用户名: 密码: 验证码:
T形钢管混凝土组合柱—钢梁连接节点抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
T形钢管混凝土组合结构不仅具有强度高、延性好、抗震性能优越以及施工周期短等优点,还具有肢厚同墙厚,避免房间棱角突出,影响美观,有利于空间的布局,增加了房间面积使用率的独特优势,其应用前景较好,因此国内外越来越多的学者对其的研究密切关注,但是目前国内外学者对这种组合结构的研究并不多,特别是对T形钢管混凝土组合柱-钢梁连接节点理论和试验研究也更少。本文对T形钢管混凝土组合柱-钢梁连接节点的抗震性能进行了试验研究和非线性有限元分析,其研究成果对促进异形钢管混凝土组合结构的推广应用具有重要的理论意义与工程应用价值,同时,将为《异形钢管混凝土结构技术规程》的编制提供参考依据。本文研究内容及其成果主要包括以下几个方面:
     1.按照1:1.5的缩尺比例,设计制作了3类共9个T形钢管混凝土组合柱-钢梁连接节点试件(其中3个外伸端板连接节点,3个顶底角钢连接节点试件,3个双腹板顶底角钢连接节点),并进行了低周反复荷载作用下的拟静力试验。研究不同规格高强螺栓或不同厚度钢板的节点滞回性能、强度退化、刚度退化以及延性系数和耗能能力,根据试验现象和结果初步分析了这些连接节点的破坏特征和破坏机理。
     2.通过低周往复荷载作用下的拟静力试验,对9个T形钢管混凝土组合柱-钢梁连接节点试件的抗震性能进行了研究。试验结果表明:各试件的滞回曲线表现出良好的稳定性,外伸端板连接节点曲线形状比较饱满,均呈纺锤形,耗能能力比较好,耗能系数大于2.01;顶底角钢连接节点曲线形状有捏拢现象,呈倒S形,耗能系数大于1.88;双腹板顶底角钢连接节点曲线形状有捏拢现象,呈倒S形,耗能能力比顶底角钢好,耗能系数大于1.95。全部节点具有显著的强度和刚度退化;位移延性系数均大于等于2;等效粘滞阻尼系数均大于0.25。
     3.按照Rvafiq Hasan等人的节点分类方法,对三类T形钢管混凝土组合柱-钢梁连接节点刚性进行了分析判别,研究结果表明:异形钢管混凝土组合柱-钢梁外伸端板连接节点和异形钢管混凝土组合柱-钢梁双腹板顶底角钢连接节点属于半刚性连接:而顶底角钢连接节点在加载初期属半刚性连接,加载后期属于铰接连接。
     4.在对比各试件极限抗弯抗剪承载力、延性及变形能力等指标的基础上,分析了影响这些指标的主要因素,并对各试件节点域的受力情况进行了计算分析,提出了节点设计建议和改进措施;
     5.按照试件实际尺寸,利用有限元软件ANSYS10.0对异形钢管混凝土组合柱-钢梁外伸端板连接,双腹板顶底角钢连接以及顶底角钢连接节点的抗震性能进行了非线性有限元分析,根据分析结果考察了外伸端板连接节点、顶底角钢连接节点和双腹板顶底角钢连接节点的滞回性能以及各试件节点域的应力分布情况,并与试验结果进行对比,同时对不同轴压比、不同核心混凝土强度等级以及不同的钢管壁厚度对节点抗震性能影响进行分析。分析结果表明:有限元计算结果与试验结果比较吻合,表明本文有限元计算时所采用的钢材本构关系、混凝土本构关系、求解方法和有限元计算模型等是合理、可靠的,该计算模型可以为后续进行多参数分析提供参考依据;轴压比(0.2-0.5之间)对节点承载力影响不大,但对节点抗震性能影响较大;核心混凝土强度等级对节点承载力影响较小,对节点抗震性能有一定影响;钢管壁厚对节点承载力影响较大,而对节点抗震性能影响较小;钢材屈服强度对节点极限承载力较大,对节点抗震性能影响较为明显。
     在总结全文工作的基础上,提出了本课题研究展望。
T-shaped concrete-filled steel tubular composite structure not only has high strength, good ductility, excellent seismic behavior and a short construction period, etc., but also has the same limb thickness with the wall, to avoid the room appearing edges and corners which affect beauty. It also has the unique advantages on decorating space and improving the housing area. The prospect that is applied to actual engineering is well, so more and more domestic and overseas scholars have taken a watchful eye on it. But currently the research of the T-shaped concrete-filled steel tubular composite column is not much at home and abroad and there is nobody who engage in the theoretical and experimental study of the steel beam connection nodes. In this article, it shows experimental study on seismic performance and non-linear finite element analysis of the special-shaped concrete-filled steel tubular composite column and steel beam connection node, which give a great assistance to understand the seismic performance of the special-shaped concrete steel tubular composite column and steel beam connection node and promote the popularization and application. So this text has important theoretical significance and value in engineering. Meanwhile, the results will provide the reference for the establishment of "Technical Specification for Structures with Special-shaped Concrete-filled Steel Tubular Members ". Content and results of this study mainly include the following aspects:
