):1299-1310.
    25. Zhu P, Lu N, Shi ZG, Zhou J, Wu ZB, Yang Y, Ding J, Chen ZN:CD147 overexpression on synoviocytes in rheumatoid arthritis enhances matrix metalloproteinase production and invasiveness of synoviocytes. Arthritis Res Ther 2006,8(2):R44.
    26. Chen M, Cui PG, Yao X, Cao YH, Gong JQ, Li AS, Chen ZQ:[The methylation locus and frequency pattern on p16 INK4a gene promoter CpG in epidermis of patients with psoriasis]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2007,24(6):674-676.
    27. Chen L, Belton RJ, Jr., Nowak RA:Basigin-mediated gene expression changes in mouse uterine stromal cells during implantation. Endocrinology 2009,150(2):966-976.
    28. The International Psoriasis Genetics Study:assessing linkage to 14 candidate susceptibility loci in a cohort of 942 affected sib pairs. Am J Hum Genet 2003,73(2):430-437.
    29. Koch C, Staffler G, Huttinger R, Hilgert I, Prager E, Cerny J, Steinlein P, Majdic O, Horejsi V, Stockinger H:T cell activation-associated epitopes of CD147 in regulation of the T cell response, and their definition by antibody affinity and antigen density. Int Immunol 1999, 11(5):777-786.
    30. Chen X, Kanekura T, Kanzaki T:Expression of Basigin in human fetal, infantile and adult skin and in basal cell carcinoma. J Cutan Pathol 2001,28(4):184-190.
    31. Chen X, Kanekura T, Tsuyama S, Murata F, Kanzaki T:Ultrastructural localization of basigin in normal human epidermis. Histochem Cell Biol 2001,115(6):465-470.
    32. Bougatef F, Quemener C, Kellouche S, Naimi B, Podgorniak MP, Millot G, Gabison EE, Calvo F, Dosquet C, Lebbe C et al: EMMPRIN promotes angiogenesis through hypoxia-inducible factor-2alpha-mediated regulation of soluble VEGF isoforms and their receptor VEGFR-2. Blood 2009,114(27):5547-5556.
    33. Kato N, Yuzawa Y, Kosugi T, Hobo A, Sato W, Miwa Y, Sakamoto K, Matsuo S, Kadomatsu K:The E-selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion. J Am Soc Nephrol 2009,20(7):1565-1576.
    34. Ambros V:MicroRNA pathways in flies and worms:growth, death, fat, stress, and timing. Cell 2003,113(6):673-676.
    35. Hinton A, Afrikanova I, Wilson M, King C, Maurer B, Yeo G, Hayek A, Pasquinelli A:A Distinct MicroRNA Signature for Definitive Endoderm Derived From Human Embryonic Stem Cells. Stem Cells Dev 2009.
    36. Baffa R, Fassan M, Volinia S, O'Hara B, Liu CG, Palazzo JP, Gardiman M, Rugge M, Gomella LG, Croce CM et al:MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. JPathol 2009,219(2):214-221.
    37. Fulci V, Colombo T, Chiaretti S, Messina M, Citarella F, Tavolaro S, Guarini A, Foa R, Macino G: Characterization of B-and T-lineage acute lymphoblastic leukemia by integrated analysis of MicroRNA and mRNA expression profiles. Genes Chromosomes Cancer 2009, 48(12):1069-1082.
    38. Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, Martin ER, Vance JM: Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 2008,82(2):283-289.
    39. Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman-Schneider R, Pan L, Solway J, Gern JE, Lemanske RF, Nicolae D et al:Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 2007,81(4):829-834.
    40. Adams BD, Furneaux H, White BA:The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 2007,21(5):1132-1147.
    41. Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, Hatzigeorgiou AG, Antonarakis SE:Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR13'untranslated region:a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 2007,81(2):405-413.
    42. Mishra PJ, Humeniuk R, Longo-Sorbello GS, Banerjee D, Bertino JR:A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci USA 2007,104(33):13513-13518.
    43. Altobelli E, Petrocelli R, Marziliano C, Fargnoli MC, Maccarone M, Chimenti S, Peris K:Family history of psoriasis and age at disease onset in Italian patients with psoriasis. Br J Dermatol 2007,156(6):1400-1401.
    44. Tomfohrde J, Silverman A, Barnes R, Fernandez-Vina MA, Young M, Lory D, Morris L, Wuepper KD, Stastny P, Menter A et al: Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science 1994,264(5162):1141-1145.
    45. Boehncke WH:Psoriasis and bacterial superantigens--formal or causal correlation? Trends Microbiol 1996,4(12):485-489.
    46. Chen X, Lin J, Kanekura T, Su J, Lin W, Xie H, Wu Y, Li J, Chen M, Chang J:A small interfering CD147-targeting RNA inhibited the proliferation, invasiveness, and metastatic activity of malignant melanoma. Cancer Res 2006,66(23):11323-11330.
    47. DeCastro R, Zhang Y, Guo H, Kataoka H, Gordon MK, Toole B, Biswas G:Human keratinocytes express EMMPRIN, an extracellular matrix metalloproteinase inducer. J Invest Dermatol 1996, 106(6):1260-1265.
