用户名: 密码: 验证码:
小麦遗传图谱的构建和土传花叶病抗性QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是对人类最重要的三大谷物作物之一,也是种植最广泛的粮食作物。传统小麦育种方法需要通过多代自交选择,并且依赖育种家的经验对表型进行选择。分子标记技术和遗传图谱是一种有效工具,可以加深我们对简单以及复杂性状基因的理解和随后的操作,为育种家提供了新辅助手段。借助连锁的标记可以辅助组装优异基因/QTL区段,快速形成农艺性状优异的基因型,使得快速培育新品种和改良目的性状成为可能。小麦土传花叶病(Soil-bornewheatmosaic,SBWM)最早于1919年在美国发现,现在已经在阿根廷、巴西、中国、埃及、法国、意大利以及日本等许多国家发生过。SBWM是少数能够完全摧毁冬小麦感病品种的病害之一。培育和种植抗病或耐病品种,是有效且环境友好的防治办法。目前对软红麦抗病品种或种质资源开展的研究还很少。本研究利用高通量的DArT和SNP标记构建遗传连锁图谱,对两个软红麦抗病品种Pioneer26R61和AGS2020进行SBWM抗性的QTL作图,并验证连锁标记在分子标记辅助选择工作中的应用价值。本研究获得以下主要结果:
     (1)利用高通量DArT和SSR等标记和包含178个重组自交系的Pioneer26R61/AGS2000群体构建了一个全基因组图谱,并用SNP标记对该图谱进行加密,包含2734个标记,分布在小麦全部21条染色体上,总长度为2153.7cM,平均区间长度为0.79cM,该图谱用来对Pioneer26R61中的SBWM抗性进行全基因组QTL扫描。本图谱中还定位了471个原来没有定位信息的DArT和SSR标记。还利用DArT标记对川35050/山农483全基因组图谱进行加密,新图比加密前的图谱增加了338个标记,平均区间长度由14.7cM缩短到7.15cM,此图用于辅助实验室进行的营养利用效率的QTL分析。另外用SSR等PCR标记构建了AGS2020/LA95135群体的5D染色体图谱,包含19个标记,总长度为207.8cM,此图用于对AGS2020中的SBWM抗性QTL进行检测。
     (2)在Pioneer26R61和AGS2020两个软红麦品种中,都检测到一个主效QTL,QSbm.uga-5DL,这个QTL可以在所有环境下检测到,位于5DL末端的重组热点区内,并且都同标记Xbarc161和Xbarc177紧密连锁。在两个RIL群体中,该主效QTL分别可以解释最高达62%和65%的表型遗传变异。另外Pioneer26R61/AGS2000群体中还检测到6个微效QTL,分别位于1BL、2BS、3BL、5A和5BL上。
     (3)用连锁标记Xbarc161和Xbarc177检测147份小麦品种或区试品系的检测,在142份材料中标记预测结果和田间SBWM抗性表现非常一致,证明这两个标记非常适于分子标记辅助选择;
     (4)利用Xbarc161和Xbarc177对育种中的123份高代品系(种)进行了SBWM抗性的分子标记辅助选择和推断,112份材料显示阳性结果。另外在177份中国黄淮麦区的小麦品种(系)中发现8个材料含有Xbarc161和Xbarc177的抗病材料特异位点。
Wheat, one of the three most important cereals for human, is the most widely planted staple crop in the world. Traditional wheat breeding method, needing multiple generations of selection and relying on the experience of breeders, is time-consuming and laborious. Molecular technology and genetic maps are effective tools, which can facilitate understanding and manipulate of genes controlling complex traits. Assisted by linkage markers, chromosome regions with interesting gene/QTL can be assembled together to be interesting genotypes. Breeding new cultivars or improving certain trait in short period become possible. Soil-borne Wheat Mosaic (SBWM) was firstly discovered in the USA in1919, and has been reported in many countries, such as Argentina, Brazil, China, Egypt, France, Italy, and Japan. SBWM is one of the few diseases of winter wheat that can practically destroy an entire crop of a susceptible cultivar. Developing resistant gene or germplasm, breeding and planting SBWM resistant or tolerant cultivars is an effective and environment friendly method to control SBWM disease. Up to now, study taken in soft red wheat cultivar or germplasm is still limited. In this study, two soft red wheat cultivars with resistance to SBWM, Pioneer26R61and AGS2020, were detected for SBWM resistance QTL. Their linkage markers were validated for potential use in MAS for the major QTL. The main results were following:
     (1) A whole genome map of Pioneer26R61/AGS2000population was constructed using DArT and traditional SSR markers, then enriched using SNP markers. The final map has2734loci, with a total length of2135.7cM for all21chromosomes, and average interval length of0.79cM. There were471DArT and SSR markers, without mapping information before, firstly assigned to specific chromosoms in this map. This map was used in whole genome QTL mapping for SBWM resistance. Another map from Chuan35050/Shannong483population was also enriched in this study to facilitate the nutrition use efficiency study in our lab; the enriched map had338more markers than the original map and the average interval length was shortened from14.8cM to7.15cM. For AGS2020/LA95135population, the genetic map of chromosome5D was constructed, with19loci and covering207.8cM genetic distance, and used to detect SBWM resistance QTL in AGS2020.
