用户名: 密码: 验证码:
自主式水下航行器的点镇定及编队控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋资源对于经济的发展和社会的进步来说至关重要,自主式水下航行器(Autonomous underwater vehicles,AUVs)是海洋探测、开发以及完成各类水下作业的重要工具。AUV的动态特性是一个比较复杂的非线性系统,其驱动行驶很不灵活,行驶的轨迹与期望路径相比往往不尽人意,且水下环境恶劣系统扰动源多,扰动力大,使得研究如何实现AUV的点镇定具有重要意义。随着海洋科学考察和海洋开发需求的增加,AUV应用领域的日趋扩大,人们开始关注利用多个AUV的协同作业,共同完成复杂任务的研究。多AUV编队问题是多AUV协调合作中的一个典型性的问题,所谓的编队控制是指多个机器人在到达目的地的过程中,要求在适应环境约束的条件下保持某种队形的控制技术。目前多AUV编队控制技术的研究处于起步阶段,还没有形成有关多AUV编队控制的一般研究方法。
     本文主要的研究内容和创新点现概括如下:
     1.建立低速运行情况下AUV运动的数学模型以及海浪力模型。通过对Fossen六自由度模型的简化,得到了线性部分与非线性部分分离的四自由度的AUV的数学模型和受外部扰动以及时滞作用下的AUV控制系统的数学模型。再依据海浪力学理论,给出能够描述在AUV运行中所受到的海浪力的数学模型。
     2.研究AUV非线性时滞系统的最优无静差点镇定问题。首先通过嵌入内模,构造了无静差扰动补偿器,并由其与原系统共同构成一个增广系统,然后研究由原系统与无静差补偿器构成的增广系统的最优点镇定问题。由极大值原理,得到了无扰动作用下的增广系统的两点边值问题。通过构造一个迭代序列将非系统的最优点镇定问题转化为求解非线性两点边值序列问题,证明了该迭代方程序列的解一致收敛于原系统的最优控制律。在每次迭代过程中,最优控制律的线性反馈部分是通过求解一个Riccati方程精确得到的,非线性补偿项则是线性伴随向量方程迭代序列的极限值。仿真实例验证了不同扰动情况下,所设计的无静差控制律的有效性。
     3.对于AUV非线性系统的点镇定问题提出一种线性分解控制策略。首先建立了AUV的三维空间运动模型,其次将该AUV系统的5个状态变量按顺序分解为3组,并按分组顺序将控制过程分为3个阶段完成控制任务,最后给出了每个阶段的系统控制律。通过对AUV三维空间的点镇定问题进行仿真,验证了该线性分解控制策略的有效性,且其能够在小能耗的情况下完成AUV的定点行驶。
     4.研究带有控制和状态时滞的AUV最优反馈镇定问题。利用状态变换,把带有控制时滞的AUV动态系统转化成没有控制时滞的系统,并设计了带有时滞记忆的最优反馈控制律,同时通过嵌入扰动补偿器,保证了AUV控制系统的稳定性。根据最优控制理论,得到既含有时滞项又含有超前项的两点边值问题。利用逐次逼近方法将问题转化为求解无时滞最优反馈项和最优时滞补偿项的解耦形式,无时滞最优反馈项由求解一个Riccati方程直接得到,最优时滞补偿项由迭代求解伴随向量序列近似求得。最后给出算法,并以仿真算例验证了该算法在不同时滞下的有效性,算法仅对向量方程进行迭代,收敛性好,时空需求低。
     5.基于输出反馈控制提出了一种多AUV的编队控制算法。首先,建立了一个编队跟踪控制模型。通过提出一个相似组合变换,将多AUV的编队控制问题转化成了整体系统的最优跟踪控制问题。针对由极大值原理导出的非线性两点边值问题,采用逐次逼近方法分别构造了已知初始条件和终端条件的两个微分方程迭代序列,对于无限时域的情形,给出并证明了最优跟踪控制律的存在性和唯一性。仿真算例验证了编队控制律的有效性和高效性。
     6.研究受外部扰动影响下多AUV的编队控制问题。外部扰动的的存在使编队稳定性变差,因此利用内模原理设计了扰动补偿器中,得到嵌入扰动补偿器的原AUV控制系统的增广系统。经过相似组合变换,得到一个组合后的多AUV控制系统,把原受持续扰动影响的AUV的编队控制问题转化为该组合系统的最优反馈控制问题,并依据该系统设计了最优反馈控制律,即原系统的最优编队控制律。理论分析和仿真算例验证了该编队控制策略的有效性和高效性。
Ocean resources have played a very important role in the development of economic society,Autonomous underwater vehicles (AUVs) are very useful tools in exploring, developing andutilizing of ocean resources. Due to the dynamic of AUVs are complicated nonlinear systemsand the inflexible driving charecteristics, the driving trajectory compared to the desired path isoften unsatisfactory. What’s worse, the external disturbances for AUV’s are complex and havelarge power caused by underwater environmental extremes. Therefore, researches onpoint-stabilization problems ofAUVs have important significance in theory and practice.
