用户名: 密码: 验证码:
不同稻蟹生产模式土壤有机碳特征及综合效益的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻田养蟹是我国北方稻作区重要的生态农业模式,具有显著的生态、经济与社会效益。近些年,随着有机农业的发展,有机稻蟹生产模式悄然兴起。但有机稻蟹生产的诸多技术目前并不十分成熟。为此,结合北方地区稻作生产和发展有机稻蟹生产的实际,于2009和2010年通过田间定位试验与室内分析,系统地研究了有机稻蟹(M1~M4)(不施用化肥且养蟹,有机肥分别约为48000kg·hm-2、42000kg·hm-2、36000kg·hm-2、30000kg·hm-2)、常规稻蟹(MNP)与单作水稻(CK)生产方式对稻田土壤有机碳特征、水稻产量及稻米品质的影响;比较了不同模式能流、物流与价值流的差异;同时应用生命周期评价方法对有机稻蟹M1、常规稻蟹MNP和单作水稻CK三种水稻生产方式进行了生命周期环境影响评价,以期为该地区选择适宜的稻作生产模式、土壤培肥制度以及加强农业环境管理提供理论参考。主要结论如下:
     1.有机稻蟹模式可显著改善土壤有机无机复合状况和腐殖质结合形态。与试前相比,2009年和2010年不同有机稻蟹模式可显著增加土壤有机碳、重组有机碳含量和原土复合量,降低原土复合度,提高追加复合量和追加复合度;同时也使土壤松结态、稳结态和紧结态腐殖质碳含量显著增加,松结态腐殖质碳含量增幅大于稳结态和紧结态,且提高松结态腐殖质碳/重组有机碳的比值(ⅠC/HOC)和松/紧比;有机稻蟹模式中以高量有机肥稻蟹(M1)模式增加效果最好。MNP模式也表现出相同的变化趋势,但各项指标都低于有机稻蟹模式;CK模式可使上述指标向相反的方向发展,使其土壤有机无机复合状况和腐殖质结合形态变劣。
     2.有机稻蟹模式可明显提高土壤腐殖质数量并改善其品质。与试前相比,2009年和2010年不同有机稻蟹模式均能使HEC、HAC、FAC、HMC以及松HAC、FAC含量显著增加,提高HAC/HEC和松结态HAC/ⅠC的比例,降低FAC/HEC和松结态FAC/ⅠC的比例,使H/F比值上升,且以高量有机肥稻蟹(M1、M2)模式效果更明显。MNP和CK模式土壤HAC含量相对较低,但FAC/HEC的比例较高,HA/FA比值下降。三种模式HA和松结态HA的E4/E6比值与△log k值总的变化趋势相同,均表现为有机稻蟹>常规稻蟹>单作水稻。
     3.有机稻蟹模式可显著提高土壤活性有机碳各组分含量。与试前相比,有机稻蟹(M1~M4)模式土壤LOC、MLOC、HLOC含量及CMI均显著或者极显著提高,且有机肥用量越大,效果越显著;MNP模式活性有机碳各组分含量及CMI的变化也有类似规律,但各项指标均明显低于有机稻蟹模式;CK模式MLOC含量和CMI略有上升。
     4.有机稻蟹模式可提高水稻、蟹产量和改善稻米品质。与MNP和CK模式相比,2009年和2010年有机稻蟹(M1~M4)模式水稻穗粒数、结实率和千粒重均随有机肥施用量的增加逐渐升高,其中以2009年高量有机肥稻蟹(M1)模式增幅最大,分别达11.90%、8.42%和3.94%,且水稻产量较高。两年河蟹产量的变化趋势均表现为M1>M2>M3>MNP>M4。有机稻蟹模式的稻米品质也得到了不同程度的改善。稻米的垩白粒率、垩白度及直链淀粉含量显著降低,同时促进稻米蛋白质和必需氨基酸含量的增加,微量元素Fe、Zn含量上升,但对稻米的碾磨品质没有显著影响;不过,高量有机肥稻蟹(M1)模式却使糙米的Cd、Pb含量有增高的趋势。
     5.有机稻蟹模式的能物流结构较为合理,经济效益较高。有机稻蟹(M1~M4)模式有机能占人工辅助能输入的百分比分别为97.67%、97.37%、96.96%、96.49%,比MNP模式分别提高11.12、10.83、10.41、9.84个百分点;有机稻蟹模式的能流循环指数较高,但其光能利于率和能量转换效率略低于MNP和CK模式。从系统养分盈余看,有机稻蟹模式氮、磷、钾盈余量以及循环通量均明显高于MNP和CK模式。若按有机稻米、有机河蟹价格高出同类商品30%的市场价格计算,有机稻蟹(M1~M4)模式可分别多获净收入7087.50、6649.65、5910.30、4752.00Yuan·hm-2。
     6.与2009年相比,2010年高量有机肥稻蟹(M1)模式的土壤有机碳、重组有机碳、HEC、HAC、ⅠC含量及ⅠC/HOC的比值和HA的E4/E6值、△log k值增幅最高,分别达15.15%、11.96%、10.79%、19.34%、20.78%、7.89%和5.62%、5.48%;中低量有机肥稻蟹(M3)模式的土壤LOC、MLOC含量及CMI增幅效果最好,分别达10.11%、5.14%和14.79%;低量有机肥稻蟹模式(M4)的土壤稳结态腐殖质碳(ⅡC)、ⅡC/HOC的比值和松/紧比的增幅最为明显,分别达23.09%、15.26%和12.83%。
     7.不同模式水稻生产生命周期环境影响以CK模式最大,MNP模式次之, M1模式最小。其中,有机稻蟹M1模式水稻生产生命周期环境影响大小依次为:富营养化、环境酸化、能源耗竭和全球气候变暖,环境影响指数分别为0.60、0.07、0.000029和-0.03;MNP模式水稻生命周期环境影响大小依次为:富营养化、环境酸化、能源耗竭和全球气候变暖,环境影响指数分别为0.58、0.099、0.000036和-0.01;CK模式水稻生命周期环境影响大小依次为:富营养化、环境酸化、全球气候变暖和能源耗竭,环境影响指数分别为0.628、0.124、0.012和0.00004。
Concurrent rice and crab farming is an important ecological agricultural process inChina's northern rice growing area. The popularization and application of rice-crab mode mayhave significant ecological, economic and social benefits. Recently, organic rice-crabproduction mode is quietly rising with the development of organic agriculture, but thetechnology of the organic rice-crab production is still not very mature. In this studyconsequently, effects of the organic rice-crab(M1~M4)(M1, M2, M3and M4mean nochemical fertilizer, and pig manure applied at the rate of48000,42000,36000,30000kg·hm-2,respectively), conventional rice-crab(MNP) and rice monoculture(CK) production modes onthe carbon properties of soil, the rice yield and rice grain quality were investigated throughfield experiments and laboratory analysis in2009and2010, which combining with practicalcondition of the northern rice production and the development of organic rice-crab production;The differences of energy flow, material flow and value flow of different modes werecompared; At the same time, environmental impacts of rice with organic rice-crab (M1),conventional rice-crab(MNP) and rice monoculture (CK)modes were assessed using lifecycle assessment(LCA) methodology in order to supply advices for choosing appropriate riceproduction mode, soil fertilizer system and strengthening the agricultural environmentmanagement of this region. The main conclusions are as follows:
     1. The organic rice-crab modes can significantly improve the organic-inorganic complexstatus and the combining forms of humus in soil. In2009and2010, after applying the organicrice-crab modes, the content of organic carbon and heavy fraction organic carbon in soils andthe quantity of organo-mineral complex can remarkably increased and the degree oforgano-mineral complex decreased with the increasing of the quantity of additionalorgano-mineral complex and the degree of additional organo-mineral complex of soils;Meanwhile, the content of loose, stable and tight combined humus were also significantlyincreased, especially loose combined humus, and the proportion of loose combined humus toheavy humus and ratio of loose to tight combined were also increased, which activated thecombined soil humus; The effect of the high organic manure rice-crab mode (M1) was the best in organic rice-crab modes. A similar trend was also observed in conventional rice-crabproduction modes,but all the index were obviously lower than that of the organic rice-crabmode. The quantities of organic-inorganic complex and the combined forms of humus aretended to decline by the negative effect of aforementioned indices of the CK mode.
