用户名: 密码: 验证码:
龙眼种质资源遗传多样性分析及低温对石硖龙眼影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是龙眼主要起源地之一,存在许多性状优良的野生和实生资源,虽然目前对龙眼资源的遗传多样性有较多的研究报道,但主要集中于国内栽培品种之间,对国外品种及国内龙眼非栽培资源研究不多。为此,本研究收集了大量野生和实生的龙眼资源,分析其遗传多样性,探明其亲缘关系,为龙眼资源的开发利用提供依据。近年来,低温寒冻害造成龙眼大面积死亡的现象时有发生,给龙眼生产带来巨大损失。石硖龙眼是我国的主栽品种之一,但低温对石硖龙眼影响的研究深度不够。为了更进一步探讨低温对石硖龙眼的影响,本研究从生理生化和分子水平探讨低温胁迫对石硖龙眼的影响,为龙眼栽培和抗寒育种提供依据。主要研究结论如下:
     1、龙眼资源遗传多样性分析
     利用SCoT和ISSR两种分子标记技术对国内3个省区及越南、泰国的龙眼种质资源的遗传多样性进行了分析,发现非栽培资源与栽培品种之间的遗传距离较远,中国龙眼基因资源丰富,泰国和越南的基因型龙眼分别聚类于2个不同的遗传类且遗传多样性较低。龙荔和龙眼之间的亲缘关系较远。
     2、低温胁迫对龙眼生理生化特性的影响
     以龙眼幼苗为材料,研究低温胁迫对龙眼生理生化指标的影响。在低温胁迫期间,各保护酶类、脯氨酸和可溶性蛋白含量呈先上升再下降的趋势;渗透物质可溶性糖含量一直呈上升趋势;相对含水量下降,电导率在达到最大值后急剧下降,MDA含量在处理前期处于较高水平;低温胁迫8小时前,对光合作用的影响以气孔限制为主,之后以非气孔限制为主,上述所测定的指标与龙眼低温胁迫呈显著或极显著相关。经主成分分析表明,前3个主成分包括的抗寒评价指标(保护酶类、膜透性和叶绿素荧光参数)可以进行抗寒性分析,可作为龙眼抗寒性评价的依据。另外,通过综合分析表明,4℃低温处理12小时内,可作为龙眼幼苗抗寒锻炼的适宜条件。
     3、龙眼响应低温胁迫的蛋白质组学分析
     建立了龙眼叶片总蛋白双向电泳体系,从蛋白质水平研究龙眼幼苗对低温的响应机制。从2-DE图谱获得了700多个有效蛋白质点,表达量差异在2倍以上有45个差异蛋白点,其中有36.7%的蛋白上调表达,63.3%的蛋白被下调表达。质谱鉴定出31个蛋白,它们主要是参与光合作用、自由基清除、细胞生长和分裂、信号传导、蛋白加工和基础代谢的蛋白。
     4、抗寒相关基因的克隆与表达分析
     应用RT-PCR和RACE方法克隆了蛋白质组学分析中的光合放氧33kD蛋白、锌指蛋白、抗坏血酸过氧化物酶、景天庚酮-1,7-二磷酸酶、Rubisco活化酶、泛素蛋白、磷酸核酮糖激酶、谷氨酰胺合成酶、热激蛋白、胚胎发育晚期丰富蛋白、14-3-3蛋白、叶绿体铜锌超氧化物歧化酶、咖啡酰辅酶A甲基转移酶、碳酸酐酶、水通道蛋白、钙依赖型蛋白激酶蛋白基因cDNA全长,并同源克隆了叶绿素a/b结合蛋白1、叶绿素a/b结合蛋白2、叶绿素a/b结合蛋白4和CBF基因cDNA全长。其中10个基因成功在大肠杆菌中表达,获得相应外源蛋白,并对热激蛋白经Western-blot验证确认。利用实时荧光定量技术对获得的基因进行了低温胁迫下时空表达模式分析,结果显示所有的基因在低温下均发生变化,但各基因的变化规律不同,如磷酸核酮糖激酶、泛素蛋白、Rubisco活化酶、谷氨酰胺合成酶、14-3-3蛋白、光合放氧33kD蛋白、水通道蛋白、叶绿素a/b结合蛋白、碳酸酐酶等基因在低温胁迫前期的变化较大,可能与各基因参与低温胁迫时的功能有关。已获得的cDNA全长中有43.8%在mRNA水平和蛋白水平表达相一致,56.2%的基因在转录水平上表达并没有直接伴随在蛋白水平的表达。
     5、抗寒相关基因的转基因初步研究
     根据已获得的龙眼CBF、热激蛋白和泛素蛋白的ORF序列设计真核表达引物,构建三个基因的正反义真核表达载体,转化农杆菌EHA105,采用农杆菌介导法转入野生型烟草植株,获得部分转基因烟草,为进一步研究龙眼抗寒基因的功能奠定了基础。
Dimocarpus longana Lour. belongs to Family Sapindaceae. China is one of the main origin centres, and there are many wild and seeding longan germplasm resources. In the last decade, molecular markers in characterizing and analyzing genetic diversity of longan has been successfully demonstrated by a number of studies. While these studies focused on local varieties of longan and the foreign cultivars or wild resources were rarely studied. In this paper, more resources with different genetic background were collected to study the diversity and genetic relationships by ISSR and SCoT markers. In recent years, cold and chilling injury resulted in serious economic losses in longan industry.'Shixia' longan is a main cultivars in China. However, there is a lack of depth in the academic research on the effect of low temperature stress on'Shixia' Longan currently. In order to understand furtherly cold-responsive mechanisms of'Shixia' Longan, the cold-responsive physiology and molecular mechanism of'Shixia'Longan under low temperature stress were studied. The results are benefit for the cultivation and breeding of longan. The main results obtained were as follows:
     1. Genetic diversity analysis of longan. The genetic relationships among68longan cultivars from China, Vietnam and Thailand were analyzed based on SCoT and ISSR. The results showed that the genetic similarity coefficient was big difference among cultivars and non-cultivars. The UPGMA analysis indicated that all of them were distinguished in China, Vietnam and Thailand, respectively. In addition, there were obvious differences between Dimocarpus confinis and longan. Comparison and mixture analysis of the two molecular markers demonstrated that both SCoT and ISSR are efficient approaches for genetic diversity analysis of longan germplasm.