     With the increasing requirements of marine research and ocean exploring, it has paid moreattention to the AUVs collaborative work to complete complex tasks. The formation controlproblem is a typical one of cooperation and coordination of multiple AUVs. The formationproblem is a control technology, in which multiple AUVs keep a special formation in theprocess of destination under constraint conditions. Unfortunately, the research about multipleAUVs formation research is at the beginning stage, and there are not general control methodsfor multiple AUVs formation control.
     The major results and innovations of this dissertation are summarized as follows.
     1. Based on the characters of AUVs and wave force, the dynamic models for AUV's withlow speed and the wave force are constructed. By simplifying the Fossen’s six degrees model ofAUVs, the AUV's four degrees model is obtained, in which the linear terms and nonlinear termsare separated, and mathematical model with time delay under disturbances is built. Then, the mathematical model of AUVs under wave force disturbances is constructed by using the waveforce theory.
     2. The optimal zero steady-error to point-stabilization for AUV nonlinear systems withtime delay is considered. By using the inserted internal model, the zero steady-error disturbancecompensation and the augmented system are introduced. Then, the optimal point-stabilizationproblem is formulated based on the augmented system. Based on the maximum principle, thetwo-point boundary value problem (TPBV) without disturbance is obtained. By introducing asequence of iteration, the optimal problem for nonlinear systems is transformed into a nonlinearTPBV iteration problem, and the iterative sequences of the solution converging to the optimalcontrol law is proved. In each step of iteration, the feedback linear term of optimal control law isobtained from a Riccati equation, and the nonlinear compensation is the limitation of lineariterative sequences with vector equations. Simulation results demonstrate the effectiveness ofthe optimal zero steady-error control law.
     3. A linear decomposition control strategy for AUV point-stabilization problems isresearched. By proposing a3-D-Spacing dynamic model, decomposing AUV’s five statevariables into three groups according to the state’s order, the control task will be divided intothree stage control tasks based on group’s sequence, and the control law is proposed for eachcontrol process. The simulation of the point-stabilization for AUV’s3D-spacing dynamic modelshows the effectiveness of proposed decomposition control strategy, which completes the AUV’sfix-point driving with low consumption.
     4. The optimal feedback stabilization for AUV systems with delayed state and input isstudied. By using a state transformation, the AUV dynamic equation with input delay istransformed into a delay-free system. By designing the feedback control law with a delaymemory and an embedding disturbance compensation, the stability of the AUV control system is ensured. By using optimal theory, the TPBV problem with time-advance and time-delay terms isobtained. By using the successive approximation approach, the optimal problem is transformedinto the decoupling form of optimal feedback term without time delay and optimalcompensation term for time-delay, in which the optimal feedback terms without time delay is thesolution of the Riccati equation, and the optimal compensation for time delay is obtained fromthe limitation of linear iterative sequences with vector equations. Finally, the results ofsimulations show the effectiveness of the proposed algorithm. Because proposed algorithm onlyiterates the vector equation, it has good convergence and lower requirements about time andspace.
     5. The formation control algorithm for multiple AUVs is proposed based on an outputfeedback control. First, the framework of the formation tracking control is proposed. A similarcombination transform is proposed. And the formation control problem for multiple AUVs istransformed into an optimal tracking control for the multiple AUVs. The nonlinear TPBVproblem from the necessary condition of the maximum principle is introduced. The optimaltracking control law is obtained in infinite-time domain by using the successive approximationapproach to solve the adjoint vector sequence iteratively. The uniqueness and existence of theproposed tracking control law is proved. Simulation examples are employed to test the validityof the proposed formation control law.
