用户名: 密码: 验证码:
舰船核动力系统二回路控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制系统是舰船核动力装置的“神经中枢”系统,其控制品质的优劣直接影响着核动力装置功能的实现和运行安全性。舰船核动力装置二回路系统的控制策略,是实现核动力装置的高度自动化、提高核动力装置二回路系统的集散控制水平、保障系统运行可靠性和安全性的有效手段。对于提高舰船核动力装置的使用性能和作战能力具有重要的意义。
     本文在查阅、分析国内外陆上核电站与核潜艇等相关文献资料的基础上,采用两相集总参数化建模方法,首次建立了舰船核动力装置二回路系统的简化集总参数数学模型。主要包括蒸汽发生器的简化集总参数动态数学模型、汽轮机的数学模型、冷凝器的简化集总参数动态数学模型、凝给水泵的数学模型以及管道与阀门的简化模型等。利用Matlab/Simulink平台对上述各子系统数学模型进行了建模仿真,采用模块化建模的思想对子系统数学模型进行了标准化封装。在此基础上,对核动力二回路各子系统的动态特性进行了仿真计算,仿真结果表明了本文所提出的二回路系统数学模型的正确性。这为制订舰船核动力系统二回路的控制策略奠定了理论基础。
     基于本文建立的舰船核动力装置二回路系统的仿真模型,根据查阅的陆上核电站与核潜艇控制系统的设计方法,设计了基于经典控制理论的常规PID的核动力装置二回路的控制系统,包括反应堆运行控制系统、蒸汽排放控制系统、蒸汽发生器的水位控制系统、汽轮发电机的转速-功率控制系统、冷凝器的水位控制系统、过冷度控制系统、真空度控制系统、给水泵的转速控制系统等。为了验证本文所设计的控制系统的有效性,对二回路各子系统进行了变工况动态仿真计算,仿真结果表明了所提出的常规PID控制系统能够满足舰船核动力控制系统的控制要求。
     在常规PID控制的基础上,根据模糊控制理论,设计了基于常规PID控制系统的蒸汽发生器的模糊水位控制系统,包括模糊水位控制、模糊自适应PID水位控制、模糊-PID复合水位控制。仿真结果表明模糊控制具有超调量小、调节时间短、鲁棒性强等优点,特别适用于蒸汽发生器这类具有多变量、大滞后、强耦合的非线性系统。在此基础上,根据神经网络控制理论,将模糊控制与神经网络控制相结合,设计了蒸汽发生器的自适应神经网络模糊水位控制系统。仿真结果表明自适应神经网络模糊控制,既具有模糊控制的推理能力,又具有神经网络的自适应、自学习能力。模糊神经网络控制是一种更加完善的智能控制策略。
     系统层面上,为了解决核动力二回路系统内外能量供求不平衡的问题,设计了系统级的智能协调控制系统,即反应堆-蒸汽发生器-汽轮机的协调控制系统。在二回路系统主蒸汽压力偏差过大时,协调控制系统能够提前打开蒸汽发生器的给水阀以及提前发出指令控制反应堆控制棒动作,同时限制汽轮机进汽阀的过快打开,既保证了汽轮机负荷响应的快速性,又保证了主蒸汽压力的稳定性。
     最后,在对核动力装置二回路系统仿真的基础上,提出了一套适用于新型舰船核动力的控制策略,包括系统级的控制策略与子系统控制策略,即系统协调控制策略、蒸汽发生器的水位控制策略、汽轮发电机组的综合控制策略、泵阀的集总控制策略以及核动力装置二回路的运行管理。
The control system is the “nerve centre” system of marine nuclear power plant, itscontrol quality directly influences the function realization of marine nuclear power plant. Thecontrol strategy of the secondary circuit of marine nuclear power plant is the effective meansfor realizing the higher automatization of the nuclear power plant, improving the level of thedistributing control system (DCS) of the secondary circuit system of the nuclear power plantand improving the credibility of the secondary circuit system. Therefore, it has greatsignificance for improving the functional performance and the combat capability of marinenuclear power plant.