     2. The physiological and biochemical characteristics of longan seedlings under low temperature stress. The physiological and biochemical indexes related to chill resistance in the leaves of longan were investigated under4℃low temperatures compared with the normal temperature25℃(control). The results showed that there were significant or obviously significant correlations between every indexe under chill tolerance of longan. The changes of enzyme activity increased early and then decreased, the soluble sugar content overall assumed the trend of escalation, The electrolyte leakage and the soluble protein content increased early and than decreased, water content of leaves continuous increased and the MDA content was at a high level in the early treatment under low temperature stress. The photosynthesis was affected mainly by stomatal limitation during0~8h under cold stress, and photosynthesis was affected mainly by non-stomatal limitation after8h cold stress. The relevance of each indicator and principal component analysis showed that the first three principal components including the protective enzyme, membrane permeability, Chl Ⅱ fluorescence characteristics can be synthesis evaluation for cold stress of longan. the comprehensive analysis of all physiological and biochemical indicators showed that cold stress for12h at4℃is suitable condition for cold resistant exercise of longan seedlings.
     3. Proteomic analysis of longan seedlings under low temperature stress. The proteome changes in one-year-old longan tree leaves subjected to a temperature of4℃for24h were studied with comparative proteomic analysis. Changes in the total proteins of longan leaves were examined by two-dimensional electropherosis and mass spectroscopy. More than700protein spots were detected on each gel, and45protein spots which expression difference were more than two times were obtained by PDQuest software analysis. Among45protein spots63.3%protein spots were down-regulated, and36.7%protein spots were up-regulated.31differentially expressed proteins were identified by Mass spectrometry, They couid participate in photosynthesis, free radical scavenging, cell growth/division, signal transduction, protein processing, metabolism and unclassified.
     4. Cold-responsive genes cloning and expression. The full-length cDNA sequences were cloned from longan leaves in the way of RT-PCR and RACE techniques. They were genes involving in Oxygen evolving enhancer protein, Phd/F-box containing protein, Ascorbate peroxidase, Sedoheptulose-1,7-bisphosphatase, Rubisco activase, SUMO1protein、Phosphoribulokinase, Glutamine synthetase, Heat shock protein HSP, Late embryogenesis abundant protein,14-3-3protein, Chloroplast copper/zinc-superoxide dismutase, Caffeoyl-CoA O-methyltransferase, Carbonic anhydrase, Aquaporin gene, Calcium-dependent protein kinase gene, Light Harvesting Chlorophyll a/b binding proteins, CRT/DREB Binding Factor. The ten genes out of them were expressed in E.coli, their exogenous proteins were obtained, and heat shock protein (HSP) was confirmed by western blotting. To investigate changes in genes expression at the mRNA levels, their expression patterns in response to chilling stress were studied with quantitative real time PCR. The results showed that gene expression level were changed under low temperature stress, but every gene expression trend is different. For example, the genes involving in Phosphoribulokinase, SUMO1protein,14-3-3protein, Oxygen evolving enhancer protein, etc. changed largely during early period under low temperature stress, and these changes may be related to the genes function under low temperature stress. But only43.8%genes exhibited consistent expression patterns between their mRNAs and protein levels at the same time, while56.2%genes expressed at mRNA levels and unexpressed at protein levels.
     5. Genetic transformation of cold-responsive genes. The primers of CBF, HSP and SUMO genes of longan have been designed by integrity of ORF sequence, and binary antisense and sense expression vectors of three genes were constructed by inserting the target fragment in PBI121with a double35S promoter. The PBI121-CBF (-/+), PBI121-HSP (-/+) and PBI121-SUMO (-/+) were successfully introduced into strain EHA105by Agrobacterium-mediated and acquired some transgenic tobaccos plants. The results will lay the foundation for further studying of cold resistant genes character and their function of longan.
引文
[1]安娜.龙眼体细胞胚胎发生的蛋白质组学研究.福建农林大学硕士学位论文,2006
    [2]白瑞霞,彭建营.DNA分子标记在果树遗传育种研究中的应用.西北植物学报,2004,24(8):1547-1554
    [3]陈立松,刘星辉.水分胁迫对荔枝叶片呼吸代谢有关酶活性的影响.林业科学,2003,39(2):39-43
    [4]陈儒钢,朱文超,巩振辉,等.辣椒水通道蛋白基因CaAQP的克隆与序列分析.中国农业科学,2010,43(20):4323-4329
    [5]陈文训.1955年福建闽侯、莆田龙眼冻害调查报告.农业学报,1956,(2):247-254
    [6]陈有志,刘成明.龙眼品种RAPD鉴别及分析.中国果树,2001,7(4):28-29
    [7]戴新宾,翟虎渠,张红生,等.土壤干旱对水稻叶片光合速率和碳酸酐酶活性的影响.植物生理学报,2000,26(2):133-136