    48. Ishibashi Y, Matsumoto T, Niwa M, Suzuki Y, Omura N, Hanyu N, Nakada K, Yanaga K, Yamada K, Ohkawa K et al: CD147 and matrix metalloproteinase-2 protein expression as significant prognostic factors in esophageal squamous cell carcinoma. Cancer 2004,101(9):1994-2000.
    49. Voigt H, Vetter-Kauczok CS, Schrama D, Hofmann UB, Becker JC, Houben R:CD147 impacts angiogenesis and metastasis formation. Cancer Invest 2009,27(3):329-333.
    50. Igakura T, Kadomatsu K, Kaname T, Muramatsu H, Fan QW, Miyauchi T, Toyama Y, Kuno N, Yuasa S, Takahashi M et al: A null mutation in basigin, an immunoglobulin superfamily member, indicates its important roles in peri-implantation development and spermatogenesis. Dev Biol 1998,194(2):152-165.
    51. Iacono KT, Brown AL, Greene MI, Saouaf SJ:CD147 immunoglobulin superfamily receptor function and role in pathology. Exp Mol Pathol 2007,83(3):283-295.
    52. Zhu H, Yang B, Yang X, Wang L, Xu J, Liao C, Feng Q, Tang H, Hu L, Chen Z et al: A novel antibody fragment targeting HAb18G/CD147 with cytotoxicity and decreased immunogenicity. Cancer Biol Ther 2009,8(11):1035-1044.
    53. Maekawa M, Suzuki-Toyota F, Toyama Y, Kadomatsu K, Hagihara M, Kuno N, Muramatsu T, Dohmae K, Yuasa S:Stage-specific localization of basigin, a member of the immunoglobulin superfamily, during mouse spermatogenesis. Arch Histol Cytol 1998,61(5):405-415.
    54. Chen X, Tian LH, Xie HF, Shi W, Feng H, Li J, Chen FW:[Effects of CD147 on the production of matrix metalloproteinase-9 by fibroblasts and the invasion of melanoma cells]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2005,30(3):249-252.
    55. Damsker JM, Okwumabua I, Pushkarsky T, Arora K, Bukrinsky MI, Constant SL:Targeting the chemotactic function of CD147 reduces collagen-induced arthritis. Immunology 2009, 126(1):55-62.
    56. Tang Y, Nakada MT, Rafferty P, Laraio J, McCabe FL, Millar H, Cunningham M, Snyder LA, Bugelski P, Yan L:Regulation of vascular endothelial growth factor expression by EMMPRIN via the PI3K-Akt signaling pathway. Mol Cancer Res 2006,4(6):371-377.
    57. Elder JT, Nair RP, Voorhees JJ:Epidemiology and the genetics of psoriasis. J Invest Dermatol 1994,102(6):24S-27S.
    58. Preus HR, Khanifam P, Kolltveit K, Mork C, Gjermo P:Periodontitis in psoriasis patients. A blinded, case-controlled study. Acta Odontol Scand.
    59. Liu J, Pearlson G, Windemuth A, Ruano G, Perrone-Bizzozero NI, Calhoun V:Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Hum Brain Mapp 2009,30(1):241-255.
    60. Belton RJ, Jr., Chen L, Mesquita FS, Nowak RA:Basigin-2 is a cell surface receptor for soluble basigin ligand. J Biol Chem 2008,283(26):17805-17814.
    1. Schwab R, Voinnet O:miRNA processing turned upside down. EMBO J 2009, 28(23):3633-3634.
    2. Hutvagner G, Zamore PD:A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002,297(5589):2056-2060.
    3. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R:Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005,123(4):631-640.
    4. Sucharov C, Bristow MR, Port JD:miRNA expression in the failing human heart:functional correlates. JMol Cell Cardiol 2008,45(2):185-192.
    5. Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG:miRGen:a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 2007,35(Database issue):D149-155.
    6. Barbato C, Arisi I, Frizzo ME, Brandi R, Da Sacco L, Masotti A:Computational challenges in miRNA target predictions:to be or not to be a true target? J Biomed Biotechnol 2009, 2009:803069.
    7. Robins H, Li Y, Padgett RW:Incorporating structure to predict microRNA targets. Proc Natl Acad Sci USA 2005,102(11):4006-4009.
    8. Doench JG, Sharp PA:Specificity of microRNA target selection in translational repression. Genes Dev 2004,18(5):504-511.
    9. Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ:The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. Genes Dev 2004,18(2):132-137.
    10. Turner MJ, Slack FJ:Transcriptional control of microRNA expression in C. elegans: promoting better understanding. RNA Biol 2009,6(1):49-53.
    11. Zhou JY, Ma WL, Liang S, Zeng Y, Shi R, Yu HL, Xiao WW, Zheng WL:Analysis of microRNA expression profiles during the cell cycle in synchronized HeLa cells. BMB Rep 2009, 42(9):593-598.
    12. Tsai KW, Kao HW, Chen HC, Chen SJ, Lin WC:Epigenetic control of the expression of a primate-specific microRNA cluster in human cancer cells. Epigenetics 2009,4(8):587-592.
    13. Stark A, Brennecke J, Russell RB, Cohen SM:Identification of Drosophila MicroRNA targets. PLoS Biol 2003, 1(3):E60.
    14. Bates DJ, Li N, Liang R, Sarojini H, An J, Masternak MM, Bartke A, Wang E:MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging. Aging Cell,9(1):1-18.