     6. The formation control for multiple AUVs under external disturbances is researched.Due to the external disturbances, the stability of the formation system becomes worse. So, adisturbance compensation is designed by using the internal model principle. The argumentsystem is obtained by embedding the disturbance compensation into the original AUV controlsystems. By using the similar combination transformation, the composite multiple AUVs controlsystem is obtained. Then, the formation control for AUVs under external disturbances is reformed into an optimal feedback control problem for this composite control system, and thefeedback optimal formation control law is proposed. Simulation examples are employed to testthe validity of the proposed formation control law.
引文
[1] Murphy A J, Landamore M J, Birmingham R W. The role of autonomous underwatervehicles for marine search and rescue operations. Underwater Technology,2008,27(4):195~205
    [2] Incze M L. Low-cost, man-portable autonomous underwater vehicles for rapidenvironmental assessment. Marine Technology Society Journal,2008,42(4):4~11
    [3] Curtin T B, Crimmins D M, Curcio J, et al. Autonomous underwater vehicles: Trends andtransformations. Marine Technology Society Journal,2005,39(3):65~75
    [4] Zain Z M, Watanabe K, Izumi K, et al. A nonholonomic control method for stabilizing anX-AUV. Artificial Life and Robotics,2011,16(2):202~207
    [5] Christopher I B. On Brochett' necessary condition for stabilizability and the topology ofliapunov function N. Communications in Information and Systems,2008,8(4):333~352
    [6] Vanni F, Aguiar A P, Pascoal A. Nonlinear motion control of multiple AutonomousUnderwater Vehicles. Proceedings of the7th IFAC Conference on Control Applications inMarine Systems,2007.75~80
    [7] Yang E F, Gu D B. Nonlinear formation-keeping and mooring control of multipleautonomous underwater vehicles. IEEE-ASME Transactions on mechatronics.2007,12(2):164~178
    [8] Lapierre L, Jouvencel B. Robust nonlinear path-following control of an AUV. IEEEJournal of Oceanic Engineering,2008,33(2):89~102
    [9] Zhao S D, Yuh J K. Experimental study on advanced underwater robot control. IEEETransactions on Robotics,2005,21(4):695~703
    [10] Edelmann G F, Akal T, Hodgkiss W S, et al. An initial demonstration of underwateracoustic communication using time reversal. IEEE Journal of Oceanic Engineering,2002,27(3):602~609
    [11] Rouseff D, Jackson D R, Fox W L J, et al. Underwater acoustic communication bypassive-phase conjugation: Theory and experimental results. IEEE Journal of OceanicEngineering,2001,26(4):821~831
    [12] Sharif B S, Neasham J, Hinton O R, et al. A computationally efficient Dopplercompensation system for underwater acoustic communications. IEEE Journal of OceanicEngineering,2000,25(1):52~61
    [13] Yang T C. Temporal resolutions of time-reversal and passive-phase conjugation forunderwater acoustic communications. IEEE Journal of Oceanic Engineering,2003,28(2):229~245
    [14] Roy S, Duman T M, McDonald V, et al. High-rate communication for underwater acousticchannels using multiple transmitters and space-time coding: Receiver structures andexperimental-results. IEEE Journal of Oceanic Engineering,2007,32(3):663~668
    [15] Yoon S, Qiao C M. Cooperative search and survey using Autonomous UnderwaterVehicles (AUVs). IEEE Transactions on Parallel and Distributed Systems,2011,23(3):364~379
    [16] Giovanini L, Balderud J, Katebi R. Autonomous and decentralized mission planning forclusters of UUVs. International Journal of Control,2007,80(7):1169~1179
    [17] Fiorelli E, Leonard N E, Bhatta P, et al. Multi-AUV control and adaptive sampling inMonterey Bay. IEEE Journal of Oceanic Engineering,2006,31(4):935~948
    [18] Wood S, Nulph A, Howell B. Application of autonomous underwater vehicles. SeaTechnology,2004,45(12):10~14
    [19] Ageev M D. Application of solar and wave energies for long-range autonomousunderwater vehicles. Advanced Robotics,2002,16(1):43~55