     (2) In Pioneer26R61/AGS2000and AGS2020/LA95135population, the same major QTL, QSbm.uga-5DL, was identified in all environments with highly significant LOD values, explaining up to62%and65%of the total phenotypic variation, respectively. The QTL was closely linked to markers Xbarc161and Xbarc177. There were also4minor QTL detected in Pioneer26R61/AGS2000population, located on chromosome arm1BL,2BS,3BL,5A and5BL
     (3) Out of147lines and cultivars,142materials with the same performance to SBWM in the field test as predicted by linkage markers Xbarc161and Xbarc177, validated the potential use in marker assisted selection of the two markers.
     (4) Using the linkage markers Xbarc161and Xbarc177, we selected or predicted112advanced lines (cultivars) possibly with SBWM resistance out of123materials in UGA breeding program. In177Chinese cultivars or lines of Huanghuai winter wheat region,8materials have Xbarc161and Xbarc177resistant band and may have the SBWM resistance.
引文
Alheit K, Reif J, Maurer HP, Hahn V, Weissmann E, Miedaner T, Wurschum T (2011) Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC genomics12:380
    Al-Kaff, N., Knight, E., Bertin, I., Foote, T., Hart, N., Griffiths, S. and Moore, G.(2008) Detailed dissection of the chromosomal region containing the Ph1locus in wheat(Triticum aestivum) with deletion mutants and expression profiling. Ann. of Bot.101,863-872.
    Anderson, O.D., Greene, F.C., Yip, R.E., Halford, N.G., Shewry, P.R. and Malpica-Romero, J.M.(1989) Nucleotide sequences of the two high-molecular-weight glutenin genes from the D genome of hexaploid wheat, Triticum aestivum L. cv. Cheyenne. Nucleic Acids Res.17,461-462.
    Asins, M.J.(2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breeding121,281-291.
    Bayles BB, Clark JA (1954) Classification of wheat varieties grown in the United States in1949. USDA Tech Bul No.1083
    Beavis, W.D.(1994) The power and deceit of QTL experiments:lessons from comparative QTL studies. Paper presented at the Proceedings of the Forty-ninth Annual Corn and Sorghum Industry Research Conference, Washington, D.C.
    Beavis, W.D.(1998) QTL analyses:power, precision, and accuracy. In:Paterson, A.H.(ed.) Molecular Dissection of Complex Traits. CRC Press, Boca Raton.
    Beecher, A., Bettge, A., Smidansky, E. and Grioux, M.J.(2002) Expression of wild-type pinB sequence in transgenic wheat complements a hard phenotype. Theor Appl Genet105,870-877.
    Brueggeman, R., Rostoks, N., Kudrna, D., Kilian, A., Han, F., Chen, J., Druka, A., Steffenson B. and Kleinhofs, A.(2002) The barley stem rust-resistance gene Rpgl is a novel disease-resistance gene with homology to receptor kinases. PNAS99,9328-9333.
    Castro, A.J., Chen, X., Corey, A., Filichkina, T., Hayes, P., Mundt, C., Richardson, K., Sandoval-Islas, S. and Vivar, H.(2003) Pyramiding and validation of quantitative trait locus (QTL) alleles determining resistance to barley strip rust:Effects of Adult Plant Resistance. Crop Sci.43,2234-2239.