     Correlative literature and datum which are about the nuclear power plant and nuclearsubmarines at home and abroad are referred and analyzed. This paper firstly establishes thesimplified lumped parameter models for the secondary circuit of the nuclear power system, byusing two-phase lumped parameter modeling methods. These models mainly comprise thesimplified lumped parameter mathematic model for steam generator, turbine mathematicmodel, the simplified lumped parameter mathematic model for condenser, pump mathematicmodel and the simplified model for pipeline and valve. These mathematic models above aresimulated on Matlab/Simulink platform. The idea of modularization modeling is implementedfor the encapsulation of each subsystem models. Modeling calculation is carried out on thebasis of the simulation models to verify the dynamic characteristics. The correctness of thesecondary circuit mathematic models is shown by the simulation results which lay atheoretical foundation for formulating the control strategy of the secondary circuit of marinenuclear power plant.
     The conventional PID control system of the secondary circuit of nuclear power plantsbased on classical control theory is designed, using the simulation model of the secondarycircuit system established before. The design method of control system for nuclear powerplants and nuclear submarines is referred. The control systems of the secondary circuit ofnuclear power system mainly contain reactor operation control system, steam dischargingcontrol system, steam generator water level control system, steam turbine-generator unitspeed-power control system, condenser water level control system, vacuum and condensatesubcooling degree control system and pump speed control system. Modeling calculation ofreducing load is carried out to verify the validity of the control systems designed above. Thesimulation results prove that the conventional PID control system of the secondary circuit based on classical control theory could meet the need of the targets of marine nuclear powercontrol system.
     The fuzzy control system for water level control of steam generator is designed based onconventional PID control, according as fuzzy control theory. Three level control methods aredesigned: fuzzy level control, fuzzy adapting PID level control and fuzzy-PID level control.Simulation results show that fuzzy control has such excellence as smaller overshoot, shorteradjusting time and stronger robustness. It especially fits to nonlinear systems like steamgenerator with multivariable, large time lagged and stronger coupling. Adaptive neuro-fuzzylevel control system of steam generator is designed based on the fuzzy control system,according as neuron network control theory. Simulation results show that the adaptiveneuro-fuzzy level control system has not only inference ability of fuzzy control system, butalso adaptive and self-studying abilities. It is a more perfectly intelligent control strategy.
     The intelligent coordinated control system (CCS), namely reactor-steam generator-steamturbine CCS, at system level is designed to solve the problem of inside and outside energyunbalance of the secondary circuit. The intelligent coordinated control system acts when themain steam pressure deviation of the secondary circuit is bigger than the set value. It couldopen the feedwater valve of steam generator and command control rods to act in advance,meanwhile, restrict the steam valve of steam turbine not to open quickly. As a result, therapidity of turbine’s response to power load is ensured, so is the stability of the main steampressure.
     Finally, a series of control strategies based on the modeling simulation above areproposed for our national new type marine nuclear power plants, including the controlstrategies at system level and the control strategies at device level: the overall coordinatedcontrol strategy, the water level control strategy of steam generator, the integrated controlstrategy of steam turbine, the centralized control strategy of pumps and valves and theoperation management of the secondary circuit of nuclear power plants.
引文
[1]王兆祥,刘国健,储嘉康.船舶核动力装置原理与设计[M].国防工业出版社,1980.10
    [2]王晓武.国外常规潜艇AIP技术现状及发展趋势分析[J].舰船科学技术,2009,31(1):172-175.
    [3]刘洪刚,朱德宝. AIP技术发展及其对常规潜艇作战使用的影响[J].四川兵工学报,2011,32(9):27-28,38.
    [4]孙中宁.核动力设备[M].哈尔滨工程大学出版社,2004.8
    [5]王广军,辛国华.热力系统动力学及其应用[M].科学出版社,1997.9
    [6]蒸汽发生器编写组.蒸汽发生器[M].原子能出版社,1982.6
    [7] S. J. Green, G. Hetsroni. PWR steam generators[J]. Int. J. Multiphase Flow,1995,21(Suppl.):1-97.
    [8] Tay-Jian Liu. Reflux condensation behavior in a U-tube steam generator with orwithout noncondensables[J]. Nuclear Engineering and Design,2001,204(1-3),221-232.