    [20] Hemond H F, Mueller A V, Hemond M. Field testing of lake water chemistry with aportable and an AUV-based aass spectrometer. Journal of the American Society for MassSpectrometry,2008,19(10):1403~1410
    [21] Doole G J, Ramilan T, Pannell D J, et al. Framework for evaluating managementinterventions for water-quality improvement across multiple agents. EnvironmentalModelling and Software,2011,26(7):860~872
    [22] Goodman L, Wang Z. Turbulence observations in the northern bight of Monterey Bay froma small AUV. Journal of Marine Systems,2009,77(4):441~458
    [23] Kim K, Choi H S. Analysis on the controlled nonlinear motion of a test bed AUV-SNUUVI. Ocean Engineering,2007,34(8-9):1138~1150
    [24] Mayer L A. Frontiers in seafloor mapping and visualization. Marine geophysical researches.2006,27(1):7~17
    [25] Li W, Farrell J A, Pang S, et al. Moth-inspired chemical plume tracing on an autonomousunderwater vehicle. IEEE Transactions Robotics,2006,22(2):292~307
    [26] Edwards J R, Schmidt H, LePage K D. Bistatic synthetic aperture target detection andimaging with an AUV. IEEE Journal of Oceanic Engineering,2001,26(4):690~699
    [27] Wang D, Lermusiaux P F J, Haley P J, et al. Acoustically focused adaptive sampling andon-board routing for marine rapid environmental assessment. Journal of Marine Systems,2009,78(s): S393~S407
    [28] Ryan J P, Johnson S B, Sherman A, et al. Mobile autonomous process sampling withincoastal ocean observing systems. Limnology and Oceanography-Methods,2010,8:394~402
    [29] Evans J C, Keller K M, Smith J S, et al. Docking techniques and evaluation trials of theSWIMMER AUV: An autonomous deployment AUV for workclass ROVs. Proceedings ofthe Oceans Conference Record (IEEE),2001.520~528
    [30] Jones Thomas S. Inspection of composites using the automated ultrasonic scanning system(AUSS). Materials Evaluation,1985,43(6):746~753
    [31] Cowen S, Briest S, Dombrowski J. Underwater docking of autonomous undersea vehiclesusing optical terminal guidance. Oceans Conference Record (IEEE),1997,2:1143~1147
    [32] Healey A J, Good M R. NPS AUV II autonomous underwater vehicle testbed: Design andexperimental verification. Naval Engineers Journal,1992,104(3):191~202
    [33] Rish J W, Willcox S, Grieve R, et al. Operational testing of the battlespace preparationAUV in the shallow water regime. Proceedings of the Oceans Conference Record (IEEE),2001.123~129
    [34] Zimmerman R, D'Spain G L, Chadwell C D. Decreasing the radiated acoustic and vibrationnoise of a mid-size AUV. IEEE Journal of Oceanic Engineering,2005,30(1):179~187
    [35] Scamans G M, Creber D K., Stannard J H, et al. Aluminum fuel cell power sources forlong range unmanned underwater vehicles. IEEE Sympsium on Autonomous UnderwaterVehicle Technology,1994,179~186
    [36] Yoerger D R, Jakuba M, Bradley A M, et al. Techniques for deep sea near bottom surveyusing an autonomous underwater vehicle. International Journal of Robotics Research,2007,26(1):41~54
    [37] Hornfeld W. DeepC-The new deep water AUV generation. Proceedings of the InternationalConference on Offshore Mechanics and Arctic Engineering-OMAE,2003.713~721
    [38] Molnar L, Omerdic E, Toal D. Guidance navigation and control system for the Tethraunmanned underwater vehicle. International Journal of Control,2007,80(7):1050~1076
    [39] Maki T. Development of advanced secondary cables for the Kaiko. Sea Technology,2006,47(7):32~34
    [40]李一平,封锡盛.“CR01”6000m自治水下机器人在太平洋锰结核调查中的应用.高技术通,2001,11(1):85~87
    [41]李一平,燕奎臣.“CR-02”自治水下机器人在定点调查中的应用.机器人,2002,24(5):386~390
    [42] Biggs J, Holderbaum W. Optimal kinematic control of an autonomous underwater vehicle.IEEE Transactions on Automatic Control,2009,54(7):1623~1626
    [43] Binney J, Krause A, Sukhatme G S. Informative path planning for an autonomousunderwater vehicle. Proceedings of the IEEE International Conference on Robotics andAutomation ICRA,2010.4791~4796