    [8]邓秋红,甘露,付春华,等.芸薹属中几个物种碳酸酐酶活性的比较.植物生理学通讯,2009,45(7):663-666
    [9]董发才,苗琛,荆艳彩,等.小麦根系过氧化氢积累与耐盐性的关系.武汉植物学研究,2002,20(4):293-298
    [10]盖英平.棉花、烟草响应低温胁迫的差异蛋白质组学研究.山东农业大学博士学位论文,2008
    [11]高慧颖,姜帆,陈秀萍,等.不同地域的代表性基因型龙眼RAPD分析.福建林业科技,2007,1(34):67-71
    [12]高慧颖,姜帆,李韬,等.龙眼种质资源分类研究进展.福建果树,2007,(141):27-30
    [13]龚明,刘友良,朱培仁.低温下稻苗叶片中蛋白质及游离氨基酸的变化.植物生理学通讯,1989,25(4):18-22
    [14]郭印山,赵玉辉,刘朝吉,等.利用多种分子标记构建龙眼高密度分子遗传图谱.园艺学报,2009,36(5):655-662
    [15]郭延平,张良诚,沈允钢.低温胁迫对温洲蜜柑光合作用的影响.园艺学报,1998,25(2):111-116
    [16]郭子武,李宪利,高东升,等.植物低温胁迫响应的生化与分子生物学机制研究进展.中国生态农业学报,2004,12(2):54-57
    [17]姜帆,高慧颖,陈秀萍,等.龙眼ISSR-PCR反应体系的优化及指纹图谱初探.福建农业学报,2007,22(3):256-260
    [18]姜帆,高慧颖,陈秀萍,等.龙眼SRAP-PCR反应体系的优化.福建林业科技,2007,34(4):20-24
    [19]蒋巧巧,龙桂友,李武文,等SCoT结合克隆测序鉴别湖南甜橙变异类型.中国农学通报,2011,27(6):148-154
    [20]姜颖,徐朗莱,贺福初.质谱技术解析磷酸化蛋白质组.生物化学与生物物理进展,2003,30(3):350-356
    [21]韩国辉,汪卫星,贾志刚,等.柑橘SCoT分子标记技术体系的建立及其在遗传分析中的应用.园艺学报,2011,38(7):1243-1250
    [22]韩国辉,汪卫星,向素琼,等.多倍体枇杷SCoT分析体系的建立与优化.果树学报,2011,28(3):433-437
    [23]何大澄,肖雪媛.差异蛋白质组学及其应用.北京师范大学学报(自然科学版),2002,38(4):558-562
    [24]何园.龙眼体胚成熟过程的蛋白质组学研究.福建农林大学硕士学位论文,2009
    [25]黄治远,李隆华,张云贵,等.龙眼耐寒性与叶片可溶性糖含量的关系.中国南方果树,2005,34(2):32-33
    [26]胡文海,喻景全.低温弱光对番茄叶片光合作用和叶绿素荧光参数的影响.园艺学报,2001,28(1):41-46
    [27]洪自同.龙眼的ISSR分析及焦核性状分析.福建农林大学硕士学位论文,2007
    [28]简令成.生物膜与植物寒害和抗寒性的关系.植物学通报,1983,(1):17-23
    [29]简令成,董合铸,孙龙华.番茄子叶细胞内三磷酸腺苷酶活性的超微结构定位及其在冷害中的变化.植物学报,1981,23(4):257-261
    [30]赖呈纯.龙眼体胚发生早期的蛋白质组学研究.福建农林大学博士学位论文,2010
    [31]李长宁,Srivastava M K,农倩,等.水分胁迫下外源ABA提高甘蔗抗旱性的作用机制.作物学报,2010,36(5):863-870
    [32]李国雷,孙明高,夏阳,等NaCl胁迫下黄栌、紫荆的部分生理生化反应动态变化规律的研究.山东农业大学学报(自然科学版),2004,35(2):173-176
    [33]李合生.植物生理生化实验原理与技术.高等教育出版社,2000
    [34]李茂富,李绍鹏,赵维峰.壳聚糖提高香蕉幼苗抗冷性的效应.植物生理学通讯,,2005,41(4):464-466
    [35]李美茹,刘鸿先,王以柔.植物抗冷性分子生物学研究进展.热带植物学报,2000,8(1):70-80
    [36]李美茹,刘鸿先,王以柔.植物细胞中的抗寒物质及其与植物抗冷性的关系.植物生理学通讯,1995,(5):328-333
    [37]李平聪,周秀琴.龙眼耐寒性与叶片组织结构的关系.福建农林,2002,(119):8-9
    [38]李然,龙眼松散型胚性愈伤组织生长过程的蛋白质组学研究.福建农林大学硕士学位论文,2011
    [39]李西腾,赵新政,阙小峰,等.盐分胁迫对油菜碳酸酐酶活性的影响.农机化研究,2006,(8):134-136
    [40]林同香,陈振龙,戴思兰,等RAPD技术在龙眼品种分类中的应用研究.植物学报,1998,40(12):1159-1165
    [41]李燕.龙眼胚胎发育不同时期的蛋白质组学分析.福建农林大学硕士学位论文,2006
    [42]刘冰浩,徐宁,朱建华,等.广西龙眼种质耐寒性的CTR值鉴定.西南农业学报,2006,19(4):668-671
    [43]刘浩.龙眼(Dimocarpus Longan Lour.)种子败育的蛋白质组学研究.福建农林大学硕士学位论文,2009
    [45]刘加尧,衣艳君,张其德.盐胁迫对不同抗盐性小麦叶片荧光诱导动力学的影响.植物学通报,1998,15(2):4649
    [47]刘康,高起飞,万振昆,等.蛋白质组学研究中的质谱鉴定与生物信息学分析.棉花学报,2008,20(4):281-288
    [48]刘明,王继华,王同昌.DNA分子标记技术.东北林业大学学报,2003,31(6):65-67
    [49]刘星辉,潘东明,陈靖西.电导法测定龙眼耐寒性的研究.福建农学院学报,1985,14(4):339-343
    [50]刘星耀,余文琴,张惠斌.龙眼、荔枝叶片膜脂脂肪酸与耐寒性的研究.福建农业大学学报,1996,25(3):297-301
    [51]龙强.龙眼(Dimocarpus Longan Lour.)成花逆转蛋白质组学的初步研究.福建农林大学硕士学位论文,2006
    [52]潘丽梅.广西龙荔资源调查及遗传多样性ISSR分析.广西大学硕士学文论文,2009
    [53]潘瑞炽.植物生理学.北京:高等教育出版社,2001
    [54]彭宏祥,李冬波,朱建华,等.用AFLP标记分析广西龙眼种质遗传多样性.园艺学报,2008,35(10):1511-1516
    [55]邱武陵,章恢志.中国果树志:龙眼枇杷卷.北京:中国林业出版社,1996
    [56]邵继荣.水稻冷激应答特异蛋白的电泳分析.乐山师专学报(自然科学版),1998,(1):35-37
    [57]孙谷畴,林植芳,林桂珠.不同光强下生长的几种亚热带森林树木的Rubisco羧化速率和碳酸酐酶的活性.武汉植物学研究,2001,19(4):304-310
    [58]孙静文.构树DREB转录因子及木质素合成代谢相关基因的克隆及功能分析.中国科学院博士学位论文,2006
    [59]汤章城.现代植物生理学实验指南.科学出版社,1999
    [60]汤章城.逆境条件下植物脯氨酸的累积及其可能的意义.植物生理学报,1984,10(1):15-20
    [61]唐志鹏,袁磊,李洪耀.果树分子标记技术研究进展.广西园艺,2005,16(4):53-56
    [62]王静.龙眼子叶胚发育过程中差异表达蛋白的研究.福建农林大学硕士学位论文,2009
    [63]王俊刚,陈国仓,张承烈.水分胁迫对2种生态型芦苇(Phragmites communis)的可溶性蛋白含量、SOD、POD、CAT活性的影响.西北植物学报,2002,22(3):561-565
    [64]王孝宣,李树德,东惠如,等.番茄品种耐寒性与ABA和可溶性糖含量的关系.园艺学报,1998,25(1):56-60
    [65]王永健,张海英,张峰,等.低温弱光对不同黄瓜品种幼苗光合作用的影响.园艺学报,2001, 28(3):230-234
    [66]吴庆丰,王崇英,王新宇,等.山黧豆叶片蛋白质双向电泳技术的建立.西北植物学报,2006,26(7):1330-1336
    [67]吴能表,钟永达,肖文娟.零上低温对甘蓝幼苗逆境指标的动态影响.西南师范大学学报(自然科学版),2005,30(3):525-528
    [68]吴元立,易干军,周碧容,等.荔枝与龙眼种质资源研究进展.植物遗传资源学报,2007,8(4):498-502
    [69]肖璇,孙敏,王心燕,,等.‘石硖’龙眼大果型桂花味芽变系的RAPD分析鉴定.园艺学报,2005,32(4):684-687
    [70]席景会.低温胁迫下拟南芥差异蛋白质组学研究.吉林大学博士学位论文,2007
    [71]熊发前,陈忠良,潘玲华,等.目标起始密码子多态性(SCoT):一种基于翻译起始位点的目标基因标记新技术.分子植物育种,2009,7(3):635-638
    [72]胥献宇.不同温度条件下玉米碳酸酐酶活性差异比较与分析.种子,2010,29(3):84-88
    [73]杨翠.基于SCoT标记分析甘蔗种质资源遗传多样性.福建农林大学硕士学位论文,2010
    [74]杨华庚.低温胁迫对油棕幼苗生理生化特性的影响.华南热带农业大学硕士学位论文,2007
    [75]姚明华,徐跃进,李晓丽,等.茄子耐冷性生理生化指标的研究.园艺学报,2001,28(6):527-531
    [76]姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制.热带农业科学,2005,(4):80-85
    [77]游向荣.龙眼成花转变与成花逆转的差异蛋白质组学研究.福建农林大学博士学位论文,2009
    [78]易干军,谭卫萍,霍合强,等.龙眼品种(系)遗传多样性及亲缘关系的AFLP分析.园艺学报,2003,30(3):272-276
    [79]袁磊.龙眼遗传多样性及亲缘关系的ISSR分析.广西:广西大学农学院,2007
    [80]余泽宁.龙眼叶片膜脂肪酸组分含量与龙眼耐寒性的关系.广西园艺,2003,(3):4-6
    [81]于耸.水稻(Oryza Sativa L.)碳酸酐酶基因在逆境胁迫下的功能解析.东北林业大学博士学位论文,2006
    [82]曾黎辉,洪自同,林文忠,等.龙眼种质资源的ISSR分析.福建农林大学学报(自然科学版),2009,38(3):239-242
    [83]曾淇,咎逢刚,李明芳,等.分子标记技术在荔枝研究中的应用.热带作物学报,2009,30(4):544-550
    [84]张惠斌,刘星辉.龙眼叶片组织细胞结构特性与耐寒性关系.园艺学报,1993,20(1):1-7
    [85]张宪政.作物生理研究法.农业出版社,1992
    [86]张学宁,郭保林,张开春.果树分子标记研究进展.河北农业大学学报,2003,26:75-78
    [87]赵会芳,巩振辉,赵利民,等.大白菜碳酸酐酶基因的克隆与序列分析.西北植物学报,2010,30(9):1728-1732
    [88]赵军,赵玉田,梁博文.寒胁迫过程中冬小麦叶片组织可溶性蛋白质含量的变化和功能.中国农业科学,1994,27(2):57-61
    [89]赵玉辉,,胡又厘,郭印山,等.荔枝、龙眼属间远缘杂种的获得及分子鉴定.果树学报,2008,25(6):950-952