    15. Kim VN:MicroRNA biogenesis:coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005, 6(5):376-385.
    16. Shalgi R, Brosh R, Oren M, Pilpel Y, Rotter V:Coupling transcriptional and post-transcriptional miRNA regulation in the control of cell fate. Aging (Albany NY) 2009, 1(9):762-770.
    17. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR et al: Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005,33(20):e179.
    18. Lewis BP, Burge CB, Bartel DP:Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005,120(1):15-20.
    19. Nahvi A, Shoemaker CJ, Green R:An expanded seed sequence definition accounts for full regulation of the hid 3'UTR by bantam miRNA. RNA 2009,15(5):814-822.
    20. Hausser J, Landthaler M, Jaskiewicz L, Gaidatzis D, Zavolan M:Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets. Genome Res 2009,19(11):2009-2020.
    21. Sun G, Yan J, Noltner K, Feng J, Li H, Sarkis DA, Sommer SS, Rossi JJ:SNPs in human miRNA genes affect biogenesis and function. RNA 2009,15(9):1640-1651.
    22. Ye Y, Wang KK, Gu J, Yang H,Lin J, Ajani JA, Wu X:Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila Pa) 2008, 1(6):460-469.
    23. Saetrom P, Biesinger J, Li SM, Smith D, Thomas LF, Majzoub K, Rivas GE, Alluin J, Rossi JJ, Krontiris TG et al: A risk variant in an miR-125b binding site in BMPRIB is associated with breast cancer pathogenesis. Cancer Res 2009,69(18):7459-7465.
    24. Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, Hatzigeorgiou AG, Antonarakis SE:Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3'untranslated region:a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 2007, 81(2):405-413.
    25. Martinez-Nunez RT, Louafi F, Friedmann PS, Sanchez-Elsner T:MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 2009, 284(24):16334-16342.
    26. Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman-Schneider R, Pan L, Solway J, Gern JE, Lemanske RF, Nicolae D et al: Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 2007,81(4):829-834.
    27. Tian T, Shu Y, Chen J, Hu Z, Xu L, Jin G, Liang J, Liu P, Zhou X, Miao R et al: A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol Biomarkers Prev 2009,18(4):1183-1187.
    28. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, Di Padova F, Lin SC, Gram H, Han J: Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 2005, 120(5):623-634.
    29. Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, Brown PO: Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 2009,7(11):e 1000238.
    30. Eulalio A, Huntzinger E, Izaurralde E:GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol 2008, 15(4):346-353.
    31. Takimoto K, Wakiyama M, Yokoyama S:Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA 2009,15(6):1078-1089.
    32. Miyoshi K, Okada TN, Siomi H, Siomi MC:Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA 2009, 15(7):1282-1291.
    33. Takeda Y, Mishima Y, Fujiwara T, Sakamoto H, Inoue K:DAZL relieves miRNA-mediated repression of germline mRNAs by controlling poly(A) tail length in zebrafish. PLoS One 2009, 4(10):e7513.
    34. Zeng Y, Cullen BR:Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. JBiol Chem 2005,280(30):27595-27603.
    35. Zhao S, Liu MF:Mechanisms of microRNA-mediated gene regulation. Sci China C Life Sci 2009,52(12):1111-1116.
    36. Cai Y, Yu X, Hu S, Yu J:A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 2009,7(4):147-154.
    37. Meister G, Landthaler M, Dorsett Y, Tuschl T:Sequence-specific inhibition of microRNA-and siRNA-induced RNA silencing. RNA 2004,10(3):544-550.
    38. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O:Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 2009, 11(9):1143-1149.
    39. Chatterjee S, Grosshans H:Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 2009,461(7263):546-549.
    40. Eulalio A, Helms S, Fritzsch C, Fauser M, Izaurralde E:A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 2009,15(6):1067-1077.
    41. Biswas C:Tumor cell stimulation of collagenase production by fibroblasts. Biochem Biophys Res Commun 1982,109(3):1026-1034.
    42. Guo H, Li R, Zucker S, Toole BP:EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Res 2000,60(4):888-891.
    43. Chen X, Lin J, Kanekura T, Su J, Lin W, Xie H, Wu Y, Li J, Chen M, Chang J:A small interfering CD147-targeting RNA inhibited the proliferation, invasiveness, and metastatic activity of malignant melanoma. Cancer Res 2006,66(23):11323-11330.
    44. Schneiderhan W, Scheler M, Holzmann KH, Marx M, Gschwend JE, Bucholz M, Gress TM, Seufferlein T, Adler G, Oswald F:CD147 silencing inhibits lactate transport and reduces malignant potential of pancreatic cancer cells in in vivo and in vitro models. Gut 2009, 58(10):1391-1398.
    45. Yurchenko V, Constant S, Bukrinsky M:Dealing with the family:CD147 interactions with cyclophilins. Immunology 2006,117(3):301-309.
    46. Zhu P, Lu N, Shi ZG, Zhou J, Wu ZB, Yang Y, Ding J, Chen ZN:CD147 overexpression on synoviocytes in rheumatoid arthritis enhances matrix metalloproteinase production and invasiveness of synoviocytes. Arthritis Res Ther 2006,8(2):R44.