    Cavannagh, C., Morell, M., Mackay, I. and Powell, W.(2008) From mutations to MAGIC:resources for gene discovery, validation and delivery in crop plants. Curr. Opin. Plant Biol.11,1-7.
    Chao, S., Sharp, P.J., Worland, A.J., Warham, E.J., Koebner, R.M.D. and Gale, M.D.(1989) RFLP-based genetic maps of wheat homoeologous group7chromosomes. Theor Appl Genet78,495-504.
    Chartrain, L., Brading, P.A., Widdowson, J.P. and Brown, J.K.M.(2004) Partial resistance to Septoria tritici blotch (Mycosphaerella graminicola) in wheat cultivars Arina and Riband. Phytopathology94,497-504.
    Chen, J., Griffey, C.A., Saghai Maroof, M.A., Stromberg, E.L., Biyashev, R.M., Zhao, W., Chappell, M.R., Pridgen, T.H., Dong, Y. and Zeng, Z.(2006) Validation of two major quantitative trait loci for fusarium head blight resistance in Chinese wheat line W14. Plant Breeding125,99-101.
    Chen, M., Presting, G., et al.(2002) An integrated physical and genetic map of the rice genome. Plant Cell14,537-545.
    Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B. and Pang, E.C.K.(2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement:The basic concepts. Euphytica142,169-196.
    Cordell, J.(2002) Epistasis:what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum. Mol. Genet.11,2463-2468.
    De Givry, S., Bouchez, M., Chabrier, P., Milan, D. and Schiex, T.(2005) CARTHAGENE: multipopulation integrated genetic and radiated hybrid mapping. Bioinformatics21,1703-1704.
    Doerge, R.W., Zeng, Z.-B. and Weir, B.S.(1997) Statistical issues in the search for genes affecting quantitative traits in experimental populations. Stat. Sci.12,195-219.
    Dubcovsky, J.(2004) Marker-assisted selection in public breeding programs:The wheat experience. Crop Sci44,1895-1898.
    Faris, J.D., Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics154:823-835
    Faris, J.D. and Gill, B.S.(2002) Genomic targeting and high-resolution mapping of the domestication gene Q in wheat. Genome45,706-718.
    Faris, J.D., Fellers, J.P., Brooks, S.A. and Gill, B.S.(2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics164311-321.
    Faris, J.D., Haen, K.M. and Gill, B.S.(2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics154,823-835.
    Fransz, J.P. C., Liharska, J.B., Peeters, A.J., Zabel, P. and de Jong, J.H.(1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J.9,421-430.
    Gill, K.S., Gill, B.S., Endo, T.R. and Boyko, E.V.(1996) Identification and high-density mapping of gene-rich regions in chromosome group5of wheat. Genetics143,1001-1012.
    Graner, A., Jahoor, A., Schondelmaier, J., Siedler, H., Pillen, K., Fischbeck, G., Wenzel, G. and Herrmann, R.G.(1991) Construction of an RFLP map of barley. Theor Appl Genet83,250-256.
    Gu, K., Tian, D., Yang, F., Wu, L., Sreekala, C., Wang, D., Wang, G.L. and Yin, Z.(2004) High-resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice, Oryza sativa L. Theor Appl Genet108,800-807.
    Gupta, P.K., Balyan, H.S., Edwards, K.J., Isaac, P., Korzun, V., Roder, M., Gautier, M.-F., Joudrier, P., Schlatter, A.R., Dubcovsky, J., De la Pena, R.C., Khairallah, M., Penner, G., Hayden, M.J., Sharp, P., Keller, B., Wang, R.C.C., Hardouin, J.P., Jack, P. and Leroy, P.(2002) Genetic mapping of66new microsatellite (SSR) loci in bread wheat. Theor Appl Genet105,413-422.
    Gupta, P.K., Roy, J.K. and Prasad, M.(2001) Single nucleotide polymorphisms:A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr. Sci.80,524-535.
    Hackett, C.A.(2002) Statistical methods for QTL mapping in cereals. Plant Mol. Biol.48,585-599.
    Hackett, C.A. and Broadfoot, L.B.(2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity90,33-38.
    Haen, K.M., Lu, H.J., Friesen, T.L. and Faris, J.D.(2004) Genomic targeting and high resolution mapping of the Tsnl gene in wheat. Crop Sci44,951-962.