     2. The applying of organic rice-crab modes can significantly increase the quantity andimprove quality of soil humus. In2009and2010, the soil humic substance extractedcarbon(HEC), humic acid carbon(HAC) and fulvic acid carbon(FAC), Hu min carbon(HMC),loose combined HAC, FAC, the ratio of HAC/HEC and the proportion of loose combinedHAC to loose combined humus carbon were significantly higher in the organic rice-crabmodes, while the ratio of FAC/HEC and the proportion of loose combined FAC to loosecombined humus carbon was decreased, the ratio of HA/FA were also significantly increased.And the most significant increase in organic rice-crab modes were observed in the highorganic manure rice-crab modes (M1, M2). The ratio of FAC/HEC was higher in MNP andCK modes than in the organic rice-crab modes, while the ratio of HA/FA was decreased. Thevalue of HAC and loose HAC E4/E6,△log k in three modes were expressed the samegeneral trend as organic rice-crab>conventional rice-crab>rice monoculture.
     3. The organic rice-crab modes can significantly increase the content of labile organiccarbon fractions. The total organic carbon (TOC), labile organic carbon (LOC), moderatelylabile organic carbon (MLOC), highly labile organic carbon (HLOC) and carbonmanagement index (CMI) were significant or dramatically higher in the organic rice-crabmodes than in the before disposal, and this increase was greater with the increasing amountsof organic manure. A similar but less significant trend was also observed between the organicand conventional rice-crab production modes. The MLOC and CMI were increased slightly inrice monoculture mode, but the other indexes were lower.
     4. The organic rice-crab modes can significantly enhance the rice yield and improve therice grain quality. In2009and2010, the grain number per panicle, seed setting rate and1000grain weight were higher in the organic rice-crab modes than in the conventional rice-craband rice monoculture modes, and this increase was greater with increasing amounts oforganic manure, especially the most significant increases in the grain number per panicle,seed setting rate and1000grain weight are11.90%,8.42%and3.94%, respectively, which were observed in the high organic manure rice-crab mode (M1), and ultimately improve therice yield. In addition, the crab yield in2009and2010had the same general trend as M1>M2>M3>MNP>M4. The rice quality was also improved, such as the organic rice-crabmodes significantly decreased chalky rice rate, chalky degree and amylose content decreased,and increased the contents of rice protein, essential amino acid and Fe, Zn. No significantimpacts were observed on the milling quality. However, the Cd, Pb of brown rice are tendedto increase in the high organic manure rice-crab mode (M1) when compared with theconventional rice-crab and rice monoculture modes.
     5. The structure of energy and material flow in organic rice-crab modes is morereasonable and with higher economic benefits. The ratio between organic energy and manualsupplementary energy were97.67%,97.37%,96.96%and96.49%, respectively in theorganic rice-crab (M1~M4)modes, with respectively11.12%,10.83%,10.41%and9.84%higher than in MNP mode, and95times of the CK mode; The organic rice-crab modes had ahigher energy circulation index than MNP and CK modes, but had slightly lower lightutilization efficiency and energy translation efficiency than in MNP and CK modes.According to the surplus of nutrition system, the N, P2O5and K2O surplus amount and thenutrition flux in organic rice-crab modes were significantly higher than that in MNP and CKmodes. In view of the economic benefit produced, the organic rice-crab (M1~M4) modescould obtain an additional income of7087.50,6649.65,5910.30and4752.00Yuan·hm-2when calculating the organic product as30%higher price of normal product.
     6. In2010, the highest increase in the TOC(15.15%), HOC(11.96%), HEC(10.79%),HAC(19.34%), Ⅰ C(20.78%), ⅠC/HOC(7.89%), the value of HAC E4/E6(5.62%) and△logk(5.48%) compared to2009was found in the high organic manure rice-crab mode (M1);However, the highest increase in LOC(10.11%)、MLOC (5.14%) and CMI(14.79%) wereobtained in the moderate organic manure rice-crab mode (M3); Similarly, the most significantincreases in the ⅡC, ⅡC/HOCand Ⅰ C/Ⅲ Cwere23.09%,15.26%and12.83%,respectively, which were observed in the low organic manure rice-crab mode (M4).
     7. The CK mode showed the greatest life cycle environmental impact for rice production,the second was MNP mode and followed by M1mode. In the above results, the life cycle environmental impacts in sequence of rice in organic rice-crab(M1) mode is aquaticeutrophication>environment acidification> energy depletion> global warming, with theimpact indices of0.60、0.07、0.000029and-0.03respectively; the life cycle environmentalimpacts in sequence of rice in conventional rice-crab(MNP) mode is aquatic eutrophication>environment acidification> energy depletion> global warming, with the impact indices of0.58、0.099、0.000036and-0.01respectively; the life cycle environmental impacts insequence of rice in rice monoculture(CK) mode is aquatic eutrophication>environmentacidification> global warming> energy depletion, with the impact indices of0.628、0.124、0.012and0.00004respectively.
引文
1.卞有生.2000.生态农业中废弃物的处理与再生利用[M].北京:化学工业出版社.
    2.曹凑贵,张光远,王运华.1998.农业生态系统养分循环研究概况[J].生态学杂志,17(4):26-32.
    3.陈恩凤.1990.土壤肥力物质及其调控[M].北京:科学出版社,77-106,263-310.
    4.陈飞星,张增杰.2002.稻田养蟹模式的生态经济分析[J].应用生态学报.13(3):323-326.
    5.陈利军,周礼恺.1999.土壤保肥供肥机理及其调节Ⅱ.棕壤型园土的腐殖质结合形态及其肥力学意义[J].应用生态学报,10(4):427-429.
    6.陈林华,倪吾钟,李雪莲,等.2009.常用肥料重金属含量的调查分析[J].浙江理工大学学报,26(2):223-227.
    7.陈铭达,刘兆普,刘文斌,等.2005.三峡库区稻田复养河蟹的农田生态系统能量特征与经济效益[J].山地学报,23(4):469-475.