    [44] Samson C. Control of chained systems application to path following and time-varyingpoint-stabilization of mobile robots. IEEE Transactions on Automatic Control,1995,40(1):64~77
    [45] Aguiar A P, Hespanha J P, Pascoal A M. Switched seesaw control for the stabilization ofunderactuated vehicles. Automatica,2007,43(12):1997~2008
    [46] Bhat S P, Bernstein D S. Lyapunov analysis of finite-time differential equations. AmericanControl Conference,1995.1831~1832
    [47] Moreau L. Stability of multiagent systems with time-dependent communication links.IEEE Transactions on Automatic Control,2005,50(2):169-182
    [48] Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems. SIAMJournal of Control and Optimization,2000,38(3):751~766
    [49] Bhat S P, Bernstein D S. Geometric homogeneity with applications to finite-time stability.Mathematics of Control, Signals and Systems,2005,17(2):101~127
    [50]李世华,丁世宏,田玉平.一类二阶非线性系统的有限时间状态反馈镇定方法.自动化学报,2007,33(1):101~103
    [51] Hong Y G, Yang G W, Cheng D Z, et al. Finite time convergent control using terminalsliding model. Journal of Control Theory and Applications,2004,(2):69~74
    [52] Feng Y, Yu X H, Man Z H. Nonsingular terminal sliding mode control of rigidmanipulators. Automatica,2002,38(12):2159~2167
    [53] Komanosvsly H, Macclam R. Developments in nonholonomic control systems. IEEEControl Systems Magazine,1995,115(6):20~36
    [54]李胜,王轶卿,陈庆伟等.一类非完整系统的有限时间镇定控制.系统工程与电子技术,2010,32(2):359~361
    [55]傅勤.基于LMI的大型互联线性系统的分散有限时间镇定.控制与决策,2010,25(5):763~768
    [56] Lizárraga D A, Aneke N P I, Nijmeijer H. Robust point stabilization of underactuatedmechanical systems via the extended chained form. SIAM Journal on Control andOptimization,2004,42(6):2172~2199
    [57] Hong Y G. Finite-time stabilization and stabilizability of a class of controllable systems.System&Control Letters,2002,46(4):231~236
    [58]李开生,张慧慧.双体多驱动小车非完整约束点镇定问题.机器人,2004,26(5):425~433
    [59] Sun S L, Cui P Y. Path tracking and a practical point stabilization of mobile robot.Robotics and Computer-Integrated Manufacturing,2004,20(1):29~34
    [60] Park K, Chung H Y, Lee J G. Point stabilization of mobile robots via state-space exactfeedback linearization. Robotics and Computer-Integrated Manufacturing,2000,16(5):353-363
    [61]李世华,田玉平.非完整移动机器人的有限时间跟踪控制算法研究.控制与决策,2002,20(7):750~754
    [62] Peeters R L M, Hanzon B. Identifiability of homogeneous systems using the stateisomorphism approach. Automatica,2005,41(3):513~529
    [63] Aguiar A P, Pascoal A M. Dynamic positioning and way-point tracking of underactuatedAUVs in the presence of ocean currents. International Journal of Control,2007,80(7):1092~1108
    [64] Lim A E B, Zhou X Y. Stochastic optimal LQR control with integral quadratic constraintsand indefinite control weights. IEEE Transactions on Automatic Control,1999,44(7):1359~1369
    [65] Yen N Z, Wu Y C. On a general optimal algorithm for multirate output feedbackcontrollers of linear stochastic periodic systems. IEEE Transactions on Automatic Control,1993,38(6):939~943
    [66] Zames G. Feedback and optimal sensitivity EM dash model reference transformations,multiplicative seminorms, and approximate inverses. IEEE Transactions on AutomaticControl,1981, AC-26(2):301~320
    [67] Grimble M. J. LQG feedforward/feedback stochastic optimal control and marineapplication. Transactions of the Institute of Measurement and Control,1999,21(1):30~48
    [68] Li B, Hullender D, DiRenzo M. Nonlinear induced disturbance rejection in inertialstabilization systems. IEEE Transactions on Control Systems Technology,1998,6(3):421~427
    [69] Ugrinovskii V A, Petersen I R. Minimax LQG control of stochastic partially observeduncertain systems. SIAM Journal on Control and Optimization,2002,40(4):1189~1226
    [70] Zuo L, Nayfeh S A. Structured H2optimization of vehicle suspensions based onmulti-wheel models. Vehicle System Dynamics,2003,40(5):351~371
    [71] Zhang W, Huang Y, Zhang H. Stochastic H2/Hinfinity control for discrete~time systemswith state and disturbance dependent noise. Automatica,2007,43(3):513~521.