    [90]郑国华.枇杷耐冷生理生化与相关基因克隆的研究,福建农林大学博士学位论文,2010
    [91]郑家基,卢炜.龙眼、瞰榄叶片空隙率与耐寒性的关系.福建农业大学学报,1996,25(2):161-164
    [92]郑少泉.龙眼种质资源描述规范和数据标准.北京:中国农业出版社,2006
    [93]钟凤林,林琳,潘东明,等.龙眼种质资源亲缘关系的研究进展.热带亚热带植物学报,2007,15(6):554-558
    [94]钟凤林,潘东明,林琳,等.龙眼种质资源的研究进展.亚热带农业研究,2007,3(3):175-178
    [95]钟凤林,潘东明,郭志雄,等.龙眼种质资源的RAPD分析.中国果树,2007,7(23):558-563
    [96]钟思强.广西龙眼业面临的若干农业气象问题及对策.广西气象,2002,3(1):50-53
    [97]钟伟,林晓东,朱芳,等.应用RAPD技术分析热带龙眼四季蜜与常规龙眼品种的遗传差异.中山大学学报(自然科学版),2006,6(43):65-68
    [98]周玉萍,郑燕玲,田长恩,等.脱落酸、多效唑和油菜素内酯对低温期间香蕉过氧化物酶和电导率的影响.广西植物,2002,22(5):444-448
    [99]朱建华,黄江流,罗木林,等.龙眼叶片冻害症状及细胞超微结构变化.广西植物,2008,28(5):589-591
    [100]朱建华,黄世安,彭宏祥,等.龙眼冻害程度与恢复生长、成花关系调查.广西热带农业,2004,6(95):20-21
    [101]朱建华,黄世安,许绍彪,等.对龙眼冻害若干问题的探讨.广西热作科技,2000,(4):23-25
    [102]Abarca D, Madueno F, Martinez-Zapater J M, et al. Dimerization of Arabidopsis 14-3-3 proteins: structural requirements within the N-terminal domain and effect of calcium. FEBS Letters,1999, (462):377-382
    [103]Aebersold R and Mann M. Mass spectrometry-based proteomics. Nature,2003,422(6928): 198-207
    [104]Ahuja I, de Vos R C H, Bones A M, et al. Plant molecular stress responses face climate change. Trends in Plant Science,2011,15(12):664-679
    [105]Allen J F and Nilsson A. Redox signalling and the structural basis of regulation of photosynthesis by protein phosphorylation. Physiologia Plantarum,1997,100(4):863-868
    [106]Amme S, Matros A, Schlesier B, et al. Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology. Journal of Experimental Botany,2006,57(7):1537-1546
    [107]Anja S, Marco B and Rudiger H. Overexpression of the potential herbicide target sedoheptulose-1, 7-bisphosphatase from Spinacia oleracea in transgenic tobacco. Molecular Breeding,2002,9(1): 53-61
    [108]Arocaa R, Tognonib F, Irigoyena J J, et al. Different root low temperature response of two maize genotypes differing in chilling sensitivity. Plant Physiology and Biochemistry,2001,39(12): 1067-1073
    [109]Badger M R and Price G D. The role of carbonic anhydrase in photosynthesis. Annual Reviews Plant Physiology Plant Molecular Biology,1994, (45):369-392
    [110]Bae M S, Cho B, Choi E Y, et al. Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant Journal,2003,36 (5):652-663
    [111]Bagnaresi P, Thoiron S, Mansion M, et al. Cloning and characterization of a maize cytochrome-b5 reductase with Fe3+-chelate reduction capability. Biochemical Journal,1999,338 (2):499-505
    [112]Bergantino E, Sandona D, Cugini D, et al. The photosystem Ⅱ subunit CP29 can be phosphorylated in both C3 and C4 plants as suggested by sequence analysis. Plant Molecular Biology,1998,36(1):11-22
    [113]Bennett J, Steinback K E and Arntzen C J. Chloroplast phosphor proteins:regulation of excitation energy transfer by phosphorylation of thylakoid membane polypeptides. Proceedings of the National Academy of Sciences of the United States of America,1980,77(9):5253-5257
    [114]Bostein D, Whiter L, Skoln lckm, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphics. American Journal Human Genetics,1980,32:314-331
    [115]Cabane M, Calvet P, Vincens P, et al. Characterization of chilling-acclimation-related proteins in soybean and identification of one as a member of the heat shock protein(HSP 70) family. Planta, 1993,190:346-53
    [116]Chang Y C and Walling L L. Spatial and temporal expression of Cab mRNAs in cotyledons of the developing soybean seedling. Planta,1992,186(2):262-272
    [117]Chaumont F, Barrieu F, Wojcik E, et al. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiology,2001,125(3):1206-1215
    [118]Cheng L B, Gao X, Li S Y, et al. Proteomic analysis of soybean [Glycine max (L.)Meer.]seeds during imbibition at chilling temperature. Molecular Breeding,2010,26(1):1-17
    [119]Churin Y, Adam E, Kozma-Bognar L, et al. Characterization of two Myb-like transcription factors binding to CAB promoters in wheat and barley. Plant Molecular Biology,2003,52(2):447-462
    [120]Collard B C Y and Mackill D J. Start codon targeted (SCoT) polymorphism:a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Molecular Biology Reporter, 2009,27(1):86-93
    [121]Coruzzi G, Broglie R, Cashmore A, et al. Nucleotide sequences of two pea cDNA clones encoding the small subunit of ribulose 1,5-bisphosphate carboxylase and the major chlorophyll a/b binding thylakoid polypeptide. Journal of Biological Chemistry,1983,258(3):1399-1402
    [122]Costa P, Bahrman N, Frigerio J M, et al. Water-deficit-responsive proteins in Maritime pine. Plant Molecular Biology,1998,38(4):587-596
    [123]Crookston R K, Otoole J and Lee R. Photosynthetic depression in beans after exposure to cold for night. Crop Science,1974,14(3):457-464
    [124]Cui S, Huang F, Wang J, et al. A proteomic analysis of cold stress responses in rice seedlings. Proteomics,2005,5(12):3162-3172
    [125]Cushman J C and Bolinert H J. Genomic approaches to plant stress tolerance. Current Opinion in Plant Biology,2000,3(2):117-124