    [9]秋穗正,郭玉君,张金玲等.蒸汽发生器瞬态特性分析的数学模型[J].西安交通大学学报,1995,29(5):112-117.
    [10]秋穗正,郭玉君,张金玲等.核动力装置蒸汽发生器数值模拟计算[J].核科学与工程,1995,15(4):289-295.
    [11]秋穗正,张金玲,郭玉君等.核电厂蒸汽发生器水位控制特性计算研究[J].核动力工程,1997,18(2):140-145,157.
    [12]张龙飞,张大发. U形管蒸汽发生器模型及动态仿真[J].锅炉技术,2006,37(4):9-11,39.
    [13]张龙飞,张大发,王少明.船用U形管蒸汽发生器模型及其动态仿真应用[J].舰船科学技术,2006,28(3):39-41.
    [14] G. LeCoq, M. Metaich, M. Slassi-Sermou. A simple model for the study of dynamicinstabilities in steam generators[J]. Nuclear Engineering and Design,1990,122:41-52.
    [15] R. Bhatnagar, P. Munshi, K. S. Ram. A simplified two-fluid model of a steamgenerator for digital simulation of operational transients[J]. Ann. nucl. Energy,1985,12(7):349-355.
    [16]宋京凯,郭海红,姚祺峰等.蒸汽发生器工作过程建模及仿真分析[J].核科学与工程,2007,27(1):27-31.
    [17]张贵勤,单建强.整体式预热器U型管蒸汽发生器数学模型及动态模拟[J].核动力工程,1995,16(2):171-176.
    [18]史觊,蒋明瑜,马云青.核电站蒸汽发生器数字化仪表与控制对象实时仿真系统技术研究[J].核动力工程,2004,25(1):32-36.
    [19]陈可,张琴舜,沈秀中等.蒸汽发生器实时动态仿真[J].锅炉技术,2001,32(11):1-6,32.
    [20] M. Tahir Khaleeq, Lang Wengpeng, He Guoseng. Transient Analysis of SteamGenerator in PWR Nuclear Power Plant[J]. Journal of ShangHai University,1998,2(2):127-134.
    [21] M. R. Yeung, P. L. Chan. Development and validation of a steam generator simulationmodel[J]. Nuclear Technology,1992,92:309-314.
    [22] T.W. Kerlin, E.M. Katz, J. Freels et al. Dynamic Modelling of Nuclear SteamGenerators[J], Boiler Dynamics and Control in Nuclear Power Stations, BNES,London, vol.1, pp:249-258.
    [23] L.N.F. Guimaraes, N.S. Oliveira Jr., E.M. Borges et al.. Derivation of a nine variablemodel of a U-tube steam generator coupled with a three-element controller[J]. AppliedMathematical Modelling,2008,32(6):1027-1043.
    [24] Gee Y. Han. A mathematical model for the thermal-hydraulic analysis of nuclear powerplants[J]. Int. Comm. Heat Mass Transfer,2007,27(6):795-805.
    [25] Dong Zhe, Huang Xiaojin, Zhang Liangju. Output feedback dissipation control ofnonlinear systems and application to water-level control for a U-tube steamgenerator[C].2008Chinese Control and Decision Conference, Yantai, China, Jul.2008, pp:5038-5043.
    [26]于达仁,阎志刚,楼安平等.核电站汽轮机数学模型[J].核动力工程,1999,20(1):76-78,83.
    [27]陈婴.核电汽轮机的现状[J].热力透平,2006,35(2):104-107.
    [28]杨晓辉,单世超.核电汽轮机与火电汽轮机比较分析[J].汽轮机技术,2006,48(6):404-406,438.
    [29]朱守寨,迟毅林.小型背压式汽轮机液压调节系统的建模与动态特性仿真研究[J].机床与液压,2006,6:163-166,168.
    [30]吕昊,叶志浩,郭灯华等.汽轮机自动调节传递函数与动态特性研究[J].船电技术,2008,28(1):26-29.