    8.程励励,文启孝,李洪.1990.土壤条件对新形成土壤腐殖质千周的影响[J].土壤,22(1):7-11.
    9.戴平安,周坤炉,黎用朝,等.1998.土壤条件对优质食用稻品质及产量的影响[J].中国水稻科学,12(增刊):51-57.
    10.邓南圣,王小兵.2003.生命周期评价[M].北京:化学工业出版社,134-149.
    11.狄向华,聂祚仁,左铁镛.2005.中国火力发电燃料消耗的生命周期排放清单[J].中国环境科学,25(5):632-635.
    12.窦森,陈恩凤,须湘成,等.1995b.施用有机肥料对土壤胡敏酸结构特征的影响─胡敏酸的光学性质[J].土壤学报,32(1):41-48.
    13.窦森,李超,张继宏,等.1995a.持续发展农业与土壤培肥[A].张继宏,颜丽,窦森.农业持续发展的土壤培肥研究[C].沈阳:东北大学出版社,19-23.
    14.窦森,肖彦春,张晋京.2006.土壤胡敏素各组分数量及结构特征初步研究[J].土壤学报,43(6):934-940.
    15.杜相革,王慧敏.有机农业概论[M].北京:中国农业大学出版社,2001.
    16.符冠富,王丹英,徐春梅,等.2009.稻田冬季保护性耕作对土壤酶活性以及稻米品质的影响[J].植物营养与肥料学报,15(3):618-624.
    17.傅积平.1983.土壤结合态腐殖质分组的测定[J].土壤通报,12(2):36-37.
    18.高春丽,刘小虎,韩晓日,等.2006.长期定位不同施肥处理的棕壤腐殖酸性质的研究[J].土壤通报,37(1):73-75.
    19.高菊生,曹卫东,李冬初,等.2011.长期双季稻绿肥轮作对水稻产量及稻田土壤有机质的影响[J].生态学报,31(16):4542-4548.
    20.顾慧芬,周奶弟,吴增琪,等.2012.不同有机肥及其用量对有机水稻的作用和效益研究[J].农业科技通讯,1:30-31.
    21.关淑琳,黄高宝,柴强,等.2011.武威市凉州区农田生态系统能流、物流和价值流分析[J].干旱区资源与环境,25(3):156-160.
    22.关文玲,王旭东,李利敏,等.2002.长期不同施肥条件下土壤腐殖质动态变化及存在状况研究[J].干旱地区农业研究,20(2):32-35.
    23.韩志卿,张电学,陈洪斌,等.长期施肥对褐土有机无机复合性状演变及其与肥力关系的影响[J].土壤通报,2004,35(6):720-723.
    24.郝文雅,刘德辉,徐飞,等.2008.施肥对栽培菊花土壤的有机无机复合性状和菊花产量与品质的影响[J].土壤,40(4):616-621.
    25.贺帆,黄见良,崔克辉,等.2007.实时实地氮肥管理对水稻产量和稻米品质的影响[J].中国农业科学,40(1):123-132.
    26.侯立刚,赵国臣,刘亮,等.2009.有机水稻生产环境下稻鸭共作对产量构成因素的影响[J].吉林农业科学,34(6):10-12.
    27.侯万发,裴光富.2005.稻蟹泥鳅农田生态系统的效益分析[J]沈阳农业大学学报,36(4):401-404.
    28.胡文河,邓少华,贾恩吉.2002.不同群体水稻产量及产量性状间的相互关系[J].吉林农业大学学报,24(5):9-12.
    29.胡志远,谭丕强,楼狄明,等.2006.不同原料制备生物柴油生命周期能耗和排放评价[J].农业工程学报,22(11):141-146.
    30.黄莉,周美华.2003.生命周期评价研究[J].云南环境科学,22(3):4-6.
    31.纪雄辉,郑圣先,刘强,等.2006.施用有机肥对长江中游地区双季稻田磷素径流损失及水稻产量的影响[J].湖南农业大学学报(自然科学版),32(3):283-287.
    32.江苏太湖地区农田生态协作组.1984.江苏太湖地区几种种植制度的能量转换状况[J].生态学杂志,(6):19-22.
    33.姜益娟,郑德明,吕双庆,等.2004.新疆农田土壤有机质含量及组成特征[J].土壤,36(1):43-45.
    34.雷东阳,谢放鸣,陈立云.2009.杂交籼稻稻米外观品质性状杂种优势及其与亲本间分子遗传距离的相关性[J].核农学报,23(4):536-541.
    35.李季,苏芳,刘文国,等.2002.日光温室无污染蔬菜生产定位试验研究[J].中国生态农业学报,l0(3):123-125.
    36.李凡,徐风琳,李学垣.1992.神农架自然保护区土壤的研究.III神农架垂直带土壤粘粒矿物组合及其特点[J].华中农业大学学报,11(1):64-70.
    37.梁龙,陈源泉,高旺盛.2009.我国农业生命周期评价框架探索及其应用——以河北栾城冬小麦为例[J].中国人口资源与环境,19(5):154-160.
    38.李淑仪,郑惠典,廖新荣,等.有机肥施用量与蔬菜硝酸盐和重金属关系初探[J].生态环境,2005,14(6):307-311.
    39.李志芳.2002.有机农业土壤氮素流失与防止措施[J].农业环境保护,21(1):90-92.
    40.李志强,梁广文,岑伊静,等.2009.有机管理对柑橘园节肢动物群落多样性恢复的作用[J].生态学杂志,28(8):1515-1519.
    41.刘畅,李季,杨合法.2006.有机、无公害与常规蔬菜生产模式土壤及植株性状比较研究初报[J].中国生态农业学报,14(2):191-194.
    42.刘洪涛,陈同斌,郑国砥,等.2010.有机肥与化肥的生产能耗、投入成本和环境效益比较分析-以污泥堆肥生产有机肥为例[J].生态环境学报,19(4):1000-1003.
    43.刘鸣达,安辉,王厚鑫,等.2009.不同稻蟹生产模式效益比较的初步研究[J].中国土壤与肥料,(1):53-56.
    44.刘鸣达,张玉龙,崔建国.关于辽宁发展有机农业的思考[A].发展循环经济落实科学发展观一中国环境科学学会,2004年学术年会论文集[C].北京:中国环境科学出版社,2004.623-625.
    45.刘淑霞,王宇,周平.2008.不同施肥对黑土有机无机复合及腐殖质结合形态的影响[J].南京农业大学学报,31(2):76-80.
    46.刘树庆,杜孟庸,周健学,等.1992.不同肥力土壤有机无机复合度及腐殖质结合形态及其与肥力关系研究[J].河北农业大学学报:14(2):25-29.
    47.刘巽浩.1982.我国不同地区生态系统能量转化效率的初步研究[J].北京农业大学学报,8(1):47-53.
    48.刘月仙,吴文良,蔡新颜.2011.有机农业发展的低碳机理分析[J].中国生态农业学报,19(2):441-446.
    49.卢瑛,甘海华,徐盛荣.1996.红壤及其有机无机复合体有机质和氮素特征的研究[J].土壤通报,27(1):29-32.