    [126]Danyluk J, Rassart E and Sarhan F. Gene expression during cold and heat shock in wheat. Biochemistry and Cell Biology,1991,69(5-6):383-391
    [127]Dasgupta J, Ananyev G M and Dismukes G C. Photoassembly of the water-oxidizing complex in photosystem Ⅱ. Chemistry Reviews,2008,252(3-4):347-360
    [128]Derrick P J and Patterson S D. Mass spectrometry of proteomics. Proteomics,2001,1(8):925-926
    [129]El-Khatib R T, Good A G and Muench D G. Analysis of the Arabidopsis cell suspension phosphoproteome in response to short-term low temperature and abscisic acid treatment. Plant Physiology,2007,129(4):687-697
    [130]Farquhar G D and Sharkey T D. Stomatal conductance and photosynthesis. Annual Reviews Plant Physiology Plant Molecular Biology,1982,33:317-345
    [131]Fenn J B, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomoleculars. Science,1989,246(4926):64-71
    [132]Forrest K L and Bhave M. Major intrinsic proteins (MIPs) in plants:a complex gene family with major impacts on plant phenotype. Functional & Integrative Genomics,2007,7(4):263-289
    [133]Frank K, Andreas S, Christos N, et al. Abundantly and rarely expressed Lhc protein genes exhioit distinct regulation patterns in plants. Plant Physiology,2006,140(3):793-804
    [134]Gao F, Zhou Y J, Zhu W P, et al. Proteomic analysis of cold stress- responsive proteinsin Thellungiella rosette leaves. Planta,2009,230(5):1033-1046
    [135]Garfin D E. Two-dimensional gel electrophoresis:An overview. Trends Analytical Chemistry, 2003,22(5):263-272
    [136]Glover J R and Lindquist S. Hsp104, Hsp70, and Hsp40:a novel chaperone system that rescues previously aggregated proteins. Cell,1998,94(1):73-82
    [137]Gorg A, Weiss W and Dunn M J. Current two-dimensional electrophoresis technology for proteomics. Proteomics,2004,4(12):3665-3685
    [138]Green B R, Picheraky E and Kloppetech K. Chlorophyll a/b binding proteins:an extended family. Trends in Biochemical Sciences,1999,16(5):181-186
    [139]Guenther J F, Chanmanivone N, Galtovic M P, et al. Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell,2003,15(4):981-991
    [140]Gupta A S, Webb R P, Holadya A S, et al. Overexpression of superoxide dismutase protects plants from oxidature strees. Plant Physiology,1993,103(4):1067-1073
    [141]Guy C, Haskell D and Li Q B. Assoeiation of proteins with the stress 70 molecular choperones at low temperature:evidence for the existence of eold labile proteins in spinach. Cryobiology,1998, 36(4):301-314
    [142]Guy C L, Niemi K J and Brambl R. Altered gene expression during cold acclimation of sprinach. Proceedings of the National Academy of Sciences of the United States of America,1985,82(11): 3673-3677
    [143]Hashimoto M and Komatsu S (2007) Proteomics analysis of rice seedling during cold stress. Proteomics,7(8):1293-1302
    [144]Helenius A and Aebi M. Intracellular function of N-linked glycans. Science,2001,291(5512): 2364-2369
    [145]Hewett-Emmett D and Tashian R E. Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families. Molecular Phylogenetics Evolution,1996,5(1):50-77
    [146]Hoshida H, Tanaka Y, Hibino T, et al. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Molecular Biology,2000,43(1):103-111
    [147]Hunter N P, Oquist G, Hurry V M, et al. Photosynthesis, photoinhibion and low temperature acclimation in cold tolerant plants. Phyotosynthesis Research,1993,37(1):19-39
    [148]Imin N, Kerim T, Rolfe B G, et al. Effect of early cold stress on the maturation of rice anthers. Proteomics,2004,4(7):1873-1882
    [149]Jenny R, Lucien H and Jean F H. Biochemical and physiological mechanisms related to cold acclimation and enhanced freezing tolerance in poplar plantlets. Physiologia Plantarum,2005, 125(1):82-94
    [150]Jeroen R, Antje R, Jorgen H C, et al. Genome-wide characterization of the lignification toolbox in arabidopsis. Plant Physiology,2003,133(3):1051-1071
    [151]Johansson I, Karlsson M, Shukla V K, et al. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell,1998,10(3):451-459
    [152]Johansson U, Karlsson M, Johansson I, et al. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology,2001,126(4):1358-1369
    [153]Johnson E S and Gupta A A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell,2001,106(6):735-744
    [154]Karas M and HIllenkam P F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Analytical Chemistry,1988,60(20):1299-2301
    [155]Kawamura Y and Uemura M. Mass spectrometric approach for identifying putativeplasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant Journal,2003, 36(2):141-154
    [156]Kidou S, Umeda M, Kato A, et al. Isolation and characterization of a rice cDNA similar to the bovine brain-specific 14-3-3 protein gene. Plant Molecular Biology,1993,21(1):191-194