    [31]郭建团.浅谈汽轮机调速系统的特性及转子的数学分析[J].科技信息,2008,21:96-97.
    [32]时献江,王渝,邵俊鹏.工业汽轮机调节系统动态特性的数学模型及仿真[J].汽轮机技术,2005,47(2):99-100,104.
    [33]张欣,张志坤,赵俊清.汽轮机动态特性的计算机仿真[J].黑龙江电力技术,1996,18(3):151-154.
    [34]葛晓霞,缪国钧.汽轮机调节系统动态特性的数学模型及其应用[J].汽轮机技术,2001,43,(1):20-23.
    [35] Le Huu Son. Sam results of analyzing of marine steam turbine propulsion plant in thetransient states using the mathematical model[C]. Ocean’04-MTS/IEEETecho-Ocean’04:Bridges acrossthe Oceans-Conference Proceedings, Kobe, Japan,Nov.2004, pp:2296-2301.
    [36] Ali Chaibakhsh, Ali Ghaffari. Steam turbine model[J]. Simulation Modeling Practiceand Theory,2008,16:1145-1162.
    [37]徐向东,朱为民,沈来宏.600MW核电汽轮机数学模型及仿真[J].汽轮机技术,1991,33(5):5-11.
    [38]张杨伟,蔡琦,于雷.船用核汽轮机装置仿真研究[J].汽轮机技术,2006,48(1):40-43.
    [39] Qidan Zhu, Yu Zhang, Jingqiao Zhang. Design of Fuzzy Neural Network Controller forMarine Steam Turbine System[C]. Fourth International Conference on NaturalComputation, Jinan, China, Oct.2008, pp:353-356.
    [40] T. Tahri, S. A. Abdul-Wahab, A. Bettahar et al.. Simulation of the condenser of theseawater greenhouse Part I–Theoretical development[J]. Journal of Thermal Analysisand Calorimetry,2009,96(1):35-42.
    [41] T. W. Botsch, K. Stephan, J.L. Alcock et al.. Modelling and simulation of the dynamicbehaviour of a shell-and-tube condenser[J]. Int. J. Heat Mass Transfer.1997,40(17):4137-4149.
    [42] P.K. Bansal, T.C. Chin. Modelling and optimisation of wire-and-tube condenser[J].International Journal of Refrigeration,2003,26:601-613.
    [43] M.R. Malin. Modelling flow in an experimental marine condenser[J]. Int. Comm. HeatMass Transfer,1997,24(5):597-508.
    [44]崔凝,王兵树,马士英等.电站冷凝器动态数学模型的研究与应用[J].系统仿真学报,2002,14(2):156-159.
    [45]崔凝.大型电站冷凝器动态数学模型的研究与应用[D].华北电力大学,2000.
    [46]张江红,胡念苏.基于Simulink的电站凝结水系统仿真建模[J].电力科学与工程,2004,2:75-78.
    [47]史达明,周全,曹祖庆.冷凝器动态数学模型的研究[J].汽轮机技术,1989,31(3):36-39,52.
    [48]丁燕,顾昌,方琼.300MW机组冷凝器动态数学模型的建立与仿真[J].汽轮机技术,2004,46(5):327-329,332.
    [49]丁燕.冷凝器动态数学模型及故障诊断系统研究[D].武汉大学,2005.
    [50]李大鹏,赵元松.基于热力系统动力学的冷凝器动态仿真建模[J].计算机仿真,2006,23(8):60-63.
    [51]王武超,赵竞全.冷凝器动态性能仿真研究[J].工程热物理学报,2005,26(4):631-634.
    [52]倪何,程刚,孙丰瑞.某型舰用冷凝器动态数学模型的建立和应用[J].计算机仿真,2007,24(7):337-341.
    [53]薛若军,田兆斐,赵强.核动力装置冷凝器实时仿真[J].核动力工程,2008,29(5):119-123.
    [54]史觊,孙建华,付明玉.一种新型船舶核动力装置冷凝器模型与动态仿真方法[J].哈尔滨工程大学学报,2001,22(4):8-11.
    [55]马良玉,段新会,贡献等.变速调节锅炉给水泵实时仿真数学模型[J].华北电力大学学报,1998,25(4):64-69.