    50.鲁洪娟,孔文杰,张晓玲,等.2009.有机无机肥配施对稻-油系统中重金属污染风险和产品质量的影响[J].浙江大学学报(农业与生命科学版),35(1):111-118.
    51.鲁艳红,廖育林,汤海涛,等.2010.不同施氮量对水稻产量、氦素吸收及利用效率的影响[J].农业现代化研究,31(4):479-483.
    52.鲁如坤,刘鸿翔,闻大中,等.1996.我国典型地区农业生态系统养分循环和平衡研究.Ⅰ.农田养分支出参数[J].土壤通报,27(4):145-151.
    53.鲁如坤.2000.土壤农业化学分析方法[M].北京:中国农业科技出版社.
    54.鲁如坤,刘鸿翔,闻大中,等.1996.我国典型地区农业生态系统养分循环和平衡研究. Ⅱ.农田养分收入参数[J].土壤通报,27(4):151-156.
    55.路文涛,贾志宽,张鹏,等.秸秆还田对宁南旱作农田土壤活性有机碳及酶活性的影响[J].农业环境科学学报,2011,30(3):522-528.
    56.罗燕,乔玉辉,吴文良.2011.东北有机及常规大豆对环境影响的生命周期评价[J].生态学报,31(23):7170-7178.
    57.吕东锋,王武,马旭洲,等.2010.稻田生态养蟹的水质变化与水稻生长关系的研究[J].江苏农业科学,(4):233-235.
    58.吕东锋,王武,马旭洲,等.2011.稻蟹共生对稻田杂草的生态防控试验研究[J].湖北农业科学,8(50):1574-1577.
    59.吕凤英,刘康峰,刘媛媛,等.有机肥对小麦产量及品质的影响[J].中国农学通报,2000,16(3):39-40.
    60.吕家珑,张一平,王旭东,等.2001.长期单施化肥对土壤性状及作物产量的影响[J].应用生态学报,12(4):569-572.
    61.骆世明.2000.农业生态学[M].北京:中国农业出版社,131-174.
    62.马俊永,李科江,曹彩云,等.2007.有机无机肥长期配施对潮土土壤肥力和作物产量的影响[J].植物营养与肥料学报,13(2):236-241.
    63.苗淑杰,罗盛国,姜佰文,等.2004.减氮处理对水稻根系氧化力和产质量的影响[J].东北农业大学学报.35(5):522-525.
    64.倪进治,徐建民,谢正苗,等.2001.不同有机肥料对土壤生物活性有机质组分的动态影响[J].植物营养与肥料学报,7(4):374-378.
    65.彭福泉,高坤林,车玉萍.1985.我国几种土壤中腐殖质性质的研究[J].土壤学报,22:64-73.
    66.全国明,章家恩,杨军,等.2008.稻鸭共作对稻米品质的影响[J].生态学报,28(7):3475-3483.
    67.单玉华,蔡祖聪,韩勇,等.2006.淹水土壤有机酸积累与秸秆碳氮比及氮供应的关系[J].土壤学报,43(6):941-947.
    68.沈宏,曹志洪,胡正义.1999.土壤活性有机碳的表征及其生态效应[J].生态学杂志,18(3):32-38.
    69.沈宏,曹志洪.2000.不同农田生态系统土壤碳库管理指数的研究[J].生态学报,18(3):32-38.
    70.石绍明,杨桂强.2010.桂东地区早稻稻鸭共作有机栽培试验初报[J].广西农学报,25(4):1-4.
    71.史吉平,张夫道,林葆.1998.长期施肥对土壤有机质及生物学特性的影响[J].土壤肥料,(3):7-11.
    72.史吉平,张夫道,林葆.2002b.长期定位施肥对上壤有机无机复合状况的影响[J].植物营养与肥料学报,8(2):131-136.
    73.史吉平,张夫道,林葆.2002c.长期定位施肥对土壤腐殖质结合形态的影响[J].土壤肥料,(6):8-12.
    74.史吉平,张夫道,林葆.2002a.长期定位施肥对土壤腐殖质理化性质的影响[J].中国农业科学,35(2):174-180.
    75.沈亨里.1993.农业生态学[M].北京:中国农业出版社,59-102.
    76.宋世威,乐建刚,Philipp L,等.2008.有机和常规甜瓜果实品质比较研究[J].上海交通大学学报(农业科学版),26(3):212-216.
    77.宋世威.2006.有机和常规生产系统中甜瓜的生长发育和产量分析[J].沈阳农业大学学报,37(3):432-436.
    78.苏凤岩,闻大中,徐卿德,等.1996.北方稻田生态系统研究Ⅰ.稻萍结合系统的结构研究[J].应用生态学报,7(2):179-184.
    79.孙雅君.2003.稻田生态养蟹技术[J].中国农学通报,20(3):242-243.
    80.田淑珍.1987.吉林省几种主要耕地土壤腐殖质组成变异规律的研究[J].土壤通报,18(1):23-26.
    81.田玉华,尹斌,贺发云,等.2007.太湖地区稻季的氮素径流损失研究[J].土壤学报,44(6):1070-1075.
    82.王国强,周静,崔键,等.2008.不同水肥组合对红壤地区早稻产量及氮肥利用率的影响[J].土壤,40(3):392-398.
    83.王寒,唐建军,谢坚,等.2007.稻田生态系统物种共存对病虫草害的控制[J].应用生态学报,18(5):1132-1136.
    84.王明新,包永红,吴文良,等.2006.华北平原冬小麦生命周期环境影响评价[J].农业环境科学学报,25(5):1127-1132.
    85.王强盛,黄丕生,甄若宏,等.2004.稻鸭共作对稻田营养生态及稻米品质的影响[J].应用生态学报,15(4):639-645.
    86.王起超,麻壮伟.2004.某些市售化肥的重金属含量水平及环境风险[J].农村生态环境,20(2):62-64.
    87.王清莲,张祖德,卢聚云,等.西瓜施用生物有机肥试验[J].福建农业科学,2003,(4):28.
    88.王寿兵,王如松,吴千红.2001.生命周期评价中资源耗竭潜力及当量系数的一种算法.[J].复旦学报:自然科学版,40(5):553-556.
    89.王新,梁仁禄,李培军.2002.我国北方水田区稻-萍-蟹共生模式效益研究[J].农业环境保护,2(11):41-44.
    90.魏朝富,谢德体,李保国.2003.土壤有机无机复合体的研究进展[J].地球科学进展,18(2):221-227.
    91.吴达粉,葛玉林,黄付根,等.2002.蟹田稻病虫草发生特点及防治技术[J].植保技术与推广,23(5):6-8.
    92.吴景贵,姜岩.1998.水田土壤有机培肥研究的现状及问题探讨[J].土壤通报,29(1):17-20.
    93.吴景贵,王明辉,姜亦梅,等.2006.施用玉米植株残体对土壤富里酸组成、结构及其变化的影响[J].土壤学报,43(1):133-141.
    94.吴小丹,蔡立湘,鲁艳红,等.2008.长期不同施肥制度对红壤性水稻土活性有机质及碳库管理指数的影响[J].中国农学通报,24(12):283-288.
    95.席运官,李正方,邰崇妹,等.1999.蔬菜有机与无机生产系统能流、经济流的比较研究[J].生态农业研究,(2):39-42.