     1. According to1:1.5proportion of scale,9T-shaped concrete steel tubular composite column and steel beam connection node specimens(3of extended end-plate connection node specimens,3of top and bottom angle steel connection node specimens,3of double web top and bottom angle steel connection node specimens) is designed and made for pseudo-static loading test. The article shows hysteretic performance, strength, degradation, stiffness degradation, ductility and energy dissipation of different kinds of high strength bolts or different thickness of top and steel plate node. According to the test phenomenon and results, we make a preliminary analysis on the failure characteristics and the failure mechanism of connection nodes.
     2. The low cycle reciprocating load experiment gives a good opportunity to study the seismic behavior of three kinds of T-shaped concrete steel tubular composite column and steel beam connected node. The test results show that:the hysteresis curves of all specimens are stable, and the curve shape of extended end-plate connection node is full and just like a spindle. All specimens consume less energy than most frame member and its energy dissipation coefficient is greater than2.01. The energy dissipation ability of the top and bottom angle connection node is not well and its energy dissipation coefficient is more than1.88. The curve shape of double web top and bottom angle steel connection node is not full, which has a better energy dissipation ability than the top and bottom angle connection node, and its energy dissipation coefficient is more than1.95. All the nodes have significant strength and stiffness degradation. The displacement ductility coefficient is equal to or even more than2. Equivalent viscous damping coefficient is greater than0.25.
     3. According to Rvafiq Hasan's node classification method,9T-shape concrete-filled steel tubular composite column and steel beam connection nodes are analyzed. And the results of the study show that special-shaped concrete-filled steel tubular composite column and steel beam extended end-plate connection node and special-shaped concrete-filled steel tubular composite column and double webs top and bottom angle steel connection node is semi-rigid connection. And special-shaped concrete-filled steel tubular composite column and steel beam top and bottom angle steel connection node is semi-rigid connection in early loading stage, then belongs to hinged connection.
     4. On the basis of comparing ultimate bend and shear capacity, ductility and deformation ability of specimens, we analyse the main factors which have influence on the indexes and calculate the force of the specimens node domain and put forward some suggestions to improve node.