    [56]胥建群,高润田,周克毅.一种新型的给水泵通用数学模型[J].汽轮机技术,1999,41(6):334-338.
    [57]李敬,崔振东,李明等.变速给水泵特性的数学模型[J].华北电力学院学报,2004,24(6):24-27.
    [58]杨军虎,侯华.火电厂锅炉给水泵优化运行的数学模型[J].甘肃工业大学学报,1999,25(2):52-55.
    [59]胡庆大.浅析调节阀的流量特性在设计中的选用[J].黑龙江石油化工,1995,4:41-43.
    [60]李勇,曹丽华,刘莎.汽轮机调节汽门数学模型的建立方法研究[J].汽轮机技术,2008,50(4):241-243.
    [61]邱志强,邹海,孙建华.船用蒸汽发生器给水控制系统仿真试验平台的设计与实现[J].舰船科学技术,2008,30(1):136-140.
    [62]刘宏春,丁福光,付明玉.水泵动态建模在凝给水系统中的应用[J].应用科技,2004,31(9):32-34.
    [63] HengLiang Shen. Advanced feedwater control for next generation nuclear powersystems[D]. North Carolina State University,2006.
    [64] Walter Herbert Strohmayer. Dynamic modeling of vertical U-tube steam generators foroperational safety systems[D]. Massachuasetts Institute of Technology,1982.
    [65]郭海红.蒸汽发生器工作过程动态仿真[D].哈尔滨工程大学,2007.3
    [66]汤建秋.蒸汽发生器液位控制系统的研究与仿真[D].上海交通大学,2008.4
    [67]陈莹莹.蒸汽发生器子系统控制方法研究[D].哈尔滨工程大学,2004.3
    [68]张冰.基于FCS的蒸汽发生器水位控制系统研究[D].哈尔滨工程大学,2007.3
    [69] JUNG IN CHOI. Nonlinear digital computer control for the steam generator system ina pressurized water reactor plant[D]. Massachuasetts Institute of Technology,1987.
    [70]周刚,彭威,张大发.核动力蒸汽发生器水位控制方法分析[J].原子能科学技术,2004,38(suppl.):19-23.
    [71] Man Gyun Na. Design of a Steam Generator Water Level Controller via the Estimationof the Flow Errors[J]. Ann. Nucl. Energy,1995,22(6):367-376.
    [72]陶春波.蒸汽发生器水位控制系统的PLC与变频器实现[J].中国造船,2007,48(4):104-111.
    [73] Futao Zhao, Jing Ou, Wei Du. Simulation modeling of nuclear steam generator waterlevel process—a case study[J]. ISA Transactions,2000,39(2):143-151.
    [74] Dong Hwa Kim. Nuclear Steam Generator Level Control by a Neural Network-Tuning2-DOF PID Controller[C]. International Symposium on Computational Intelligence forMeasurements and Applications, Taibei, Taiwan, Mar.2004, pp:1183-1188.
    [75] Zhe Dong, Xiaojin Huang, Junting Feng et al.. Dynamic model for control systemdesign and simulation of a low temperature nuclear reactor[J]. Nuclear Engineering andDesign,2009,239(10):2141-2151.
    [76] Ali Feliachi, Lotfi A. Belblidia. Optimal level controller for steam generators inpressurized water reactors[J]. IEEE Transactions on Energy Conversion,1987,EC-2(2):161-167.
    [77] Ali Feliachi, Lotfi A. Belblidia. Suboptimal level controller for steam generators inpressurized water reactors[J]. IEEE Transactions on Energy Conversion,1988,3(2):278-284.
    [78]陈莹莹,付明玉,熊华胜.蒸汽发生器几种水位控制方法的对比与分析[J].应用科技,2004,30(10):37-40.
    [79]杨柳,袁景淇.压水堆蒸汽发生器水位的前馈模型预测控制[J].控制工程,2008,15(3):250-252,272.
    [80] Mayuresh V. Kothare, Bernard Mettler, Manfred Moraril et al. Linear parametervarying model predictive control for steam generator level control[J]. Computers chem.Engineering,1997,21(suppl. I):861-866.