    96.席运官,钦佩,丁公辉.2006.有机与常规种植稻米品质及安全性的分析与评价[J].植物营养与肥料学报,12(3):454-458.
    97.熊明彪,雷孝章,田应兵,等.2003.长期施肥对紫色土酶活的影响[J].四川大学学报:工程科学版,35(4):60-63,99-99.
    98.熊毅,陈家访.1990.土壤胶体(第3册):土壤胶体的性质[M].北京:科学出版社,487-513.
    99.熊毅.1982.有机无机复合与土壤肥力[J].土壤,(5):161-167.
    100.徐建民,袁可能.1995.土壤有机矿质复合体研究.Ⅶ.土壤结合态腐殖质的形成特点及其结合特征[J].土壤学报,32(2):151-158.
    101.徐明岗,于荣,孙小凤,等.2006a.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J].植物营养与肥料学报,12(4):459:465.
    102.徐明岗,于荣,王伯仁.2006b.长期不同施肥下红壤活性有机质与碳库管理指数变化[J].土壤学报,43(5):723-729.
    103.许凤英,马均,王贺正,等.2005.水稻强化栽培下的稻米品质[J].作物学报,31(5):577-582.
    104.许敏娟和文龙.2009.有机、特别及常规栽培体系对蔬菜品质的影响[J].江西农业学报,21(7):68-70.
    105.许燕芳.2006.有机栽培条件下不同水稻品种和肥料对产量和品质的影响[D].南京农业大学硕士学位论文.
    106.许永瑜.2005.施用高量堆肥对水稻生长及养分吸收之影响[D].台湾:台湾大学.
    107.薛智华,杨慕林,任巧云,等.2001.养蟹稻田稻飞虱发生规律研究[J].植保技术与推广,21(1):5-7.
    108.杨建新,徐成,王如松.2002.产品生命周期评价方法及应用[M].北京:气象出版社,111-112.
    109.杨京平.2001.农业生态工程与技术[M].北京:化学工业出版社.120-212.
    110.杨勇.2004.稻鱼共作生态特征与安全优质高效生产技术研究[D].扬州:扬州大学.
    111.余雄波.2006.稻田施用不同有机肥的效益[J].作物研究,(2):121-123.
    112.曾骏,郭天文,于显枫,等.2011.长期施肥对土壤活性有机碳和碳库管理指数的影响[J].土壤通报,42(4):812-815.
    113.曾赞安,梁广文,颜亨梅.2010.有机荔枝园、常规荔枝园和天然荔枝园蜘蛛类群的比较[J].环境昆虫学报,32(2):173-179.
    114.展茗,曹凑贵,江洋,等.2010.不同稻作模式下稻田土壤活性有机碳变化动态[J].应用生态学报,21(8):2010-2016.
    115.张电学,韩志卿,王秋兵,等.2007.长期不同施肥制度下土壤有机质质量动态变化规律[J].土壤通报,38(2):251-255.
    116.张夫道.1995.长期施肥条件下土壤养分的动态和平衡.I.对土壤腐殖质积累及其品质的影响[J].植物营养与肥料学报,1(3-4):10-21.
    117.张付申.1996.不同施肥处理对塿土和黄绵土有机质氧化稳定性的影响[J].河南农业大学学报,3(1):80-84.
    118.张晋京,窦森,李翠兰,等.2004.土壤腐殖质分组研究[J].土壤通报,35(6):706-709.
    119.张晋京,窦森,宋祥云.2007.连续提取对土壤腐殖质组分数量与特性的影响[J].土壤通报,38(3):452-456.
    120.张晋京,窦森.2002.灼烧土巾玉米秸秆分解期间胡敏酸富艰酸动态变化的研究[J].吉林农业大学学报,24(3):60-64.
    121.张晋京,张大军,窦森.2006.田间定位施肥对土壤腐殖质组分数量与特性的影响[J].土壤通报,37(6):1243-1246.
    122.张苗苗,宗良纲,谢桐洲.2010.有机稻鸭共作对土壤养分动态变化和经济效益的影响[J].中国生态农业学报,18(2):256-260.
    123.张名位,彭仲明,杜应琼.1996.特种稻米中微量元素铁、锌、锰含量的配合力和稳定性分析[J].中国水稻科学,10(4):20l-206.
    124.张鹏,贾志宽,路文涛,等.2011.不同有机肥施用量对宁南旱区土壤养分、酶活性及作物生产力的影响[J].植物营养与肥料学报,17(5):1122-1130.
    125.张三元,张俊国,金京德,等.2005.有机栽培环境对水稻产量构成及稻米品质的影响[J].吉林农业科学,30(2):13-20.
    126.赵红,吕贻忠,杨希,等.2009.不同配肥方案对黑土有机碳含量及碳库管理指数的影响[J].中国农业科学,42(9):3164-3169.
    127.赵其国.2000.中国东部红壤地区土壤退化的时空变化、机理及调控[M].北京:科学出版社.
    128.甄若宏,王强盛,何加骏,等.2008.稻鸭共作对水稻产量和品质的影响[J].农业现代化研究,29(5):615-617.
    129.甄若宏,王强盛,周建涛,等.2009.稻鸭萍共作复合生态系统的物能特征分析[J].中国生态农业学报,17(3):574579.
    130.郑兰君,曾广永,王鹏飞.2001.有机肥、化肥长期配合施用对水稻产量及土壤养分的影响[J].中国农学通报,17(3):48-50.
    131.仲维功,陈志德,杨杰,等.1999.中国的特种稻米[J].南京农专学报,15(3):30-35.
    132.周崇松,刘文宏,范必威,等.1996.川稻铜铁锌锰四种微屠元素的研究[J].广东微量元素科学,10(10):56-59.
    133.朱洪霞,王正银,董燕,等.2007.肥料对稻米品质的影响[J].中国土壤与肥料,(1):9-12.
    134.朱利群,张大伟,卞新民.2011.连续秸秆还田与耕作方式轮换对稻麦轮作田土壤理化性状变化及水稻产量构成的影响[J].土壤通报,42(1):81-85.
    135.朱清海,李毓鹏,徐春河.1994.稻-萍-蟹立体农业的效益[J].生态学杂志,13(5):1-4.
    136. Adani F,Genevini P,Ricca G,et al.2007.Modification of soil humic matter after4years of compostapplication[J].Waste Management,27(2):319-324.
    137. Akpinar M G,Ozkan B,Sayin C.et al.2009.An input-output energy analysis on main and doublecropping sesame production.J.Food Agric.Environ,7(3-4):464-467.
    138. Albiach R, Canet R, Pomanes F,et al.2000. Microbial biomass content and enzymatic activities afterthe application of organic amendments to a horticultural soil[J].Bioresource Technology,75(1):43-48.
    139. Bengtsson J,Ahnstrom J,Weibull A C.2005.The effects of organic agriculture on biodiversity andabundance:a meta-analysis[J].Journal of Applied Ecology,42:261-269.
    140. Berardi G M.1978.Organic and conventional wheat production[M].In:Pimentel D.(Ed),Handbook ofEnergy Utilization in Agriculture.CRC Press,Boca Raton,F L,USA,109-116.