    [72] Muradore R, Picci G. Mixed H2/Hinfinity control: The discrete-time case. Systems andControl Letters,2005,54(1):1~13
    [73] Gupta V, Hassibi B, Murray R M. Optimal LQG control across packet-dropping links.Systems and Control Letters,2007,56(6):439~446
    [74] Chen T, Liu X, Lu W. Pinning complex networks by a single controller. IEEE Transactionson Circuits Systems I,2007,54(6):1317~1326
    [75] Bodson M, Douglas S C. Adaptive algorithms for the rejection of sinusoidal disturbanceswith unknown frequency. Automatica,1997,33(12):2213~2221
    [76] Marino R., Santosuosso G L, Tomei P. Robust adaptive compensation of biaseddisturbances with unknown frequency. Automatica,2003,39(10):1755~1761
    [77] Marino R, Santosuosso G L, Tomei P. Robust adaptive observers for nonlinear systemswith bounded disturbances. IEEE Transactions on Automatic Control,2001,46(6):967~972
    [78] Ilchmann A., Ryan E P. On tracking and disturbance rejection by adaptive control. SystemsControl Letters,2004,52(2):137~147
    [79] Wang W, Tang G Y. Feedback and feedforward optimal control for offshore jacketplatforms. China Ocean Engineering,2004,18(4):515~526
    [80] Ma H, Tang G Y, Zhao Y D. Feedback and feedforward optimal control for offshorestructures subjected to irregular wave forces. Ocean Engineering,2006,33(7):1105~1117
    [81] Tang G Y. Feedforward and feedback optimal control for linear systems with sinusoidaldisturbances. High Technology Letters,2001,7(4):16~19
    [82] Wai R J, Chang L J. Adaptive stabilizing and tracking control for a nonlinearinverted-pendulum system via sliding~mode technique. IEEE Transactions on IndustrialElectronics,2006,53(2):674~692
    [83] Koshkouei A J, Zinober A S I, Burnham K J. Adaptive sliding mode backstepping controlof nonlinear systems with unmatched uncertainty. Asian Journal of Control,2004,6(4):447~453
    [84] Ito H. Local stability and performance robustness of nonlinear systems with structureduncertainty. IEEE Transactions on Automatic Control,1999,44(6):1250~1254
    [85] Tuan H D, Hosoe S. On robust and Hinfinity controls for a class of linear and bilinearsystems with nonlinear uncertainty. Automatica,1997,33(7):1373~1377
    [86] Wang Q, Stengel R F. Robust control of nonlinear systems with parametric uncertainty.Automatica,2002,38(9):1591~1599
    [87] Chang P H, Jung J H A. Systematic method for gain selection of robust PID control fornonlinear plants of second-order controller canonical form. IEEE Transactions on ControlSystems Technology,2009,17(2):473~483
    [88] Ang K H, Chong G, Li Y. PID control system analysis, design, and technology. IEEETransactions on Control Systems Technology,2005,13(4):559~576
    [89] Lu Y S. Sliding-mode control based on internal model principle. Proceedings ofMechanical Engineers Part I-Journal of Systems and Control engineering,2007,221(I3):395~406
    [90] Lu J, Brown L J. Internal model principle-based control of exponentially damped sinusoids.nternational Journal of Adaptive Control and Signal Processing,2010,24(3):219~232
    [91] Richard R, George W. Internal model based tracking and disturbance rejection for stablewell-posed systems. Automatica,2003,39(9):1555~1569
    [92] Zhang L J, Qi X, Pang Y J. Adaptive output feedback control based on DRFNN for AUV.Ocean Engineering,2009,36(9-10):716~722
    [93] Nambisan P R, Singh S N. Multi-variable adaptive back-stepping control of submersiblesusing SDU decomposition. Ocean Engineering,2009,36(2):158~167
    [94] Liu H Y, Wang D W, Poh E. Non-linear output feedback tracking control for AUVs inshallow wave disturbance condition. International Journal of Control,2008,81(11):1806~1823
    [95]晏蔚光,陈全世.一种基于前馈~反馈复合控制方式的制动稳定性控制方法.信息与控制,2005,34(1):26~29