    Hossain, K.G., Riera-Lizarazu, O., Kalavacharla, V., Vales, M.I., Maan, S.S. and Kianian, S. F.(2004) Radiation hybrid mapping of the species cytoplasm-specific (scs) gene in wheat. Genetics168,415-423.
    Jaccoud, D., Peng, K., Feinstein, D. and Kilian, A.(2001) Diversity Arrays:a solid state technology for sequence information independent genotyping. Nucleic Acids Res.29, e25.
    Kalavacharia, V., Hossain, K., Gu, Y., Riera-Lizarazu, O., Vales, M.I., Bhamidimarri, S., Gonzales-Hernandez, J.L., Maan, S.S., Kianian, S.(2006) High resolution radiation hybrid map of wheat chromosome1D. Genetics106,1089-1099.
    Kearsey, M.J. and Farquhar, A.G.L.(1998) QTL analysis in plants; where are we now? Heredity80,137-142.
    Kilian, A., Huttner, E., Wenzl, P., Jaccoud, D., Carling, J., Caig, V., Evers, M., Heller-Uszynska, K., Cayla, C, Patarapuwadol, S., Xia, L., Yang, S. and Thomson, B.(2005) The fast and the cheap:SNP and DArT-based whole genome profiling for crop improvement.In Proceedings of the International Congress In the Wake of the Double Helix:From the Green Revolution to the Gene Revolution May27-31,2003, Bologna, Italy.
    Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, et al.(2009) A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana. PLoS Genet5(7): el000551.doi:10.1371/journal.pgen.1000551
    Kumar, L.S.(1999) DNA markers in plant improvement:An overview. Biotechnology Advances17,143-182.
    Kiinzel, G., Korzun, L. and Meister, A.(2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics154,397^112.
    Lander, R. and Thompson, R.(1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics124,743-756.
    Lander ES, Botstein D (1989) Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps. Genetics121:185-199
    Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E. and Newburg, L.(1987) MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics1,174-181.
    Langridge, P., Lagudah, E.S., Holton, T.A., Appels, R., Sharp, P.J. and Chalmers, K.J.(2001) Trends in genetic and genome analyses in wheat:a review. Aust J Agr Res52,1043-1077.
    Lehmensiek, A., Eckermann, P.J., Verbyla, A.P., Appels, R., Sutherland, M.W. and Daggard, G.(2005) Curation of wheat maps to improve map accuracy and QTL detection. Aust J Agr Res56,1347-1354.
    Lehmensiek, A., Sutherland, M.W. and McNamara, R.B.(2008) The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theor Appl Genet117,721-728.
    Li, H, Bradbury, P, Ersoz, E, Buckler, ES, Wang, J (2011) Joint QTL Linkage Mapping for Multiple-Cross Mating Design Sharing One Common Parent. PLoS ONE6(3):e17573. doi:10.1371/journal.pone.0017573
    Li, S.S., Jia, J.Z., Wei, X.Y., Zhang, X.C., Chen, H.M., Sun, H.Y., Fan, Y.D., Li, L.Z., Zhao, X.H., Lei, T.D., Xu, Y.F., Jiang, F.S., Wang, H.G., Li, L.H. A interval genetic map and QTL analysis for yield traits in wheat. Mol Breeding,2007,20:167-178
    Li, D., Barclay, I., Jose, K., Stefanova, K. and Appels, R.(2008) A mutation at the Ala122position of acetohydroxyacid synthase (AHAS) located on chromosome6D of wheat:improved resistance to imidazolinone and a faster assay for marker assisted selection. Molecular Breeding,22,217-225
    Liao, C.Y., Wu, P., Hu, B. and Yi, K.K.(2001) Effects of genetic background and environment of QTLs and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet103,104-111.
    Ling, H.Q., Zhu, Y. and Keller, B.(2003) High-resolution mapping of the leaf rust disease resistance gene Lrl in wheat and characterization of BAC clones from the Lrl locus. Theor Appl Genet106,875-882.
    Lu, H.J., Fellers, J.P., Friesen, T.L., Meinhardt, S.W. and Faris, J.D.(2006) Genomic analysis and marker development for the Tsnl locus in wheat using bin-mapped ESTs and flanking BAC contigs. Theor Appl Genet112,1132-1142.