    141. Bergstrom L,Kirchmann H.1999.Leaching of total-N from15N labeled poultry manure and inorganicfertilizer[J].J.Environ.Qual,(28):1283-1290.
    142. Brentrup F,Kuster J,Lammel J,et al.2004.Environmental impact assessment of agricultural productionsystems using the life cycle assessment(LCA)methodology the application to N fertilizer use in winterwheat Production system[J].EuropAgronomy,20:265-29.
    143. Blair G J,Lefroy R D B,Lisle L.1995.Soil carbon fractions based on their degree of oxidation,and thedevelopment of a carbon management index for agricultural systems[J].Australian Journal ofAgricultural Research,46(7):1459-1466.
    144. Blengini G A,Busto M.2009.The life cycle of rice: LCA of alternative agri-food chain managementsystems in Vercelli (Italy)[J].Journal of Environmental Management,90(3),1512-1522.
    145. Bockari-Gevao S M,Wan ishak W I,Azmi Y.et al.2005.Analysis of energy consumption in lowlandrice-based cropping system of Malaysia[J].Sci Technlol,27(4):819-826.
    146. Bourn D,Prescott J.2002.A comparison of the nutritional value, sensory qualities and food safety oforganic and conventionally produced foods[J].Crit.Rev.Food Sci.Nutr.42(1):1-34.
    147. Bram M, Sukristiyonubowob,David B,et al.2010.Soil microbial communities and activities underintensive organic and conventional vegetable farming in West Java, Indonesia[J].Applied SoilEcology,45:112-120.
    148. Campliglia E,Colla G,Mancinelli R.et al.2007.Energy balance of intensive vegetable croppingsystems in Central Italy[J].Acta Hortic,747:185-191.
    149. Cheong J L.1996.Effects of slow-release fertilizer application on rice grain quality at different culturemethods[J].Korean Crop Sci,41(3):286-294.
    150. Choi M G.1990.Cultural practices for improving grain quality of rice in southern plain area[J].Korean Crop Sci,35(6):487-491.
    151. Chubbs S T,Steiner B A.1998.Life cycle assessment in the steel industry[J].Environmental progress,17(2):92-95.
    152. Cited in Woodward,2003.Can organic farming feed the world?[EB/OL].http://www.efrc.com/?i=articles.php&art_id=42&highlight=organic.
    153. Coleman D C.1989.Agro-ecosystems and sustainable agriculture[J].Ecology,70(6):15-90.
    154. Covaleda S,Pajares S,Gallardo J F,et al.2006.Short-term change in C and N distribution in soilparticle size fractions induced by agricultural practices in a cultivated volcanic soil frommexico[J].Organic Geochemistry,37(12):1943-1948.
    155. Dalal R C,Mayer R J.1986.Long-term trends in fertility of soils under continuous cultivation andcereal cropping in Southern Queensland:IV.Loss of organic carbon from different densityfunctions[J].Australian Journal of Soil Research,24(2):301-309.
    156. Dalgaard T,Halberg N,Porter J R.2001.A model for fossil energy use in Danish agriculture used tocompare organic and conventional farming[J].Agriculture, Ecosystems&Environment,87(1),51-65.
    157. De Martin S,Restani P.2003.Determination of nitrates by a novel ion chromatographic method:occurr-ence in leafy vegetables (organic and conventional) and exposure assessment for Italian consumers[J].Food Addit.Contam.20,787-792.
    158. Delmotte S,Tittonell P,Mouret J C,et al.2011.On farm assessment of rice yield variability andproductivity gaps between organic and conventional cropping systems under Mediterranean climate[J].European Journal of Agronomy,35(4):223-236.
    159. Dendoncker N,Van Wesemael B,Rounsevell M D A,et al.2004.Belgium’s CO2mitigation potentialunder improved cropland management[J]. Agriculture,Ecosystems&Environment,103:101-116.
    160. Dou S,Chen E F,Xu X C,et a1.1994.Effect of organic manure appliea-tion on physical properties andhumus characteristics of paddy soil[J].Pedosphere,4(2):127-135.
    161. Finnveden G,Hauschild M Z,Ekvall T,et al.2009.Recent developments in life cycle assessment[J].Journal of Environmental Management,1:1-21.
    162. Flessa H, D rsch P, Besse F.1995.Seasonal variation of N2O and CH4fluxes in differently managedarable soils in southern Germany[J].Journal Geophysical Resource,100:23115-23124.
    163. Fliessbach A,Müller A,Niggli U,et al.2011.Climate change and organic agriculture[J].World Agricul-ture,(3):91-93.
    164. Frieben B,Kopke U.1995.Effects of farming systems on biodiversity.In:Isart,J,Llerena,J.J.(Eds.)Proceedings of the First ENOF Workshop-Biodiversity and Land Use:The role of Organic Farming.Multitext,Barcelona,11-21.
    165. Gao M,Zhou B T,Wei C F,et al.2002.Characteristics of phosphorous adsorption and desorption byOrgano-mineral collidal complexes of purple paddy soils[J].Pedosphere,12(3):257-264.
    166. Geier U,Frieben B,Gutsche V,et al.2001. kobilanz der Apfelerzeugung in Hamburg–Vergleichintegrierter und kologischer Bewirtschaftung[J].Verlag Dr.K ster, Berlin,Schriftenreihe Institut fürOrganischen Landbau,173.
    167. Gliessman S R.1990.Researching the ecological basis for sustainable agriculture[J].Agroecology,3-10.
    168. Gonzalez-vila F J.Almendros G,Tinoco P.2001.Nitrogen speciation and pyrolytic patterns of15N-labelled soil and compost fractions [J].Journal of Analytical and Applied Pyrolysis,58-59:329-339.
    169. Haas G,K pke U.1994.Vergleich der klimarelevanz kologischer und konventioneller landbewritsch-aftung. Studie (studie H) im auftrag der enquetekommission des deutschen bundestages“schutz dererdatmosph re”[M].Bonn,German:Karlsruhe Economia Verlag.
    170. Hald A B.1999.Weed vegetation (wild flora) of long established organic versus conventional cerealfields in Denmark[J].Annals of Applied Biology,134,307-314.
    171. Hansen B,Alroe H F,Kristensen E S.2001.Approaches to assess the environmental impact of organicfarming with particular regard to Denmark[J].Agriculture Ecosystems and Environment,83,11-16.
    172. Hoefkens C,Vandekinderen I,De Meulenaer B,et al.2009.A literature-based comparison of nutrientand contaminant contents between organic and conventional vegetables and potatoes[J].Br.Food.J.111(10):1078-1097.
    173. Hole D G,Perkins A J,Wilson J D.et al.2005.Does organic farming benefit biodiversity?[J].BiologicalConservation,122,113-130.
    174. Hong Y P.1994.Influence of fertilizer levels and cultivated regions on changes of chemical compon-ents in rice grains[J]. RDAJ,Agri Sci,36(1):38-51.
    175. Hooker B A,Morris T F,Peters R,et al.2005.Long-term effects of tillage and stalk retyrn on soil carbondynamics[J].Soil Science Society of Americal Journal,69:188-196.