     5. According to the actual specimen size, we make non-linear finite element analysis on the seismic behaviour of special-shaped concrete-filled steel tubular composite column and steel beam extended end-plate connection node, and double webs top and bottom angle steel connection node by using the finite element analysis software ANSYS10.0. On the basis of the results of analysis, the situation of the stress distribution of specimen node domain and the hysteretic performance of those nodes are examined and compared with the experimental results. Then some parameters which have influence on the seismic performance have been analysed according to the verified finite element model, including strength of the filled concrete, compressive ratio, thickness of steel tube. The analysis results show that:the finite element calculation results coincide with experimental results. It shows that the calculation of steel and concrete constitutive model, the finite element model, the solving method is reasonable and reliable. The calculation model can be used to provide reference for the subsequent analysis of many parameters. The axial compression ratio (0.2-0.5) has little effect on node capacity but a greater impact on the aseismic performance of the joints; the strength of the filled concrete on load-carrying capacity of small effect, and have a certain influence on the aseismic performance of the joints; the thickness of steel pipe have a great influence on bearing capacity, but less influence on the aseismic performance of the joints; the steel yield strength have large influence on ultimate bearing capacity, and the more obvious effects on the aseismic performance of the joints.
     On the basis of summing up the work, the research prospect is put forward.
引文
[1]钟善桐.钢管混凝土结构(第3版)[M].北京:清华大学出版社,2002.
    [2]韩林海.钢管混凝土结构—理论与实践(第2版)[M].北京:科学出版社,2007.
    [3]蔡绍怀.现代钢管混凝十结构(第1版)[M].北京:人民交通出版社,2003.
    [4]钟善桐.住宅建筑中推广钢管混凝十柱的优点[J].钢结构.2001,17(2):16-19.
    [5]高光虎.高层及多层钢结构住宅设计—介绍陆海城、中福城、库尔勒钢结构住宅[J].建筑钢结构进展.2001,(3):1-11.
    [6]郭兰慧.矩形钢管混凝土构件力学性能的理论分析和试验研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2006.
    [7]李俊峰.浅谈钢管混凝十结构的应用与优缺点[J].包钢科技,2001,27(3):92-95.
    [8]姜迎春,寇智勇,贾艳东等.钢管混凝土结构的发展、研究及应用[J].辽宁工学院学报.2004,24(2):62-65.
    [9]王克政.钢管混凝土试件侧向冲击的试验研究[D].太原:太原理工大学.2005.
    [10]刘亚玲.常见约束类型的钢管混凝土构件侧向冲击响应试验研究与数值分析[D].太原:太原理工大学.2005.
    [11]陈娟,王湛.加强环式钢管混凝土柱-钢梁节点的刚性研究[D].汕头大学硕士学位论文.2004,5.
    [12]李成玉,郭耀杰.钢管混凝土节点抗弯刚度非线性分析.钢结构.2007(6),Vol.22,No.96.33-37.
    [13]袁继雄,王湛.钢梁-钢管混凝土柱穿心节点约束刚度的研究[D].汕头大学硕士学位论文.2004.6.
    [14]王恒华,俞晓.H型钢梁与钢管柱刚性连接节点抗震性能研究[J]建筑结构学报(增刊1),2009.72-78.
    [15]李成玉,郭耀杰,李美东.钢管混凝土结构外加强环式节点刚性试验研究[J],国外建材科技,2005.第26卷第6期.14-18.
    [16]陈娟,王湛,袁继雄.加强环式钢管混凝土柱-钢梁节点的刚性研究[J],建筑结构学报,2004.Vol.25,No.4.43-49.
    [17]王燕,冯双,王玉田.钢框架刚性连接加强型节点滞同性能试验研究[J],土木工程学报,2011.5.Vol.44.No.5.57-68.
    [18]Chen W.F. Goto Y. and Liew J.Y. Stability Design of Semi-rigid Frames. Wiley-Interscience Publication,1996.
    [19]K. Kishi, A. Ahmed, N. Yabuki and W. F. Chen. Nonlinear Finite Element Analysis of Top-and Seat-angle with Double Web-angle Connections. Structural Engineering and Mechanics, 2001(2).
    [20]D.A.Nethrecot, Utilizations of experimentally obtained Connection Data in Assessing the Performance of Steel Frames, Proceedings, ASCE, Edited by W.F.Chen,1985,PP.13-19.