    47. Jia J, Wang C, Shi Z, Zhao J, Jia Y, Zhao-Hui Z, Li X, Chen Z, Zhu P:Inhibitory effect of CD147/HAb18 monoclonal antibody on cartilage erosion and synovitis in the SCID mouse model for rheumatoid arthritis. Rheumatology (Oxford) 2009,48(7):721-726.
    48. Kirsch AH, Diaz LA, Jr., Bonish B, Antony PA, Fox DA:The pattern of expression of CD147/neurothelin during human T-cell ontogeny as defined by the monoclonal antibody 8D6. Tissue Antigens 1997,50(2):147-152.
    49. Renno T, Wilson A, Dunkel C, Coste I, Maisnier-Patin K, Benoit de Coignac A, Aubry JP, Lees RK, Bonnefoy JY, MacDonald HR et al:A role for CD147 in thymic development. J Immunol 2002,168(10):4946-4950.
    50. Curtin KD, Meinertzhagen IA, Wyman RJ:Basigin (EMMPRIN/CD147) interacts with integrin to affect cellular architecture. J Cell Sci 2005,118(Pt 12):2649-2660.
    51. lacono KT, Brown AL, Greene MI, Saouaf SJ:CD147 immunoglobulin superfamily receptor function and role in pathology. Exp Mol Pathol 2007,83(3):283-295.
    52. Yang Y, Lu N, Zhou J, Chen ZN, Zhu P:Cyclophilin A up-regulates MMP-9 expression and adhesion of monocytes/macrophages via CD147 signalling pathway in rheumatoid arthritis. Rheumatology (Oxford) 2008,47(9):1299-1310.
    53. Melchior A, Denys A, Deligny A, Mazurier J, Allain F:Cyclophilin B induces integrin-mediated cell adhesion by a mechanism involving CD98-dependent activation of protein kinase C-delta and p44/42 mitogen-activated protein kinases. Exp Cell Res 2008,314(3):616-628.
    54. Liang Q, Xiong H, Gao G, Xiong K, Wang X, Zhao Z, Zhang H, Li Y:Inhibition of basigin expression in glioblastoma cell line via antisense RNA reduces tumor cell invasion and angiogenesis. Cancer Biol Ther 2005,4(7):759-762.
    55. Chen L, Belton RJ, Jr., Nowak RA:Basigin-mediated gene expression changes in mouse uterine stromal cells during implantation. Endocrinology 2009.150(2):966-976.
    56. He HC, Han ZD, Dai QS, Zou J, Zhang Y, Zhang Z, Liang YX, Ye YK, Chen ZN, Zhong WD: [Expression and significance of CD147 protein in prostate cancer]. Zhonghua Yi Xue Za Zhi 2009,89(26):1844-1846.
    57. Dai JY, Dou KF, Wang CH, Zhao P, Lau WB, Tao L, Wu YM, Tang J, Jiang JL, Chen ZN:The interaction of HAb18G/CD147 with integrin alpha6betal and its implications for the invasion potential of human hepatoma cells. BMC Cancer 2009,9:337.
    58. Xiang J, Cao Z, Dong W, Li C:Expression of extracellular matrix metalloproteinase inducer (EMMPRIN) in healthy and inflamed human gingival. Quintessence Int 2009,40(8):683-690.
    59. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E et al: Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005,37(7):766-770.
    60. Devor EJ:Primate microRNAs miR-220 and miR-492 lie within processed pseudogenes. J Hered 2006,97(2):186-190.
    61. von Frowein J, Pagel P, Kappler R, von Schweinitz D, Roscher A, Schmid I:MicroRNA-492 is processed from the keratin 19 gene and up-regulated in metastatic hepatoblastoma. Hepatology,53(3):833-842.
    1. Ovigne JM, Baker BS, Davison SC, Powles AV, Fry L:Epidermal CD8+T cells reactive with group A streptococcal antigens in chronic plaque psoriasis. Exp Dermatol 2002, 11(4):357-364.
    2. Ozawa M, Aiba S:Immunopathogenesis of psoriasis. Curr Drug Targets Inflamm Allergy 2004, 3(2):137-144.
    3. Zhang X, Wang H, Te-Shao H, Yang S, Chen S:The genetic epidemiology of psoriasis vulgaris in Chinese Han. Int J Dermatol 2002,41(10):663-669.
    4. Icen M, Crowson CS, McEvoy MT, Dann FJ, Gabriel SE, Maradit Kremers H:Trends in incidence of adult-onset psoriasis over three decades:a population-based study. J Am Acad Dermatol 2009,60(3):394-401.
    5. Chandran V, Raychaudhuri SP:Geoepidemiology and environmental factors of psoriasis and psoriatic arthritis. JAutoimmun 2009.
    6. Barker JN:Pathogenesis of psoriasis. J Dermatol 1998,25(12):778-781.
    7. Badger J, Berger TG, Gambia C, Koo JY:HIV and psoriasis. Clin Rev Allergy Immunol 1996, 14(4):417-431.
    8. Burrows NP, Norris PG, Alexander G, Wreghitt T:Chronic hepatitis C infection and psoriasis. Dermatology 1995,190(2):173.