    Ma, W., Appels, R., Bekes, F., Larroque, O.R., Morell, M.K. and Gale, K.R.(2005) Genetic characterisation of dough rheological properties in a wheat doubled haploid population:additive genetic effects and epistatic interactions. Theor Appl Genet111,410-422.
    Maccaferri M, Ratti C, Rubies-Autonell C, Vallega V, Demontis A, Stefanelli S, Tuberosa R, Sanguineti M (2011) Resistance to Soil-borne cereal mosaic virus in durum wheat is controlled by a major QTL on chromosome arm2BS and minor loci. Theor Appl Genet123:527-544
    Mago, R., Miah, H., Lawrence, G.J., Wellings, C.R., Spielmeyer, W., Bariana, H.S., McIntosh, R.A., Pryor, A.J. and Ellis, J.G.(2005) High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26and Yr9on the short arm of rye chromosome1. Theor Appl Genet112,41-50.
    Manly, K.F., Cudmore, R.H.J. and Meer, J.M.(2001) Map Manager QTX, cross-platform software for genetic mapping. Mammalian Genome12,930-932.
    Melchinger, A.E., Utz, H.F. and Schon, C.C.(1998) Quantitative trait locus mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias of QTL effects. Genetics149,383-403.
    Mester, D., Ronin, Y., Minkov, D., Nevo, E. and Korol, A.(2003a) Constructing large scale genetic maps using evolutionary strategy algorithm. Genetics165,2269-2282.
    Mester, D.I., Ronin, Y.I., Hu, Y., Nevo, E. and Korol, A.(2003b) Efficient multipoint mapping:Making use of dominant repulsion-phase markers. Theor Appl Genet107,1102-1112.
    Michelmore, R.W., Paran, I. and Kesseli, R.(1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations. PNAS88,9829-9832.
    Miftahudin, T., Chikmawati, T., Ross, K., Scoles, G.J. and Gustafson, J.P.(2005) Targeting the aluminum tolerance gene Alt3region in rye, using rice/rye micro-colinearity. Theor Appl Genet110,906-913.
    Nelson, J.C., Sorrells, M.E., Van Deynze, A.E., Hai Lu, Y., Atkinson, M., Bernard, M., Leroy, P., Faris, J.D. and Anderson, J.A.(1995) Molecular mapping of wheat:Major genes and rearrangements in homoeologous groups4,5, and7. Genetics141,721-731.
    Parker, G.D., Chalmers, K.J., Rathjen, A.J. and Langridge, P.(1999) Mapping loci associated with milling yield in wheat (Triticum aestivum L.). Molecular Breeding5,561-568.
    Paux E, Faure Sb, Choulet Fdr, Roger D, Gauthier Vr, Martinant J-P, Sourdille P, Balfourier Fo, Paslier M-CL, Chauveau Al, Cakir M, Gandon Ba, Feuillet C (2010) Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnology Journal8:196-210.
    Peleman, J.D., Wye, C., Zethof, J., Sorensen, A.P., Verbakel, H., van Oeveren, J., Gerats, T. and van der Voort, J.R.(2005) Quantitative trait locus (QTL) isogenic recombinant analysis:A method for high-resolution mapping of QTL within a single population. Genetics171,1341-1352.
    Pellio, B., Streng, S., Bauer, E., Stein, N., Perovic, D., Schiemann, A., Friedt, W., Ordon, F. and Graner, A.(2005) High-resolution mapping of the Rym4/Rym5locus conferring resistance to the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2) in barley (Hordeum vulgare ssp vulgare L.). Theor Appl Genet110,283-293.
    Peng, J., Richards, D.E., Hartley, N.M., Murphy, G.P., Devos, K.M., Flinthan, J.E., Beales, J., Fish, L.J., Worland, A.J., Pelica, F., Sudhakar, D., Christou, P., Snape, J.W., Gale, M. D. and Harberd, N.P.(1999)'Green revolution'genes encode mutant gibberellins responses modulators. Nature400,256-261.
    Qi, L., Echalier, B., Friebe, B. and Gill, B.S.(2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Functional and Integrative Genomics3,39-55.
    Roder, M.S., Korzun, V.,Wendehake, J., Plaschke, J., Tixier,M.H., Leroy, P. and Ganal,M. W.(1998) A microsatellite map of wheat. Genetics149,2007-2023.