    [21]N.Kishi&W.F.Chen, Data Base of Steel Beam-to-Column Connections, Structural Engineering,CE-STR-86-26,Purdue University, Vol.Ⅰ&ⅡJuly,1986.
    [22]N.Kishi,W.F.Chen, Moment-Rotation of semi-rigid Connections, Structural Engineering, CE-STR-87-29,Purdue University,Sept,1987.
    [23]Azizinamini,J.H Bradburn and J.B Radziminsk. Static and Cyclic Behavior of Semi-Rigid Steel Beam-to-Column Connections, The civil engineering Department, University of South Carolina, Columbia, SC,1985.
    [24]郑廷银.H型钢框架梁柱节点的设计方法[J].南京建筑工程学院学报,1997.Vol.43,No.4.
    [25]郭兵,郭秉山,张宏伟.梁柱外伸式端板螺栓连接的M-θ关系[J].山东建筑工程学院学报,2001,16(3)
    [26]王燕,彭福明.多高层钢框架梁柱半刚性连接性能.建筑结构[J],2000,9.
    [27]王燕,彭福明,赵桂明.钢框架梁柱半刚性节点在循环荷载作用下的试验研究[J].工业建筑,2001(12).
    [28]孙静.钢管混凝土柱-钢梁框架结构梁柱节点刚度分析及其对框架抗震位移的影响研究[D].新疆大学硕士学位论文,2008.5.
    [29]王静峰,韩林海,郭水平.半刚性钢管混凝土框架端板节点试验研究及数值模拟[J].建筑结构学报(增刊2).2009.219-224
    [30]宗周红,林于东,林杰矩形钢管混凝土柱与钢梁半刚性节点的抗震性能试验研究[J].建筑结构学报.2004.Vol.25,No.6.29-36.
    [31]钢框架梁柱T型钢半刚性连接节点的性能研究[J].建筑结构.2006.8.Vol.36,No.8.6-9.
    [32]姚晋华,带约束拉杆异形钢管柱高性能混凝土24米高抛筑施工方法[J],广东建材,2009(4)91-93.
    [33]陈宗弼.广州新中国大厦结构设计[J].建筑结构学报.2000,21(3):2-9.
    [34]陈兆基,林兆富.广州新中国大厦试验模型动力计算分析[J].世界地震工程.2002,18(3):102-105.
    [35]赵伟成,丁漫原等.续昔日辉煌更创时代华章—广州新中国大厦建筑设计[J].南方建筑.1997,(4):53-57.
    [36]罗赤宇,李滨飞.浅谈结构新技术应用的关键问题[J].建筑设计管理.2002,(1):31-33.
    [37]周靖,蔡健.T形钢管混凝土偏压短柱弹塑性承载力分析[J].工业建筑,2006.36(5):87-92.
    [38]龙跃凌,蔡健.带约束拉杆L形钢管混凝土短柱轴压性能的试验研究[J].华南理工大学学报,2006.34(11):87-93.
    [39]赵毅.异形钢管混凝土短柱轴压性能研究[D].哈尔滨:哈尔滨工业大学硕士学位论文.2007.
    [40]左志亮,蔡健和朱昌宏.带约束拉杆L形钢管混凝土短柱的偏压承载力[J],工程力学,2010.7.Vol.27 No.7.161-167.
    [41]蔡健,左志亮,赵小芹和朱昌宏.带约束拉杆L形钢管混凝土短柱的偏压承载力试验研究[J], 建筑结构学报,2011.7.Vol.32 No.2.83.89.
    [42]杜国锋,徐礼华,徐浩然,温芳.钢管混凝土T形短柱轴压力学性能试验研究[J],华中科技大学学报(城市科学版),2008.9.Vol.25 No.3.189-194.
    [43]徐礼华,杜国锋,温芳,徐浩然.组合T形截面钢管混凝土柱正截面受压承载力性能试验研究[J],土木工程学报,2009.6.Vol.42 No.6.14-19.