    9. Bay ML, Lehrer A, Bressanelli A, Morini J, Bottasso O, Stanford J:Psoriasis patients have T-cells with reduced responsiveness to common mycobacterial antigens. FEMS Immunol Med Microbiol 1998,21(1):65-70.
    10. Buchau AS, Gallo RL:Innate immunity and antimicrobial defense systems in psoriasis. Clin Dermatol 2007,25(6):616-624.
    11. Krueger JG, Bowcock A:Psoriasis pathophysiology:current concepts of pathogenesis. Ann Rheum Dis 2005,64 Suppl 2:ii30-36.
    12. Lebwohl M:Psoriasis. Lancet 2003,361(9364):1197-1204.
    13. Nickoloff BJ, Nestle FO:Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J Clin Invest 2004,113(12):1664-1675.
    14. Bowcock AM, Krueger JG:Getting under the skin:the immunogenetics of psoriasis. Nat Rev Immunol 2005,5(9):699-711.
    15. Schon MP, Boehncke WH:Psoriasis. NEngl J Med 2005,352(18):1899-1912.
    16. Gaspari AA:Innate and adaptive immunity and the pathophysiology of psoriasis. J Am Acad Dermatol 2006,54(3 Suppl 2):S67-80.
    17. Davidson A, Diamond B:Autoimmune diseases. N Engl J Med 2001,345(5):340-350.
    18. Krueger JG:The immunologic basis for the treatment of psoriasis with new biologic agents. J Am Acad Dermatol 2002,46(1):1-23; quiz 23-26.
    19. Christensen TE, Callis KP, Papenfuss J, Hoffman MS, Hansen CB, Wong B, Panko JM, Krueger GG: Observations of psoriasis in the absence of therapeutic intervention identifies two unappreciated morphologic variants, thin-plaque and thick-plaque psoriasis, and their associated phenotypes. J Invest Dermatol 2006,126(11):2397-2403.
    20. Lew W, Lee E, Krueger JG:Psoriasis genomics:analysis of proinflammatory (type 1) gene expression in large plaque (Western) and small plaque (Asian) psoriasis vulgaris. Br J Dermatol 2004,150(4):668-676.
    21. Clark RA, Chong B, Mirchandani N, Brinster NK, Yamanaka K, Dowgiert RK, Kupper TS:The vast majority of CLA+T cells are resident in normal skin. J Immunol 2006,176(7):4431-4439.
    22. Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M, Nestle FO:Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. JExp Med 2004,199(5):731-736.
    23. Zhu K, Ye J, Wu M, Cheng H:Expression of Thl and Th2 cytokine-associated transcription factors, T-bet and GATA-3, in peripheral blood mononuclear cells and skin lesions of patients with psoriasis vulgaris. Arch Dermatol Res,302(7):517-523.
    24. Bowcock AM:The genetics of psoriasis and autoimmunity. Annu Rev Genomics Hum Genet 2005,6:93-122.
    25. Liu Y, Krueger JG, Bowcock AM:Psoriasis:genetic associations and immune system changes. Genes Immun 2007,8(1):1-12.
    26. Smith RL, Warren RB, Griffiths CE, Worthington J:Genetic susceptibility to psoriasis:an emerging picture. Genome Med 2009,1(7):72.
    27. Ikaheimo I, Tiilikainen A, Karvonen J, Silvennoinen-Kassinen S:HLA risk haplotype Cw6,DR7,DQA1*0201 and HLA-Cw6 with reference to the clinical picture of psoriasis vulgaris. Arch Dermatol Res 1996,288(7):363-365.
    28. Feng BJ, Sun LD, Soltani-Arabshahi R, Bowcock AM, Nair RP, Stuart P, Elder JT, Schrodi SJ, Begovich AB, Abecasis GR et al: Multiple Loci within the major histocompatibility complex confer risk of psoriasis. PLoS Genet 2009,5(8):e1000606.
    29. Nair RP, Stuart PE, Nistor I, Hiremagalore R, Chia NV, Jenisch S, Weichenthal M, Abecasis GR, Lim HW, Christophers E et al: Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet 2006,78(5):827-851.
    30. Veal CD, Capon F, Allen MH, Heath EK, Evans JC, Jones A, Patel S, Burden D, Tillman D, Barker JN et al: Family-based analysis using a dense single-nucleotide polymorphism-based map defines genetic variation at PSORS1, the major psoriasis-susceptibility locus. Am J Hum Genet 2002,71(3):554-564.
    31. Helms C, Pelsue S, Cao L, Lamb E, Loffredo B, Taillon-Miller P, Herrin B, Burzenski LM, Gott B, Lyons BL et al: The Tetratricopeptide repeat domain 7 gene is mutated in flaky skin mice:a model for psoriasis, autoimmunity, and anemia. Exp Biol Med (Maywood) 2005,230(9):659-667.
    32. Speckman RA, Wright Daw JA, Helms C, Duan S, Cao L, Taillon-Miller P, Kwok PY, Menter A, Bowcock AM:Novel immunoglobulin superfamily gene cluster, mapping to a region of human chromosome 17q25, linked to psoriasis susceptibility. Hum Genet 2003,112(1):34-41.
    33. Viertlboeck BC, Schmitt R, Gobel TW:The chicken immunoregulatory receptor families SIRP, TREM, and CMRF35/CD300L. Immunogenetics 2006,58(2-3):180-190.