    Rostoks, N., Borevitz, J.O., Hedley, P.E., Russell, J., Mudie, S., Morris, J., Cardle, L., Marshall, D.F. and Waugh, R.(2005) Single-feature polymorphism discovery in the barley transcriptome. Genome Biology6:R54.
    Schnurbusch, T., Bossolini, E., Messmer, M. and Keller, B.(2004) Tagging and validation of a major quantitative trait locus for leaf rust resistance and leaf tip necrosis in winter wheat cultivar Forno. Phytopathology94,1036-1041.
    Sears, E.R.(1954) The aneuploids of common wheat. Missouri Agricultural Experiment Station Research Bulletin, pp.1-59.
    Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome49:545-555
    Somers, D.J., Isaac, P. and Edwards, K.(2004) A high-density microsatellite consensusmap for bread wheat(Triticum aestivum L.). Theor Appl Genet109,1105-1114.
    Sourdille, P., Cadalen, T., Guyomarc'h, H., Snape, J.W., Perretant, M.R., Charmet, G., Boeuf, C., Bernard, S. and Bernard, M.(2003) An update of the Courtot-Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet106,530-538.
    Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics4:12-25
    Spielmeyer, W., Singh, R.P., McFadden, H., Wellings, C.R., Huerta-Espino, J., Kong, X., Appels, R. and Lagudah, E.S.(2008) Fine scale genetic and physical mapping using deletion mutants of Lr34/Yr18:A disease resistance locus effective against multiple pathogens in wheat. Theor Appl Genet116,481-490.
    Stam, P.(1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. The Plant Journal3,739-744.
    Stein, N., Feuillet, C., Wicker, T., Schlagenhauf, E. and Keller, B.(2000) Subgenome chromosome walking in wheat:A450-kb physical contig in Triticum monococcum L. spans the Lr10resistance locus in hexaploid wheat(Triticum aestivum L.). PNAS97,13436-13441.
    Sutton, T., Baumann, U., Hayes, J., Collins, N.C., Shi, B.J., Schnurbusch, T., Hay, A., Mayo, G., Pallotta, M., Tester, M. and Langridge, P.(2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science318,1446-1449.
    Tanksley, S.D.(1993) Mapping polygenes. Annual Review of Genetics27,205-233.
    Thangavelu, M., James, A.B., Bankier, A., Bryan, G.J., Dear, P.H. and Waugh, R.(2003) HAPPY mapping in a plant genome:reconstruction and analysis of a high resolution physical map of a1.9Mbp region of Arabidopsis thaliana chromosome4. Plant Biotechnology Journal1,23-31.
    Van Ooijen JW (2006) JoinMap(?)4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B. V., Wageningen, Netherlands
    Van Os, H., Stam, P., Visser, R.G.F. and Van Eck, H.J.(2005a) RECORD:a novel method for ordering loci on a genetic linkage map. Theor Appl Genet112,30-40.
    Van Os, H., Stam, P., Visser, R.G.F. and Van Eck, H.(2005b) SMOOTH:a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor Appl Genet112,187-194.
    Varshney, R.K., Marcel, T.C., Ramsay, L., Russell, J., Ro" der, M.S., Stein, N., Waugh, R., Langridge, P., Niks, R.E. and Graner, A.(2007) A high density barley microsatellite consensus map with775SSR loci. Theor Appl Genet114,1091-1103.
    Verbyla, A.P., Cullis, B.R. and Thompson, R.(2007) The analysis of QTL by simultaneous use of the full linkage map. Theor Appl Genet116,95-111.
    Vos, P., Hogers, R., Beleeker, M., Reijans, M., Van de Lee, T., Homes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M.(1995) AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res.23,4407-4414.
    Wang Y, Sun X, Zhao Y, Kong F, Guo Y, Zhang G, Pu Y, Wu K, Li S (2011) Enrichment of a common wheat genetic map and QTL mapping for fatty acid in grain. Plant Sci181:65-75
    Wang, J., Raman, H., Zhou, M., Ryan, P.R., Delhaize, E., Hebb, D.M., Coombes, N. and Mendham, N.(2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet115,265-276.