    [44]贺红.异形(“L”+“T”)钢管混凝土组合柱的研究与应用[D],贵州大学.硕士研究生学位论文,2008.
    [45]张继承,沈祖炎,林振宇.异形钢管混凝土轴压短柱非线性分析[J],桂林理工大学学报,2011.2.Vol.31 No.1.80-85.
    [46]陈惠满,陈颖,焦俊婷.异形钢管混凝十柱柱截面承载力计算[J],厦门理工学院学报,2011.3.Vol.19 No.1.62-65.
    [47]王丹.T形、L形钢管混凝土柱抗震性能研究[D].博十后出站报告,2005,同济大学:上海.
    [48]傅冬,戴绍斌.L形钢管混凝十组合柱试验研究及有限元分析[D],武汉理工大学,硕士研究生学位论文,2010.
    [49]饶炜,戴绍斌.T形钢管混凝土组合柱试验研究及有限元分析[D],武汉理工大学,硕士研究生学位论文,2010.
    [50]张继承,沈祖炎,林振宇,罗金辉.L形钢管混凝土框架结构抗震性能试验研究[J].建筑结构学报.2010.Vol.31,No.8.1-7.
    [51]葛广全.T形钢管混凝土异形柱-钢梁框架节点性能研究[J].福建建材.2011,(2):11-13.
    [52]张继承,林振宇.低周反复荷载下异形钢管混凝土柱力学性能有限元分析[J],武汉工程大学学报,2010.5.Vol.32 No.5.61-65.
    [53]曹玉生,王卉娜,王东.异形钢管混凝土柱的延性[J].工业建筑.2008,38(增刊):473-475.
    [54]王丹,吕西林.T形、L形钢管混凝土柱抗震性能试验研究[J].建筑结构学报,2005,26(4):39-44.
    [55]李学平,吕西林.T、L形钢管混凝土柱的本构模型及非线性分析研究[J].建筑钢结构进展,2008,(4).56-62.
    [56]邱法维,钱稼如,陈志鹏.结构抗震实验方法[M].北京:科学出版社,2000.
    [57]陈娟.钢管钢纤维高强混凝土柱基本力学性能研究[D].武汉:武汉大学博士学位论文.2008.
    [58]姚振刚,刘祖华.建筑结构试验[M].上海:同济大学出版社,1998.
    [59]刘文吉.钢梁与混凝土墙刚接节点抗震性能试验研究[D].武汉:武汉理工大学硕士学位论文.2006.
    [60]湖南大学.建筑结构试验[M].北京:中国建筑工业出版社,1991
    [61]《钢及钢产品力学性能试验取样位置及试样制备》(GB/T2975-1998)[S].北京:中国建筑工业出版社,2001.
    [62]《金属拉伸试验试样》(GB6397-861531)[S].北京:中国计划出版社,2001.
    [63]《混凝土结构工程施工及验收规程》(GB50204-92)[S].北京:中国建筑工业出版社,2001.
    [64]《普通混凝土力学性能试验方法标准》(GB/T50081-2002)[S].北京:中国建筑工业出版社,2003.
    [65]《建筑抗震试验方法规程》(JGJ101-96)[S].北京:中国建筑工业出版社,1996.
    [66]唐九如.钢筋混凝土框架节点抗震[M].南京:东南大学出版社,1989.
    [67]凡红.钢管混凝十柱-钢梁框架节点及高层建筑结构抗震性能研究[D].武汉:武汉大学博十学位论文.2008.
    [68]戴绍斌.钢框架-混凝十筒住宅结构性能与配套技术研究[D].武汉:武汉理工大学博士学位论文.2004.
    [69]朱健.内埋型钢混凝土墙与钢梁连接节点的性能研究[D].武汉:武汉理工大学博士学位论文.2006.