    34. Helms C, Cao L, Krueger JG, Wijsman EM, Chamian F, Gordon D, Heffernan M, Daw JA, Robarge J, Ott J et al: A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nat Genet 2003,35(4):349-356.
    35. Zhang XJ, He PP, Wang ZX, Zhang J, Li YB, Wang HY, Wei SC, Chen SY, Xu SJ, Jin L et al: Evidence for a major psoriasis susceptibility locus at 6p21(PSORS1) and a novel candidate region at 4q31 by genome-wide scan in Chinese hans. J Invest Dermatol 2002,119(6):1361-1366.
    36. Elder JT:IL-15 and psoriasis:another genetic link to Th17? J Invest Dermatol 2007, 127(11):2495-2497.
    37. Baker BS, Ovigne JM, Powles AV, Corcoran S, Fry L:Normal keratinocytes express Toll-like receptors (TLRs) 1,2 and 5:modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol 2003,148(4):670-679.
    38. Wongpiyabovorn J, Yooyongsatit S, Ruchusatsawat K, Avihingsanon Y, Hirankarn N:Association of the CTG (-2578/-460/+405) haplotype within the vascular endothelial growth factor gene with early-onset psoriasis. Tissue Antigens 2008,72(5):458-463.
    39. Parkinson J, Charon C, Baker BS, Powles AV, Rogers S, Caird A, Smedley D, Halford S, Fry L, McCarthy MI:Variation at the IRF2 gene and susceptibility to psoriasis in chromosome 4q-linked families. J Invest Dermatol 2004,122(3):640-643.
    40. Huffmeier U, Steffens M, Burkhardt H, Lascorz J, Schurmeier-Horst F, Stander M, Kelsch R, Baumann C, Kuster W, Mossner R et al: Evidence for susceptibility determinant(s) to psoriasis vulgaris in or near PTPN22 in German patients. J Med Genet 2006,43(6):517-522.
    41. Tsunemi Y, Saeki H, Nakamura K, Sekiya T, Hirai K, Fujita H, Asano N, Kishimoto M, Tanida Y, Kakinuma T et al: Interleukin-12 p40 gene (IL12B) 3'-untranslated region polymorphism is associated with susceptibility to atopic dermatitis and psoriasis vulgaris. J Dermatol Sci 2002, 30(2):161-166.
    42. Koks S, Kingo K, Ratsep R, Karelson M, Silm H, Vasar E:Combined haplotype analysis of the interleukin-19 and -20 genes:relationship to plaque-type psoriasis. Genes Immun 2004, 5(8):662-667.
    43. Foerster J, Nolte I, Schweiger S, Ehlert C, Bruinenberg M, Spaar K, van der Steege G, Mulder M, Kalscheuer V, Moser B et al: Evaluation of the IRF-2 gene as a candidate for PSORS3. J Invest Dermatol 2004,122(1):61-64.
    44. Hoffjan S, Stemmler S:On the role of the epidermal differentiation complex in ichthyosis vulgaris, atopic dermatitis and psoriasis. Br J Dermatol 2007,157(3):441-449.
    45. Zhang XJ, Huang W, Yang S, Sun LD, Zhang FY, Zhu QX, Zhang FR, Zhang C, Du WH, Pu XM et al: Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet 2009,41(2):205-210.
    46. Tomfohrde J, Silverman A, Barnes R, Fernandez-Vina MA, Young M, Lory D, Morris L, Wuepper KD, Stastny P, Menter A et al: Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science 1994,264(5162):1141-1145.
    47. Hwu WL, Yang CF, Fann CS, Chen CL, Tsai TF, Chien YH, Chiang SC, Chen CH, Hung SI, Wu JY et al: Mapping of psoriasis to 17q terminus. J Med Genet 2005,42(2):152-158.
    48. Birnbaum RY, Zvulunov A, Hallel-Halevy D, Cagnano E, Finer G, Ofir R, Geiger D, Silberstein E, Feferman Y, Birk OS:Seborrhea-like dermatitis with psoriasiform elements caused by a mutation in ZNF750, encoding a putative C2H2 zinc finger protein. Nat Genet 2006, 38(7):749-751.
    49. Racz E, Prens EP:Molecular pathophysiology of psoriasis and molecular targets of antipsoriatic therapy. Expert Rev Mol Med 2009, 11:e38.
    50. Prinz JC, Gross B, Vollmer S, Trommler P, Strobel I, Meurer M, Plewig G:T cell clones from psoriasis skin lesions can promote keratinocyte proliferation in vitro via secreted products. Eur J Immunol 1994,24(3):593-598.
    51. Sugiyama H, Gyulai R, Toichi E, Garaczi E, Shimada S, Stevens SR, McCormick TS, Cooper KD: Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 2005, 174(1):164-173.
    52. Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, Burg G, Liu YJ, Gilliet M: Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med 2005,202(1):135-143.
    53. Lowes MA, Chamian F, Abello MV, Fuentes-Duculan J, Lin SL, Nussbaum R, Novitskaya I, Carbonaro H, Cardinale I, Kikuchi T et al: Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CDlla). Proc Natl Acad Sci U S A 2005,102(52):19057-19062.