    [157]Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, et al. A nuclear gene encoding mitochondril proline dehydrogenasse, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by degydration in Arabidopsis. Plant Cell,1996,8(8):1323-1335
    [158]Kim J K, Bamba T, Harada K, et al. Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. Journal of Experimental Botany,2007,58(3):415-424
    [159]Kjellsen T D, Shiryaeva L, Schroder W P, et al. Proteomics of extreme freezing tolerance in Siberian spruce (Picea obovata). Journal of proteomics,2010,73(5):965-975
    [160]Koller A, Washburn M P, Lange B M, et al. Proteomic survey of metabolic pathways in rice. Proceedings of the National Academy of Sciences of the United States of America,2002,99(18): 11969-11974
    [161]Komatsu S, Muhammad A and Rakwal R. Separation and characterization of proteins from green and etiolated shoots of rice:towards a rice proteome. Electrophoresis,1999,20(3):630636
    [162]Kornyeyev D, Logan B A, Payton P, et al. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiologiae Plantarum,2001,113(3): 323-331
    [163]Kufryk G, Hernandez-Prieto M A, Kieselbach T, et al. Association of small CAB-like proteins (SCPs) of Synechocystis sp. PCC 6803 with photosystem II. Photosynthesis Research,2008, 95(2-3):135-145
    [164]Lee D G, Ahsan N, Lee S H, et al. An approach to identify cold-induced low-abundantproteins in rice leaf. Comptes Rendus Biologies,2007,330(3):215-225
    [165]Lee D H and Lee C B. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber:in gel enzyme activity assays. Plant Science,2000,159(1):75-85
    [166]Levitt J. Response of plants to environmental stresss. New York:Aeademie Press,1980:154-159
    [167]Li C F and Quirus F. Sequence-related amplified polymorphism(SRAP),a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics,2001,103(2):455-461
    [168]Li L, Li S, Tao Y, et al. Molecular cloning of a novel water channel from rice:its products expression in Xenopus oocytes and involvement in chilling tolerance. Plant Science,2000,154(1): 43-51
    [169]Lin T X, Lin Y and Ishiki X. Genetic diversity of Dimocarpus longan in China revealed by AFLP markers and partial rbcL gene sequences. Scientia Horticulturae,2005,103(4):489-498
    [170]Liu Z F, Yan H C, Wang K B, et al. Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature,2004,428(6980):287-292
    [171]Livak K J and Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-AACT method. Methods,2001,25(4):402-408
    [172]Lopez M F, Kristal B S, Chernokalskaya E, et al. High-throughput profiling of themitochondrial proteome using affinity fractionation and automation. Electrophoresis,2000,21(16):3417-3440
    [173]Luo C, He XH, Chen H, et al. Analysis of diversity and relationships among mango cultivars using Start Codon Targeted (SCoT) markers. Biochemical Systematics and Ecology,2010,38(6): 1176-1184
    [174]Luo C, He XH, Chen H, et al. Genetic diversity of mango cultivars estimated using SCoT and ISSR markers. Biochemical Systematics and Ecology,2011,39(4-6):676-684
    [175]Lyons J M. Chilling injury in Plants. Annual Reviews Plant Physiology Plant Molecular Biology, 1973,24:445-466
    [176]Ma Q H and Xu Y. Characterization of a caffeic acid 3-omethyltransferase from wheat and its function in lignin biosynthesis. Biochimie,2008,90(3):515-524
    [177]Mackay J E and Crossley M. Zinc fingers are sticking together. Trends Biochem Sci,1998,23(1): 1-4
    [178]Markhart A H Ⅲ. Chilling injury:A review of possible causes. Hortscience,1986,21(6): 1329-1333
    [179]Marina L D, Ingrid G and Viviana E. Allele-specific expression of a weeping lovegrass gene from the lignin biosynthetic pathway, caffeoyl-coenzyme A 3-O-methyltransferase. Molecular Breeding, 2010,26(4):627-637
    [180]McGrath J M, Terzaghi W B, Sridhar P, et al. Sequence of the fourth and fifth photosystem Ⅱ type Ⅰ chlorophyll a/b-binding protein genes of Arabidopsis thaliana and evidence for the presence of a full complement of the extended CAB gene family. Plant Molecular Biology,1992,19(5): 725-733
    [181]Melis A. Dynamics of photosynthetic membrane composition and function. Biochimica Et Biophysica Acta-bioenergetics,1991,1058(2):87-106
    [182]Melis A. Excitation energy transfer:functional and dynamic aspects of Lhc (cab) proteins. In:Ort D R, Yocum C F (eds), Oxygenic Photosynthesis:The light Reactions, Advances in Photosynthesis and Respiration,2004,4(9):523-538
    [183]Meza-Basso L, Alberdi M, Raynal M, et al. Changes in protein synthesis in rapeseed(Brassica napus)seedling during a low temperature treatment. Plant Physiology,1986,82(3):733-738
    [184]Miehels A K, Wedel N and Kroth P G. Diatom plastids possess a phosphoribulokinase with an altered regulation and no oxidative pentose phosphate pathway. Plant Physiology,2005,137(3): 911-920
    [185]Miernyk J A. Protein folding in the plant cell. Plant Physiology,1999,121(3):695-703