    [70]黄俊.异形钢管混凝土组合柱抗震性能研究[D].武汉:武汉大学博士学位论文.2009.
    [71]李忠献.工程结构试验理论与技术[M].天津:天津大学出版社,2003.
    [72]王哲夫.钢梁-钢筋混凝十柱柱贯穿型节点受力性能研究[D].武汉:武汉理工大学硕十学位论文.2007.
    [73]周天华.方钢管混凝土柱-钢梁框架节点抗震性能及承载力研究[D].西安:西安建筑科技大学,2004.
    [74]Kwan, A.K.H. Local Deformations and Rotational Degrees of Freedom at Beam-wall Joints[J]. Computers and Structures,1993,48(4):615-625.
    [75]W.M.Jenkins, G.S.Tong, A.T.Prescott. moment-transmitting endplate connections in steel construction and a proposed basic for flush endplate design[J]. The structure engineer,1986, 64A (5)
    [76]荆军等.门式刚架轻型钢结构连接节点性能研究与设计.建筑结构,2000,4.
    [77]张利娟,石建军.对钢结构端板连接节点设计方法的探析.南华大学学报(理工版)2002,6.
    [78]Rafiq Hasan, Norimitsu Kishi, Wai-Fah Chen. A new nonlinear connection classification system. J. Construct. Steel Research,1998,47.
    [79]盛和太,喻海良,范训益,ANSYS有限元原理与工程应用实例大全[M].北京:清华大学出版社,2006.
    [80]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [81]黄象鼎,曾钟钢,马亚南.非线性数值分析的理论与方法[M].武汉:武汉大学出版社,2004.
    [82]Ishlinky I.General Theory of Plasticity with Linear Strain Hardening [J].Ukrainian Mathematical Zhurnal,Vol.6,1956,314-324.
    [83]Prager W.The Theory of Plasticity:A Survey of Recent Achievement[J].Proceeding of Mechanical Engineering, Vol.169,1955,41-57.
    [84]Zieger H. A Modification of Prager's Hardening Rule[J].Quarterly of Applied Mathematics, Vol.17,1959,55-65.
    [85]Hill K. Mathematical Theory of Plasticity [M].Oxford University, Oxford, England,1950.
    [86]Hodge P.G. Discussion to "A New Method of Analyzing Stresses and Strains in Working Hardening Solids"[J] Journal of Applied Mechanics, ASME, Vol.24,1989,481-484.
    [87]Axelsson K.& Samuelsson A. Finite Element Analysis of Elastic-Plastic Materials Displaying Mixed Hardening[J].International Journal of Numerical Method In Engineering, Vol.14, 1979,211-215.
    [88]陈惠发,A.F.萨里普著,余天庆,王勋文译,刘再华校泽.土木工程材料的本构方程(第一卷弹性与建模)[M].武汉:华中科技大学出版社,2001.
    [89]陈惠发著,余天庆,王勋文,刘再华译,刘西拉,韩大建校译.土木工程材料的本构方程(第二卷塑性与建模)[M].武汉:华中科技大学出版社,2001.
    [90]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994.
    [91]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.
    [92]过镇海.混凝土的强度和变形-试验基础和本构关系[M].北京:清华大学出版社,1997.
    [93]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [94]宋玉普.多种混凝十材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002.
    [95]俞茂宏.工程强度理论[M].北京:高等教育出版社,1999.
    [96]董毓利.混凝土非线性力学基础[M].北京:中国建筑工业出版社.1997.
    [97]赵均海.强度理论及其工程应用.北京:科学出版社,2003.
    [98]Scott A, Park R, Priestley MJM. Stress-strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates[J], ACI Structural Journal,1982,79 (1):13-27.
    [99]Karsan ID, Jirsa JO. Behavior of Concrete under Compressive of Loading[J], Journal of Structural Division, ASCE,1969,95(ST12).