    54. Larregina AT, Falo LD, Jr.:Changing paradigms in cutaneous immunology:adapting with dendritic cells. J Invest Dermatol 2005,124(1):1-12.
    55. Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG:TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 2003, 19(1):59-70.
    56. Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, Dhodapkar M, Krueger JG: Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med 2004,199(1):125-130.
    57. Wang F, Lee E, Lowes MA, Haider AS, Fuentes-Duculan J, Abello MV, Chamian F, Cardinale I, Krueger JG:Prominent production of IL-20 by CD68+/CD11c+myeloid-derived cells in psoriasis:Gene regulation and cellular effects. J Invest Dermatol 2006,126(7):1590-1599.
    58. Li D, Li J, Duan Y, Zhou X:Expression of LL-37, human beta defensin-2, and CCR6 mRNA in patients with psoriasis vulgaris. J Huazhong Univ Sci Technolog Med Sci 2004,24(4):404-406.
    59. Tovar-Castillo LE, Cancino-Diaz JC, Garcia-Vazquez F, Cancino-Gomez FG, Leon-Dorantes G, Blancas-Gonzalez F, Jimenez-Zamudio L, Garcia-Latorre E, Cancino-Diaz ME:Under-expression of VHL and over-expression of HDAC-1, HIF-lalpha, LL-37, and IAP-2 in affected skin biopsies of patients with psoriasis. Int JDennatol 2007,46(3):239-246.
    60. Yoshioka M, Fukuishi N, Kubo Y, Yamanobe H, Ohsaki K, Kawasoe Y, Murata M, Ishizumi A, Nishii Y, Matsui N et al: Human cathelicidin CAP18/LL-37 changes mast cell function toward innate immunity. Biol Pharm Bull 2008,31(2):212-216.
    61. Molhoek EM, den Hertog AL, de Vries AM, Nazmi K, Veerman EC, Hartgers FC, Yazdanbakhsh M, Bikker FJ, van der Kleij D:Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses. Biol Chem 2009, 390(4):295-303.
    62. Aranami T, Yamamura T:Th17 Cells and autoimmune encephalomyelitis (EAE/MS). Allergol Int 2008,57(2):115-120.
    63. Louten J, Boniface K, de Waal Malefyt R:Development and function of TH17 cells in health and disease. J Allergy Clin Immunol 2009,123(5):1004-1011.
    64. Ortega C, Fernandez AS, Carrillo JM, Romero P, Molina IJ, Moreno JC, Santamaria M: IL-17-producing CD8+T lymphocytes from psoriasis skin plaques are cytotoxic effector cells that secrete Th17-related cytokines. JLeukoc Biol 2009,86(2):435-443.
    65. Harper EG, Guo C, Rizzo H, Lillis JV, Kurtz SE, Skorcheva I, Purdy D, Fitch E, Iordanov M, Blauvelt A:Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J Invest Dennatol 2009,129(9):2175-2183.
    66. Hedrick MN, Lonsdorf AS, Shirakawa AK, Richard Lee CC, Liao F, Singh SP, Zhang HH, Grinberg A, Love PE, Hwang ST et al: CCR6 is required for IL-23-induced psoriasis-like inflammation in mice. J Clin Invest 2009,119(8):2317-2329.
    67. Lew W, Bowcock AM, Krueger JG:Psoriasis vulgaris:cutaneous lymphoid tissue supports T-cell activation and "Type 1" inflammatory gene expression. Trends Immunol 2004, 25(6):295-305.
    68. Weninger W, Carlsen HS, Goodarzi M, Moazed F, Crowley MA, Baekkevold ES, Cavanagh LL, von Andrian UH:Naive T cell recruitment to nonlymphoid tissues:a role for endothelium-expressed CC chemokine ligand 21 in autoimmune disease and lymphoid neogenesis. J Immunol 2003,170(9):4638-4648.
    69. Weninger W, von Andrian UH:Chemokine regulation of naive T cell traffic in health and disease. Semin Immunol 2003,15(5):257-270.
    70. McKenzie BS, Kastelein RA, Cua DJ:Understanding the IL-23-IL-17 immune pathway. Trends Immunol 2006,27(1):17-23.
    71. Ozawa Y, Nakao K, Kurihara T, Shimazaki T, Shimmura S, Ishida S, Yoshimura A, Tsubota K, Okano H:Roles of STAT3/SOCS3 pathway in regulating the visual function and ubiquitin-proteasome-dependent degradation of rhodopsin during retinal inflammation. J Biol Chem 2008,283(36):24561-24570.
    72. Lu Y, Fukuyama S, Yoshida R, Kobayashi T, Saeki K, Shiraishi H, Yoshimura A, Takaesu G:Loss of SOCS3 gene expression converts STAT3 function from anti-apoptotic to pro-apoptotic. J Biol Chem 2006,281(48):36683-36690.
    73. Niu G, Wright KL, Ma Y, Wright GM, Huang M, Irby R, Briggs J, Karras J, Cress WD, Pardoll D et al: Role of Stat3 in regulating p53 expression and function. Mol Cell Biol 2005, 25(17):7432-7440.
    74. Sano S, Chan KS, Carbajal S, Clifford J, Peavey M, Kiguchi K, Itami S, Nickoloff BJ, DiGiovanni J: Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat Med 2005, 11(1):43-49.