    176. Horrigan L,Lawrence R S,Walker P.2002.How sustainable agriculture can address the environmentaland human health harms of industrial agriculture[J].Environ Health Perspect.110(5):445-456.
    177. Huang X X,Gao M,Wei C F,et al.2006.Tillage effect on organic carbon in a purple paddysoil[J].Pedosphere,16(5):660-667.
    178. Hütsch B W,Webster C P,Russel P.1996.Effects of nitrogen fertilization and pH on methane oxidationin aerobic soil[J].Landbauforschung V lkenrode,165:5-12.
    179. IFOAM (International Federation of Organic Agriculture Movements) and Food and AgricultureOrganisation of the United Nations (FAO)[C].Conference conclusions,IFOAM Conference on organicguarantee systems-international harmonization and equivalence on organic agriculture,17-19February2002,Nuremberg,Germany,11-18.
    180. IFOAM,2010. International Federation of Organic Agriculture Movements–The Principles of OrganicAgriculture[EB/OL].http://www.ifoam.org/about_ifoam/principles/index.html.
    181. IPCC.2007.IPCC Assessment Report4.
    182. Jack G V.1963.The biological nature of soil productivity[J].Soil&Ferts,26:147-150.
    183. Jastrow J D.1996.Soil aggregate formation and the accrual of particulate and mineral-associatedorganic matter[J].Soil Biol.Biochem,28(4/5):665-67.
    184. Johnoston A E.1998.Phosphorus:essential plant nutrient,possible pollutant.Phosphorus Balance andUtilization in Agriculture Towards Sustaninablity[J].Kungl.Skogs-och Lantbruksa-deminensTidsskrift,135(7):11-22.
    185. Johnsson L.Berggren D.Krén O.1999.Content and bioavailability of organic forms of nitrogen in theOhorizon of a podzol[J].European Journal of Soil Science,50(04):591-600.
    186. Kavargiris S E,Mamolos A P,Tsatsarelis C A,et al.2009.Energy resources utilization in organic andconventional vineyards:energy flow,greenhouse gas emissions and biofuel production[J].BiomassBioenergy,33:1239-1250.
    187. Kay S,Gregory S.1999.Rare Arable Flora Survey1999.Unpublished report to Northmoor[J].Trust andEnglish Nature.
    188. Kim K H.1993.Varietal and environmental variation of gel consistency of rice flour[J]. Korean CropSci,38(1):38-45.
    189. Kleijin D,Berendse F,Smit R,et al.2001.Agri-environment schemes do not effectively protectbiodiversity in Dutch agricultural landscapes[J].Nature,413:723-725.
    190. Kleijn D,Baquero R A,Clough Y,et al.2006.Mixed biodiversity beneifits of agri-environment schemesin five European countries[J].Ecology Letters,9(3):243-254.
    191. Kononva M M,Alexandrova I V.1973.Formation of humic acids during plant reside humification andtheir nature[J].Geodema,9:157-164.
    192. Koutroubasa S D,Ntanos D A.2003.Genotypie differences for grain yield and nitrogen utilization inIndiea and Japonica rice under Mediter-ranean condition[J].Field Crops Research,83:251-260.
    193. Kumad K,Sato O,Ohsumi Y.1967.Humus composition of maintain soil in central Japan with specialreference to the distribution of P type humic acid[J].Soil Science and Plant Nutrition,13:151-158.
    194. Küstermann B,Kainz M,Hülsbergen K J.2008.Modelling carbon cycles and estimation of greenhousegas emissions from organic and conventional farming systems[J]. Renewable Agriculture and FoodSystems,23:38-52.
    195. Landgrf D,Klose S.2002.Mobile and readily available C and N fractions and their relationship tomicrobial biomass and selected enzyme activities in a sandy soil under different managementsystems[J].Journal of Plant Nutrition and Soil Science,165:9-16.
    196. Leesawatwong M,Jamjod S,Kuo J,et al.2005.Nitrogen fertilizer increases seed protein and millingquality of rice[J].Cereal Chemistry,82(5):588-593.
    197. Logninow W,Wisniewski W,Gonet S S,et al.1987.Fractionation of organic carbon based on suscepti-bility to oxidation[J].Polish Journal of Soil Science,20:47-52.
    198. Lundstr m S.1997.B r vi dricka ekologisk mj lk-An economical comparision of conventional andorganic milk production[M].Lundstr m S.Examination certificate:143.
    199. Ma S M,Joachim S.2006.Review of history and recent development of organic farming wordwide[J].Agricultural Sciences in China.5(3):169-178.
    200. Mader P,FlieBbach A,Dubois D,et al.2002.Soil fertility and biodiversity in organic farming[J].Science,296:1694-1697.
    201. Magkos F,Arvaniti F,Zampelas A.2003.Organic food: nutritious food or food for thought? A reviewof the evidence[J].Int.J.Food Sci.Nutr.54(5):357-371.
    202. Majumder B,Mandal B,Bandyopadhyay P K,et al.2008.Organic amendments influence soil organiccarbon pools and rice-wheat productivity[J].Soil Science Society of American Journal,72:775-785.
    203. Malusa E,Laurenti E,Ghibaudi E,et al.Influence of organic and conventional management on yieldand composition of grape cv.Grignolino[J].Acta Horticulturae,2004,640:135-141.
    204. Mandal K G,Saha K P,Chosh P K,et al.2002.Bilenergy and economic analysis of soybean-based cropproduction systems in central India[J].Biomass Bioenergy,23(5):337-345.
    205. Marios C,Michosa,Andreas P,et al.2012.Menexes,Energy inputs,outputs and greenhouse gasemissions in organic,integrated and conventional peach orchards[J].Ecological Indicators,13:22-28.
    206. Martin M,Fitzgerald M A.2002.Proteins in rice grains influence cooking properties[J].Journal ofCereal Science,36:285-294.
    207. Mohammadi A.Omid M.2010.Economical analysis and relation between erergy inputs and yield ofgreenhouse cucumber production in Iran[J].Appl Energy,87(1):191-196.
    208. Mrini M,Senhaji F,Pimentel D.2001.Energy analysis of sugarcane production in Morocco[J].Environ.Dev Sustainability,3:109-126.
    209. Nayak D R,Babu Y J,Adhya T K.2007.Long-term application of compost influences microbialbiomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under floodedcondition[J].Soil Biology and Biochemistry,39(8):1897-1906.
    210. Nemecek T,Dubois D,Huguenin-Elie O,et al.2011.Life cycle assessment of Swiss farmingsystems[J].Integrated and organic farming.Agricultural Systems,104(3),217-232.
    211. Niggli U,Lockeretz W.1996.Development of research in organic agriculture[C].In:StergaardT.Proceedings of the11th IFOAM International Scientific Conference on Fundamentals of OrganicAgriculture,1:11-15.
    212. Organisation of the United Nations (FAO).Conference conclusions,IFOAM Conference on organicguarantee systems-international harmonization and equivalence on organic agriculture,17-19February2002,Nuremberg,Germany,11-18.
    213. Peter A R,Dionisios G.2009.Apple tree growth and overall fruit quality under organic and convention-nal or chard management[J].Scientia Horticulturae,123:247-252.