    [96] Cristi R, Papoulias F A, Healey A J. Adaptive sliding mode control of autonomousunderwater vehicles in the dive plane, IEEE Journal of Oceanic Engineering,2002,15(3):152~160
    [97] Lee P M, Hong S W, Lim Y K, et al. Discrete-time quasi-sliding mode control of anautonomous underwater vehicle. IEEE Journal of Oceanic Engineering,1999,24(3):388~395
    [98] Zhou H Y, Liu K Z, Feng X S. State feedback sliding mode control without chattering byconstructing Hurwitz matrix for AUV movement. International Journal of Automation andComputing,2011,8(2):262~268
    [99] Narimani M, Loueipour M. Robust control of Autonomous Underwater Vehicles (AUVs).Electrical and Computer Engine,2008,4(7):207~210
    [100]Naik M S, Singh S N. State-dependent Riccati equation-based robust dive plane control ofAUV with control constraints, Ocean Engineering,2007,34(11-12):1711~1723
    [101]Bozorg M, Jalili H, Eftekhari S A. Robustness of autonomous under water vehicle controlin variable working conditions. Journal of Marine Science and Technology,2007,12(4):232~239
    [102]Skogestad S. Simple analytic rules for model reduction and PID controller tuning. Journalof Process Control,2003,13(4):291~309
    [103]Astrom K J, Panagopoulos H, Hagglund T. Design of PI controllers based on non-convexoptimization. Automatica,1998,34(5):585~601
    [104]Krohling R A, Rey J P. Design of optimal disturbance rejection PID controllers usinggenetic algorithms. IEEE Transactions on Evolutionary Computation,2001,5(1):78~82
    [105]Rebarber R, Weiss G. Internal model based tracking and disturbance rejection for stablewell-posed systems. Automatica,2003,39(9):1555~1569
    [106]De L S M, Sagastabeitia I. Compensation of uncertain continuous systems by using theinternal model control principle. International Journal of Systems Science,1995,26(5):1153~1180
    [107]Wen C. Robust adaptive tracking using the internal model principle. International Journalof Control,1996,64(1):127~140.
    [108]Zarikian G, Serrani A. Harmonic disturbance rejection in tracking control ofEuler-Lagrange systems: An external model approach. IEEE Transactions on ControlSystems Technology,2007,15(1):118~129
    [109]Marconi L, Isidori A, Serrani A. Input disturbance suppression for a class of feedforwarduncertain nonlinear systems. Systems and Control Letters,2002,45(3):227~236
    [110]Isidori A, Byrnes C I. Output regulation of nonlinear systems. IEEE Transactions onAutomatic Control,1990,35(2):131~140
    [111]Akyildiz I F, Pompili D, Melodia T. Underwater acoustic sensor networks: Researchchallenges. Ad Hoc Networks,2005,3(3):257~279
    [112]唐功友,王芳.具有小时滞的线性大系统的次优控制.控制理论与应用,2003,20(1):121~124
    [113]Tang G Y, Xie N, Liu P. Sensitivity approach to optimal control for affine nonlineardiscrete-time systems. Asian Journal of Control,2005,7(4):448~454
    [114]Tang G Y. Suboptimal control for nonlinear systems: a successive approximation approach.Systems and Control Letters,2005,54(5):429~434
    [115]Tang G Y, Wang H H. Successive approximation approach of optimal control for nonlineardiscrete-time systems. International Journal of Systems Science,2005,36(3):153~161
    [116]刘永清,唐功友.大型动力系统的理论与应用:滞后、稳定与控制.广州:华南理工大学出版社,1992
    [117]Yanushevsky R T. Lyapunov's approach to analysis, synthesis and robustness of nonlinearsystems with delays. Nonlinear Analysis,1997,30(3):1469~1478
    [118]Huang C M., Tsai J S H, Shieh L S. The observer-based linear quadratic sub~optimaldigital tracker for analogy systems with input and state delays. Optimal ControlApplications and Methods,2003,24(4):197~236
    [119]Marzban H R, Razzaghi M. Optimal control of linear delay systems via hybrid block-pulseand Legendre polynomials. Journal of the Franklin Institute,2004,341(3):279~293
    [120]Singly T, Vadali S R. Robust time-optimal control: frequency domain approach. Journal ofGuidance, Control, and Dynamics,1994,17(2):346~353