    Wardrop, J., Fuller, J., Powell, W. and Machray, G.C.(2004) Exploiting plant somatic radiation hybrids for physical mapping of expressed sequenced tags. Theor Appl Genet108,343-348.
    Wardrop, J., Snape, J., Powell, W. and Machray, G.C.(2002) Constructing plant radiation hybrid panels. The Plant Journal31,223-228.
    Wenzl, P., Carling, J., Kudrna, D., Jaccoud, D., Huttner, E., Kleinhofs, A. and Kilian, A.(2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. PNAS101,9915-9920.
    Wenzl, P., Li, H., Carling, J., Zhou, M., Raman, H., Paul, E., Hearnden, P., Maier, C., Xia, L., Caig, V., Ovesna, J., Cakir, M., Poulsen, D., Wang, J., Raman, R., Smith, K.P., Meuhlbauer, G.J., Chalmers, K.J., Kleinhofs, A., Huttner, E. and Kilian, A.(2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics7,206-227.
    Wenzl, P., Raman, H., Wang, J., Zhou, M., Huttner, E., Kilian, A.(2007) A DArT platform for quantitative bulked segregant analysis. BMC Genomics8,196-206.
    Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V.(1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res.18,6531-6535.
    Wu, J., Jenkins, J., Zhu, J., McCarty, J. and Watson, C.(2003) Monte Carlo simulations on marker grouping and ordering. Theor Appl Genet107,568-573.
    Xing, Y.Z., Tan, Y.F., Hua, J.P., Sun, X.L. and Xu, C.G.(2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet105,248-257.
    Yamamoto, M. and Mukai, Y.(2005) High-resolution physical mapping of the secalin-1locus of rye on extended DNA fibers. Cytogenetic and Genome Research109,79-82.
    Yandell, B.S., Mehta, T., Banerjee, S., Shriner, D., Venkataraman, R., Moon, J.Y., Neely, W. W., Wu, H. von Smith, R. and Yi, N.(2007) R/qtlbim:QTL with Bayesian Interval Mapping in experimental crosses. Bioinformatics23,641-643.
    Yang, H.Y., You, A.Q., Yang, Z.F., Zhang, F., He, R.F., Zhu, L.L. and He, G.(2004) High resolution genetic mapping at the Bph15locus for brown planthopper resistance in rice (Oryza sativa L.). Theor Appl Genet110,182-191.
    Yap, I., Schneider, D., Kleinberg, J., Matthews, D., Cartinhour, S. and McCouch, S.(2003) A graph-theoretic approach to comparing and integrating genetic, physical and sequence based maps. Genetics165,2235-2247.
    Yokota, H., Johnson, F., Lu, H., Robinson, M., Belu, A.M., Garrison, M.D., Ratner, B.D., Trask, B.J., Miller, D.L.(1997) A new method for straightening DNA molecules for optical retriction mapping. Nucleic Acids Res.25,1064-1070.
    Young, N.D.(1996) QTL mapping and quantitative disease resistance in plants. Annual Review of Phytopathology34,479-501.
    Yu J. M., Holland B. J., McMullen M. D., Buckler E. S. Genetic design and statistical power of nested association mapping in maize. Genetics,2008,178:539-551
    Yu, S.B., Li, J.X., Xu, C.G., Tan, Y.F., Gao, Y.J., Li, X.H., Zhang, Q. and Saghai Maroof, M.A.(1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. PNAS94,9226-9231.
    Zhou, S., Bechner, M.C., Place, M., Churas, C.P., Pape, L., Leong, S.A., Runnheim, R., Forrest, D.K., Goldstein, S., Livny, M. and Schwartz, D.C.(2007) Validation of rice genome sequence by optical mapping. BMC Genomics8,278-296.
    Zhuang, J.-Y., Fan, Y.-Y., Rao, Z.-M., Wu, J.-L., Xia, Y.-W. and Zheng, K.-L.(2002) Analysis of additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor Appl Genet105,1137-1145.
    宋宪亮,孙学振,张天真(2006)偏分离及对植物遗传作图的影响.农业生物技术学报.14,286-292
    杨建平,陈剑平,陈炯,程晔,Adams, M.J.(2000)意大利小麦真菌传棒状病毒与欧洲小麦花叶病毒和图传黑麦花叶病毒属同一种病毒.中国科学(C辑),30,627-634

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700