    [186]Millar A J and Kay S A. Circadian control of cab gene transcription and mRNA accumulation in Arabidopsis. The Plant Cell,1991,3(5):541-550
    [187]Miura K, Jin J B, Lee J, et al. SIZl-mediated sumoy lation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell,2007,19(4):1403-1414
    [188]Miura K and Hasegawa P M. Sumoylation and other ubiquitin-like posttranslational modifications in plants. Trends in Cell Biology,2010,20(4):223-232
    [189]Moore L E, Pfeiffer R, Warner M, et al. Identification of biomarkers of arsenic exposureand metabolism in urine using SELDI technology. Journal of Biochemical and Molecular Toxicology, 2005,19(3):176
    [190]Olke K. Selective photoinhibition of photosystem I in isolated thylakoid membranes from cucumber and spinach. Plant cell physiology,1995,36(5):825-830
    [191]Orver B L, Sangwan V, Omann, F, et al. Early steps in cold sensing by plant cells:the role of actin cytoskeleton and membrane fluidity. Plant Journal,2000,23(6):785-794
    [192]Pagadala N S, Arha M, Reddy P S, et al. Phylogenetic analysis, homology modelling, molecular dynamics and docking studies of caffeoyl-CoA-O-methyl transferase (CCoAOMT 1 and 2) isoforms isolated from subabul (Leucaena leucocephala). Journal of Molecular Modeling,2009, 15(2):203-221
    [193]Pandey A and Mann M. Proteomics to study genes and genomes. Nature,2000,405(6788): 837-846
    [194]Pandey G K, Pandey A, Reddy V S, et al. Antisense expression of a gene encoding a calcium-binding protein in transgenic tobacco leads to altered morphology and enhanced chlorophyll. Journal of Bioscience and Bioengineering,2007,32(2):251-260
    [195]Premstaller A, Oberacher H, Walcher W, et al. High-performance liquid chromatography-electrospray ionization mass spectrometry using monolithic capillary columns for proteomic studies. Analytical Chemistry,2001,73(11):2390-2396
    [196]Pursiheimo S, Mulo P, Rintamaki E, et al. Coregulation of light-havesting complex II phosphorylation and Lhcb mRNA accumulation in winter rye. Plant Journal,2001,26(3):317-327
    [197]Quintero J M, Fournier J M and Benlloch M. Water transport in sunflower root systems effects of ABA, Ca+ status and HgCl2. Journal of Experimental Botany,1999,50(339):1607-1612
    [198]Rathinasabapathi B. Metabolic engineering for stress tolerance:installing osmoprotectant synthesis pathways. Annals of Botany,2000,86(4):709-716
    [199]Renau T J, Lutts S, Hofmann L, et al. Responses of poplarto chilling temperatures:proteomic and physiological aspects. Plant Biology,2004,6(1):81-90
    [200]Riccardi F, Gazeau P, de Vienne D, et al. Protein changes in response to progressive water deficit in maize:Quantitative variation and polypeptide identification. Plant Physiology,1998,117(4): 1253-1263
    [201]Sabehat A, Weiss D and Lurie S. The correlation between heat-shock protein accumulation andpersistence and chilling tolerance in tomato fruit. Plant Physiology,1996,110(2):531-537
    [202]Sakurai J, Ishikama F, Yamaguchi T, et al. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiology,2005,46(9):1568-1577
    [203]Salekdeh G H, Siopongco J, Wade L J, et al. A proteomic approach to analyzing drought-and salt-responsiveness in rice. Field Crops Research,2002,76(2-3):199-219
    [204]Salekdeh G H, Siopongco J, Wade L J, et al. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics,2002,2(9):1131-1145
    [205]Schmid V H R, Potthast S, Wiener M, et al. Pigment binding of photosystem I light-harvesting proteins. Journal of Biological Chemistry,2002,277(40):37307-37314
    [206]Shaw M M and Riederer B M. Sample preparation for two-dimensional gel electrophoresis. Proteomics,2003,3(8):1408-1417
    [207]Shen Y F, Tolic N, Zhao R, et al. High-throughput proteomics using high-efficiency multiple-capillary liquid chromatography with on-line high-performance ESI FTICR mass spectrometry. Analytical Chemistry,2001,73(13):3011-3021
    [208]Sitthiphrom S, Anuntalabhochai S, Dum-Ampai N, et al. Investigation of genetic relationship s and hybrid detection in longan by High-annealing-temperature RAPD. Scientia Horticulturae,2005, 665:161-169
    [209]Steinberg T H, Haugland R P and Singer V L. Applications of SYPRO orange and SYPRO red protein gel stains. Analytical Biochemistry,1996,239(2):238-245
    [210]Sugiyama N, Izawa T, Oikawa T, et al. Light regulation of circadian clock-controlled gene expression in rice. Plant Journal,2001,66(6):607-615
    [211]Swinbanks D. Government backs proteome proposal. Nature,1995,378(6538):653-656
    [212]Tanaka N, Matsuoka M, Kitano H, et al. gidl, a gibberellin-insensitive dwarf mutant, shows altered-regulation of probenazole-inducible protein(PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ,2006,29(4):619-631
    [213]Taylor N L, Heazlewood J L, Day D A, et al. Differential impact of environmenal stresses on the pea mitochondrial proteome. Molecular & Cellular Proteomics,2005,10(12):1122-1133