    75. Sa SM, Valdez PA, Wu J, Jung K, Zhong F, Hall L, Kasman I, Winer J, Modrusan Z, Danilenko DM et al: The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol 2007,178(4):2229-2240.
    76. Cascio S, Ferla R, D'Andrea A, Gerbino A, Bazan V, Surmacz E, Russo A:Expression of angiogenic regulators, VEGF and leptin, is regulated by the EGF/PI3K/STAT3 pathway in colorectal cancer cells. J Cell Physiol 2009,221(1):189-194.
    77. Vallabhapurapu S, Karin M:Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 2009,27:693-733.
    78. Hagemann T, Biswas SK, Lawrence T, Sica A, Lewis CE:Regulation of macrophage function in tumors:the multifaceted role of NF-kappaB. Blood 2009,113(14):3139-3146.
    79. Gushchina S, Leinster V, Wu D, Jasim A, Demestre M, Lopez de Heredia L, Michael GJ, Barker PA, Richardson PM, Magoulas C:Observations on the function of nuclear factor kappa B (NF-kappaB) in the survival of adult primary sensory neurons after nerve injury. Mol Cell Neurosci 2009,40(2):207-216.
    80. Voskas D, Jones N, Van Slyke P, Sturk C, Chang W, Haninec A, Babichev YO, Tran J, Master Z, Chen S et al: A cyclosporine-sensitive psoriasis-like disease produced in Tie2 transgenic mice. Am JPathol 2005,166(3):843-855.
    81. Abdou AG, Hanout HM:Evaluation of survivin and NF-kappaB in psoriasis, an immunohistochemical study. JCutan Pathol 2008,35(5):445-451.
    82. Tsuruta D:NF-kappaB links keratinocytes and lymphocytes in the pathogenesis of psoriasis. Recent Pat Infilamm Allergy Drug Discov 2009,3(1):40-48.
    83. Nair RP, Duffin KC, Helms C, Ding J, Stuart PE, Goldgar D, Gudjonsson JE, Li Y, Tejasvi T, Feng BJ et al: Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet 2009,41(2):199-204.
    84. Li AG, Wang D, Feng XH, Wang XJ:Latent TGFbetal overexpression in keratinocytes results in a severe psoriasis-like skin disorder. EMBO J2004,23(8):1770-1781.
    85. Cook PW, Piepkorn M, Clegg CH, Plowman GD, DeMay JM, Brown JR, Pittelkow MR: Transgenic expression of the human amphiregulin gene induces a psoriasis-like phenotype. J Clin Invest 1997,100(9):2286-2294.
    86. Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T, Carollo S, Eagan M, Foster D, Haldeman BA, Hammond A et al: Interleukin 20:discovery, receptor identification, and role in epidermal function. Cell 2001,104(1):9-19.
    87. Kopp T, Lenz P, Bello-Fernandez C, Kastelein RA, Kupper TS, Stingl G:IL-23 production by cosecretion of endogenous p19 and transgenic p40 in keratin 14/p40 transgenic mice:evidence for enhanced cutaneous immunity. J Immunol 2003,170(11):5438-5444.
    88. Xia YP, Li B, Hylton D, Detmar M, Yancopoulos GD, Rudge JS:Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood 2003, 102(1):161-168.
    89. Gilhar A, Etzioni A, Assy B, Eidelman S:Response of grafts from patients with alopecia areata transplanted onto nude mice, to administration of interferon-gamma. Clin Immunol Immunopathol 1993,66(2):120-126.
    90. Boehncke WH:Psoriasis and bacterial superantigens--formal or causal correlation? Trends Microbiol 1996,4(12):485-489.
    91. Villadsen LS, Schuurman J, Beurskens F, Dam TN, Dagnaes-Hansen F, Skov L, Rygaard J, Voorhorst-Ogink MM, Gerritsen AF, van Dijk MA et al:Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model. JClin Invest 2003,112(10):1571-1580.
    92. Ellis CN, Krueger GG:Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. NEngl J Med 2001,345(4):248-255.
    93. Chamian F, Lowes MA, Lin SL, Lee E, Kikuchi T, Gilleaudeau P, Sullivan-Whalen M, Cardinale I, Khatcherian A, Novitskaya I et al:Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc Natl Acad Sci USA 2005,102(6):2075-2080.
    94. Vugmeyster Y, Kikuchi T, Lowes MA, Chamian F, Kagen M, Gilleaudeau P, Lee E, Howell K, Bodary S, Dummer W et al:Efalizumab (anti-CDlla)-induced increase in peripheral blood leukocytes in psoriasis patients is preferentially mediated by altered trafficking of memory CD8+T cells into lesional skin. Clin Immunol 2004,113(1):38-46.
    95. Gottlieb AB, Chamian F, Masud S, Cardinale I, Abello MV, Lowes MA, Chen F, Magliocco M, Krueger JG:TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol 2005,175(4):2721-2729.
    96. Kruger-Krasagakis S, Galanopoulos VK, Giannikaki L, Stefanidou M, Tosca AD:Programmed cell death of keratinocytes in infliximab-treated plaque-type psoriasis. Br J Dermatol 2006, 154(3):460-466.