    [121]Tsai J S H, Shieh C S, Sun Y Y. Observer-based hybrid control of sampled-data uncertainsystem with input time delay. International Journal of General Systems,1999,28(4~5):315~349
    [122]Kumar R P, Kumar C S, Sen D. A Discrete time-delay control of an autonomousunderwater vehicle: Theory and experimental results. Ocean Engineering,2009,36(1):74~81
    [123]Zhang L C, Xu D M, Li J, et al. Design and experiment of automatic pilot for long-rangAUVs. Proceedings of the3rd IEEE Conference on Industrial Electronics and Applications,2008.1824~1827
    [124]Wang Y K, Kang F J, Yang H Z, et al. Design of hardware-in-loop simulation system forSINS/GPS/DVL integrated navigation system of AUV. Journal of System Simulation,2008,20(8):2030~2033
    [125]Radzak M Y, Arshad M R. AUV controller design and analysis using full-state feedback.WSEAS Transactions on Systems,2005,4(7):1083~1086
    [126]Li J H, Lee P M. Design of an adaptive nonlinear controller for depth control of anautonomous underwater vehicle. Ocean Engineering,2005,32(17-18):2165~2181
    [127]Balch T, Arkin R C. Behavior-based formation control for multi-robot teams. IEEETransactions on Robotics and Automation,1998,14(6):926~939
    [128]Desai J, Ostrowski J P, Kumar V. Modeling and control of formations of nonholonomicmobile robots. IEEE Transactions on Robotics and Automation,2001,17(6):905~908
    [129]Khatib. Real-time obstacle avoidance for manipulators and mobile robots. InternationalJournal of Robotics Research,1986,5(1):290~298
    [130]Su G K, Suzuki I. Distributed algorithms for formation of geometric patterns with manymobile robots. Journal of Robotic Systems,1996,13(3):127~139
    [131]Beard R W, Lawton J, Hadaegh F Y. A coordination architecture for spacecraft formationcontrol. IEEE Transactions on Control Systems Technology,2001,9(6):777~790
    [132]Dunbar W B, Murra Y R M. Distributed receding horizon control with application tomulti-vehicle formation stabilization. Automatica,2006,42(4):549~558
    [133]Xiang X B, Xu G H, Zhang Q X, et al. Coordinated control for multi-AUV systems basedon hybrid automata. Proceedings of the IEEE International Conference on Robotics andBiomimetics,2007.2121~2126
    [134]Yu S C, Ura T. A system of multi-AUV interlinked with a smart cable for autonomousinspection of underwater structures. International Journal of Offshore and PolarEngineering,2004,14(4):264~272
    [135]Yu S C, Ura T. Experiments on a system of multi-AUV interlinked with a smart cable forautonomous inspection of underwater structures. International Journal of Offshore andPolar Engineering,2004,14(4):273~283
    [136]Liu S, Wang D, Poh E. Non-linear output feedback tracking control for AUVs in shallowwave disturbance condition. International Journal of Control,2008,81(11):1806~1823
    [137]Cui R, Ge S S, Ee How B V, Choo Y S. Leader-follower formation control ofunderactuated AUVS with leader position measurement. Proceedings of the IEEEInternational Conference on Robotics and Automation,2009.979~984
    [138]Barisic M, Vukic Z, Miskovic N. The virtual potential field method as a tool for formationguidance of AUVs. Proceedings of the11th IASTED International Conference on Controland Applications,2009.47~53
    [139]Fossen T I. Guidance and Control of Ocean Vehicle. John Wiley&Son, Chichester, UK,1994
    [140]Healey A J, Lienard D. Multivariable sliding-mode control for autonomous diving andsteering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering,1993,18(3):327~339
    [141]Lancaster P, Lerer L, Tismenetsky M. Factored forms for solutions of AX X B=C and XAX B=C in companion matrices. Linear Algebra and its Applications,1984,62:19~49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700