    [214]Terns U and Burnell J N. Characterization and expression of the maize P-carbonic anhydrase gene repeat regions. Plant Physiology and Biochemistry,2010,48(12):945-951
    [215]Tetu S G, Tanz S K, Vella N, et al. The flaveria bidentis β-carbonic anhydrase gene family encodes cytosolic and chloroplastic isoforms demonstrating distinct organ-specific expression patterns. Plant Physiology,2007,144(3):1316-1327
    [216]Thomashow M F. So what's new in the field of plant cold acclimation? Lots!. Plant Physiology, 2001,125(1):89-93
    [217]Tripp B C, Smith K and Ferry J G. Carbonic anhydrase:new insights for an ancient enzyme. Journal of Biological Chemistry,2001,276(52):48615-48618
    [218]Tyerman S D, Bohnert H J, Maurel C, et al. Plant aquaporins:Their molecular biology, biophysics and significance for plant water relations. Journal of Experimental Botany,1999,50: 1055-1071
    [219]Ukaji N, Kuwabara C, Takezawa D, et al. Cold acclimation-induced WAP27 localized in endoplasmic reticulum in cortical parenchyma cell of mulberry tree was homologous to group 3 Late-Embryogenesis Abundant proteins. Plant Physiology,2001,126(4):1588-1597
    [220]van Berkel J, Salamini F and Gebhardt C. Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress-responsive gene. Plant Physiology, 1994,104(2):445-452
    [221]vanZyl L, von Arnold S, Bozhkov P, et al. Heterologous array analysis in pinaceae:Hybridization ofpinus taeda cDNA arrays with cDNA from needles and embryo genic cultures of P. taeda, P. sylvestris or Picea Abies. Comparative and Functional Genomics,2002,3(4):306-318
    [222]Varsano T, Wolf S G and Pick UA. chlorophy 11 a/b-binding protein homolog that is induced by iron deficiency is associated with enlarged photosystem I units in the eucaryotic alga Dunaliella salina. Journal of Biological Chemistry,2006,281(15):10305-10315
    [225]von Kampen J, Wettern M and Schulz M. The ubiquitin system in plants. Physiologia Plantarum, 1996,97(3):618-624
    [226]Vos P, Hogers R, Bleeker M, et al. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Research,1995,23(21):4407-4414
    [227]Wang X Q, Yang P F, Zhang X F, et al. Proteomic analysis of the cold stress response in the moss, Physcomitrella patens. Proteomics,2009,9(19):4529-4538
    [228]Wanner L A and Junttila O. Cold-induced freezing tolerance in Arabidopsis. Plant Physiology, 1999,120(2):391-399
    [229]Wheeler G L and brownlee C. Ca2+ signaling in plants and green algae-changing channels. Trends Plant Science,2009,13(9):506-514
    [230]Wickware P and Smaglik P. Proteomics technology:character references. Nature,2001, 413(6858):869-875
    [231]Xiong F Q, Zhong R C, Han Z Q, et al. Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Molecular Biology Reports,2011,38(5):3487-3494
    [232]Yang L T, Hong L, Takahashi Y, et al. Proteomic analysis of grapevine stem in response to Xylella fastidiosa inoculation. Physiological and Molecular Plant Pathology,2011,75(3):90-99
    [233]Yan S P, Zhang Q Y, Tang ZC, et al. Comparative proteomic analysis provides new insights into chilling stress response in rice. Molecular & Cellular Proteomics.2006,5(3):484-496
    [234]Ye Z H. Association of caffeoyl Coenzyme A 3-O-methyltransferase expression with lignifying tissues in several dicot plants. Plant Physiology,1997,115(4):1341-1350
    [235]Ye Z H, Zhong R Q, Morrison W H, et al. Caffeoyl coenzyme A-O-methyltransferase and lignin biosynthesis. Phytochemistry,2001,57(7):1177-1185
    [236]Yonemoto Y, Chowdhury A K, Kato H, et al. Cultivars identification and their genetic relationships in Dimocarpus longan subspecies based on RAPD markers. Scientia Horticulturae, 2006,109(2):147-152
    [237]Yoshimura K, Masuda A, Kuwano M, et al. Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiology,2008,49(2):226-241
    [238]Yukio K and Matsuo U. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant Journal,2003,36(2): 141-154
    [239]Yu S, Xia D, Luo Q, et al. Purification and characterization of carbonic anhydrase of rice (Oryza sativa L.) expressed in Escherichiacoli. Protein Expression and Purification,2007,52(2):379-383
    [240]Yu S, Zhang X X, Guang Q J, et al. Expression of a carbonic anhydrase gene is induced by environmental stresses in Rice (Oryza sativa L.). Biotechnology Letters,2007,29(1):89-94
    [241]Zhang J, Cui S, Li J, et al. Protoplasmic factors, antioxidants responses, and chilling resistance in maize. Plant Physiology and Biochemistry,1995,33(5):567-575
    [242]Zhang J H, Huang W D, Pan Q, et al. Improvement of chilling tolerance and accumulation of heat shock proteins in grape berry by heat-pretreatment. Postharvest Biology and Technology,2005, 38(1):80-90
    [243]Zietkiewicz E, Rafalski A and Labuda D. Genome fingerprinting by simple sequence repeart (SSR) an hored polymerase chain reaction amplification. Genomics,1994,20(2):176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700