    [81] Ke Hu, Jingqi Yuan. On switching H∞controllers for nuclear steam generator waterlevel: A multiple parameter-dependent Lyapunov functions approach[J]. Annals ofNuclear Energy,2008,35(10):1857-1863.
    [82] Ke Hu, Jingqi Yuan. Multi-model predictive control method for nuclear steamgenerator water level[J]. Energy Conversion and Management,2008,49(5):1167-1174.
    [83]宋梅村,张宇声.蒸汽发生器水位的模糊自适应PID控制[J].船海工程,2007,36(5):55-58.
    [84] Irving E., Bihoreaux C.. Adaptive control of non-minimum phase system application tothe PWR steam generator[C]. The19th Control and Decision Conference, AlbuquerqueN.H. USA, Dec.1980, pp:274-279.
    [85]滕树杰,张乃尧,崔震华.核动力装置蒸汽发生器水位的分层模糊自适应控制[J].控制与决策,2002,17(6):933-936.
    [86]滕树杰,张乃尧,崔震华.压水堆蒸汽发生器水位的分层自适应模糊控制[J].核动力工程,2003,24(3):281-284.
    [87]段素珍,张乃尧,崔震华.压水堆蒸汽发生器水位模糊控制器的设计方法[J].清华大学学报,2006,46(9):1581-1584,1588.
    [88] Zhou Gang, Chen Xin, Ye Weicheng et al. Identification of Dynamics for NuclearSteam Generator Water Level Process Using RBF Neural Networks[C]. The EighthInternational Conference on Electronic Measurement and Instruments, Xian, China,Aug.2007, pp:3379-3383.
    [89] R. Masini, E. Padovani, M.E. Ricotti et al.. Dynamic simulation of a steam generatorby neural networks[J]. Nuclear Engineering and Design,1999,187:197-213.
    [90] Sudath R. M., Min-Soeng Kim, Ju-Jang Lee. Adaptive Neurofuzzy Controller toRegulate UTSG Water Level in Nuclear Power Plants[J]. IEEE Transaction on NuclearScinece,2005,52(1):421-429.
    [91] H. Habibiyan, S. Setayeshi, H. Arab-Alibeik. A fuzzy-gain-scheduled neural controllerfor nuclear steam generators[J]. Annals of Nuclear Energy,2004,31:1765-1781.
    [92] Shuangxin Wang, Yan Jiang, Hui Yang. Chaos Optimization Strategy onFuzzy-immune-PID Control of the Turbine Governing System[C]. Proceedings of the2006IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing,China, Oct.2006, pp:1594-1598.
    [93] A. Khodabakhshian, M. Edrisi. A new robust PID load frequency controller[J]. ControlEngineering Practice,2008,16:1069-1080.
    [94] Pavel Hejzlar, Olga Ubra, Jaroslav Ambroz. A computer program for transient analysisof steam turbine generator overspeed[J]. Nuclear Engineering and Design,1993,144(3):469-485.
    [95] T.D. Younkins, L.H. Johnson. steam turnine overspeed control and behavior duringsystem disturbances[J]. IEEE Transactions on Power Apparatus and Systems,1981,PAS-100(5):2504-2511.
    [96]降爱琴.汽轮机转速控制系统的分析[J].科学之友,2006,Apr.(B):8-9.
    [97]潘维加,韩芹,袁刚.汽轮机功频控制机理的分析[J].汽轮机技术,2008,50(1):23-25.
    [98]苏杰,夏国清,张伟.汽轮机系统的鲁棒预测控制仿真研究[J].控制系统,2007,23(8):4-6.
    [99]孙建华,汪伟,余海燕.基于模糊-PID的汽轮机转速控制系统[J].工业控制与应用,2008,27(1):27-29,33.
    [100] Guihua Han, Lihua Chen, Junpeng Shao et al.. Study of Fuzzy PID Controller forIndustrial Steam Turbine Governing System[C]. International Symposium onCommunications and Infoemation Technologies2005, Beijing, China, Oct.2005,pp:1228-1232.