    214. Pimentel D,Hepperly P,Hanson J,et al.2005.Environmental,energetic,and economic comparisons oforganic and conventional farming systems[J].BioScience,55(7):573-582.
    215. Pimentel D,Hurd L E,Belloti AC.et al.1973.Food production and the energy crisis[J].Science,182:443-449.
    216. Pinnschmidt H O,Batchelor W D,Teng P S.1995.Simulation of multiple species pest damage in riceusing CERES-rice[J].Agricultural System,2(48):193-222.
    217. Pizarro C M,Escudey D,Fabris.2003.Influence of organic matter on the iron oxide mineralogy ofVolcanic soils[J].Hyperfine Interact.148-149,53-59.
    218. Poudel D D,Horwath W R,Lanini W T,et al.2002.Comparison of soil N availability and leachingpotential, crop yield sand weeds in organic,low-input and conventional farming systems in northernCalifornia[J].Agriculture Ecosystems and Environment,90:125-137.
    219. Pretty J,2006.Agroeclological approaches to agricultural development[EB/OL]. http://www.rimisp.org/getdoc.php?docid=6440.
    220. Rathke G W,Diepenbrock W.2006.Energy balance of winter oilseed rape(Brassica napus L.)croppingas related to nitrogen supply and preceding crop[J].Eur J Agron,24:35-44.
    221. Reganold J P,Glover J D,Andews P K,et al.Sustainability of three apple production systems[J].Nature,2001,410:926-930.
    222. Reganold J P,Glover J D,Andrews P K,et al.2001.Sustainability of three apple production systems[J].Nature,2001,410:926-930.
    223. Reitmayr T.1995.Entwicklungen eines rechnergestützten kennza-hlensystems zur kono-mischen undkologischen Beurteilung von agrarischen Bewirtschaftungsformen-dargestellt an einem Beispiel[R].Agrarwirtschaft Sonderheft147.
    224. Rhoton F E,Lindbo D L,Romkens M J M.1998.Iron oxides erodibility interactions for soils of theMemphis catena[J].Soil Science Society of America Journal,62:1693-1703.
    225. Richards A F,Dalal R C.2007.Soil carbon turnover and sequestration in native subtropical treeplantations[J].Soil Biology and Biochemistry,39(8):2078-2090.
    226. Rogasik J,D mmgen U,Lüttich M.1996. kosystemare betrachtungen zum einflu klimatischerfaktoren und ver ndertesr intensit t der landnutzung auf quellen-und senkeneigenschaften von b denfür klimarele-vante spurengase[J].Landbauforschung V lkenriode,165:87-104.
    227. Safa M,Tabatabaeefar A.2002.Energy consumption in wheat production in irrigated and dry landfarming[A].November28-30.In:Proceedings of International Agricultural Conference[C],Wuxi,China.
    228. Schneider U A,Smith P.2009.Energy intensities and greenhouse gas emission mitigation in globalagriculture[J].Energy Efficiency,2:195-206.
    229. Schnitzer M,Kodama H.1992.Interactions between organic and inorganic components in particle-sizefraction separated from four soils[J].Soil Sci Soc Am.56:1099-1105.
    230. Schulten H R,Leinweber P.1995.Dithionite-citrate-bicarbonate-extracable organic matter in particlesize fractions of Haplaquoll[J].Soil Sci Soc Am.J,59:1019-1027.
    231. Smith P,Martino D,Cai Z,et al.2008.Greenhouse gas mitigation in agriculture[J].Philos Trans R SocLond B Biol Sci,363(1492):789-813.
    232. Spaccini R,Mbagwu J S C,Conte P,et al.2006.Change of humic substances characteristics fromforested to cultivated soils in Ethioia[J].Geodema,132:9-19.
    233. Spruit-Verkerke J,Schoorlemmer H,van Woerden S,et al.2004.Duurzaamheid va de biologischelandbouw-Prestaties op milieu,dierenwelzijn en arbeidsomstandigheden.PPO,Lelystad,118.
    234. Stevenson F J.1994.Humus Chemistry:Genesis Composition Reactions2nd Edition[M].New York:John Wiley and Sons.Rice J A.2001.Humin.Soil Science,166(11):848-857.
    235. Swezey S L,Goldman P,Jergens R,et al.Preliminary studies show yield and quality potential oforganic cotton[J].California Agriculture,1999,53(4):9-16.
    236. Syv salo E,Regina K,Turtola E,et al.2006.Fluxes of nitrous oxide and methane, and nitrogen leachingfrom organically and conventionally cultivated sandy soil in western Finland[J].Agriculture,Ecosystems&Environment,113(1/4):342-348.
    237. Taylor J P,Wilson B,Mills M S,et al.2002.Comparison of microbial numbers and enzymatic activitiesin surface and subsoils using various techniques[J].Soil Biology and Biochemistry,34(3):387-401.
    238. Tiessen H,Stewart J W B,Hunt H W.1984.Concepts of soil organic matter transformations in relationto organo-mineral particle size fraction[J].Plant and Soil,76(1):287-295.
    239. Vassilios D,Litskas,Andreas P M.2011.Energy flow and greenhouse gas emissions in organic andconventional sweet cherry orchards located in or close to Natura2000sites[J].Biomass andBioenergy,35:1302-1310.
    240. Wiseman C L S,Püttmann W.2006.Interactions between mineral phases in the preservation of soilorganic matter[J].Geoderma,134:109-118.
    241. Wood R,Lenzen M,Dey C,Lundie S.2006.A comparative study of some environmental impacts ofconventional and organic farming in Australia[J].Agricultural systems,89(2-3),324-348.
    242. Worthington V.1998.Effect of agricultural methods on nutritional quality: a comparison of organicwith conventional crops[J].Altern.Ther Health Med.4:58-69.
    243. Worthington V.2001.Nutritional quality of organic versus conventional fruits,vegetables andgrains[J].J.Altern.Complement.Med,7(2):161-173.
    244. Wu T Y,Jeff J,Schoenau,Li F M.2004.Influence of cultivation and fertilization on total organic carbonand carbon fractions in soils from the Loess Plateau of China[J].Soil&Tillage Research,77:59-68.
    245. Xi Y G,Qin P.2009.Emergy evaluation of organic rice-duck mutualism system[J].Ecological Engineer-ing,35:1677-1683.
    246. Yadav R L,Dwivedi B S,Prasad K,et al.2000.Yield trends, and changes in soil organic-C and availableNPK ina long-term rice-wheat system under integrated use of manures and fertilizers[J].Field CropsResearch,68:219-246.
    247. Yadav R N,Singh R K P,Prasad S.1991.An economic analysis of energy requirements in theproduc-ion of potato crop in bihar sharif block of nalanda districh(Bihar)[J].Econ Affair Kalkatta,36:112-119.
    248. Yoichiro K,Junko Y.2011.Long-term effects of organic manure application on the productivity ofwinter wheat grown in a crop rotation with maize in Japan[J].Field Crops Research,120:387-395.
    249. Zibilske L M,Materon L A.2005.Biochemical properties of decomposing cotton and corn stem androot residues[J].Soil Science Socity of America and journal,69:378-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700