    [100]Mander JB, Priestley MJN, Park R. Theoretical Stress-strain Model for Confined Concrete[J], Journal of Structural Engineering,1988,114(8):1804-1826.
    [101]Roeder CW, Cameron B, Brown CB. Composite Action in Concrete Filled Tubes[J], Journal of Structural Engineering,1999,125(5):477-484.
    [101]韩林海.钢管混凝土结构—理论与实践(第1版)[M].北京:科学出版社,2004.
    [102]Hibbitt,Karlson,Sorenson. ABAQUS Version 6.4:Theory Mannual, Users'Manual, Verification Manual and Example problems Manual [M]. Hibbitt,Karlson and Sorenson Inc, 2003.
    [103]A, B.P.G.. Coefficient of Friction for Steel on Concrete at High Normal Stress[J]. Journal of Materials Civil Engineering,1990,2(1):46-49.
    [104]Olofsson U, Holmgren M. Anvandning av en servo-hydraulisk drag-vridningsmaskin for friktionsmatning mellan stal och betong vid laga glidhastigheter, (Using a Servo Hydraulic Tension-Torsion Machine for Measurement of Friction at Low Sliding Speed. In Swedish)[M], Swedish National Testing and Research Institute, Boras, Sweden,1992.13.
    [105]Morishita Y, Tomii M, Yoshimura K. Experimental Studies on Bond Strength in Concrete Filled Circular Steel Tubular Columns Subjected to Axial Loads[M]. Transactions of Japan Concrete Institute,1979a:351-358
    [106]Morishita Y, Tomii M, Yoshimura K. Experimental Studies on Bond Strength in Concrete Filled Square and Octagonal Steel Tubular Columns Subjected to Axial Loads[M]. Transactions of Japan Concrete Institute,1979b:359-336
    [107]Schneider S P. Axially Loaded Concrete-filled Steel Tubes[J]. Journal of Structural Engineering,1998,124(10):1125-1138.
    [108]Susantha K A S, Ge H B,Usami T. Confinement Evaluation of Concrete-filled Box-shaped Steel Columns[J].Steel and Composite Structures,2001,1(3):313-328.
    [109]Hsuan-The Hu, Chiung Shiann Huang, Ming Hsien Wu, Yih Min Wu. Nonlinear Analysis of Axially Loaded Concrete-filled Tube Columns with Confinement Effect[J].Journal of Structural Engineering,2003,129(10):1322-1329.
    [110]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.1-239.
    [111]周天华.方钢管混凝土柱-钢梁框架节点抗震性能及承载力研究[D].西安:西安建筑科技大学,2004.
    [112]Neogi P.K,Sen H.K,Concrete-filled Tubular Steel Columns under Eccentric Loading,The Strut.Engr.47(5),1969.
    [113]Tomii,M. and Sakino.k, Elasto-plastic Behavior of Concrete Filled Square Steel Tubular Beam-columns,Trans.,Arch.,Inst.,Japan,1979.
    [114]Shakir-Khalil.H, and Zeghiche,Z.,Experimental Behavior of Concrete-filled Rolled Rectangular Hollow Section Columns,The Struct.Engr.67,1989.
    [115]ANSYS Installation and Configuration Guide for Windows,Electronic Releas,SAS IP,Inc.,1998.
    [116]ANSYS Theory Reference, Electronic Release, SAS IP,Inc.,1998.
    [117]ANSYS Element Reference, Electronic Release, SAS IP,Inc.,1998.
    [118]ANSYS Operation Reference, Electronic Release, SAS IP,Inc.,1998.
    [119]Willam,K.J., and Warnke,E.D., "Constitutive Model for the Triaxial Behavior of Concrete". Proceedings, Association for Bridge and Structural Engineering, Vol.19, ISMES, Bergamo,Italy,p.174(1975).
    [120]F.H. Wittman. Advances in fracture research, Proc. of Intern. Conf. On Fracture Cannes France, Vol.1,1981.4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700