    [101] Shi Xiaoping, Wang Zicai. Simulation Study of a New Method to SynchronouslyControl Rotate Speed and Power of a Steam Turbine[J]. JOURNAL OF SYSTEMSIMULATION,2003,15(6):823-825,840.
    [102]秦爱民,张涓.660MW西门子汽轮机组自启动控制策略及实现[J].河北电力技术,2006,25(6):36-39.
    [103]韩剑辉,张维波.汽轮机旁路系统控制方式设计[J].哈尔滨理工大学学报,2007,12(2):23-26.
    [104]纪云锋.抽汽汽轮机组DEH系统的解耦控制[J].液压与气动,2007,5:49-50.
    [105] Wiktor Bolek, Jerzy Sasiadek, Tadeusz Wisniewski. Two-valve control of a largesteam turbine[J]. Control Engineering Practice,2001,10:365-377.
    [106] F. Jurado, J. Carpio. Improving distribution system stability by predictive control of gasturbines[J]. Energy Conversion and Management,2006,47:2961-2973.
    [107]李潇潇,王宣银,李福尚.基于PLC单片机的汽轮机调节汽阀自动控制系统的研究[J].机床与液压,2006,18:193-196.
    [108]钟艳春,邵俊鹏,王渝等.基于PLC的小型工业汽轮机控制系统[J].哈尔滨理工大学学报,2007,12(2):56-58,62.
    [109]钟艳春,邵俊鹏,王渝.基于PLC的工业汽轮机控制系统数学模型及仿真[J].机械工程师,2007,2:65-67.
    [110]黄兆荣.浅谈汽轮机控制[J].化工设计通讯,2007,33(4):43-47.
    [111]赵鹏燕. AC800F自动控制系统在汽轮发电机组上的应用[J].冶金动力,2008,127(3):73-75.
    [112]姚永钢,王莉,郝吉廷.凝结器水位监测与控制方式的改进[J].河南冶金,2006,14(6):52-53.
    [113]余天星,单军,王鹤.汽轮机冷凝器真空控制系统设计[J].控制工程,2006,13(suppl.):89-92.
    [114]刘定平,肖蔚然.基于神经网络和混合遗传算法的冷凝器真空优化控制[J].汽轮机技术,2006,48(1):52-54.
    [115]刘维亭,张冰,朱志宇.主冷凝器模糊控制系统设计[J].电子科技大学学报,2006,35(3):356-358.
    [116]鲁峰,潘维加.600MW单元机组给水全程控制系统分析与仿真[J].自动化与仪器仪表,2007,133(5):8-10,25.
    [117]刘久斌,李德桃.锅炉给水泵控制系统的仿真研究[J].动力工程,2004,24(4):526-528.
    [118]杨春霞.凝汽式机组循环水泵的优化运行方式分析[J].江苏电机工程,2008,27(1):65-68.
    [119]吕剑虹,陈来九,石江陵.125MW机组凝结水系统控制技术的改进[J].动力工程,2003,23(2):2313-2316.
    [120]吴剑恒,俞金树,蔡振威.变频控制在热电厂凝泵中的应用[J].能源技术,2007,28(4):244-248.
    [121]马训华.模糊控制、变频调速技术在发电厂凝结水系统中的应用[J].中国科技信息,2007,20:60,62.
    [122]陈宝义,王志民,白友光.发电厂凝结水泵采用变频调速的控制策略[J].安徽电力,2007,24(4):55-57.
    [123] Primary and secondary circuit pressure control at a nuclear power plant[S]. STUK,2006.3.24
    [124] P. Colonna, H. van Putten. Dynamic modeling of steam power cycles. PartI-Modelingparadigm and validation[J]. Applied Thermal Engineering,2007,27:467-480.
    [125] H. van Putten, P. Colonna.Dynamic modeling of steam power cycles.Part II-Simulationof a small simple Rankine cycle system[J]. Applied Thermal Engineering,2007,27:2566-2582.
    [126]葛斌,吴毅.压水堆机组二回路热力系统实时仿真研究[J].中国电机工程学报,2002,22(6):142-145.
    [127]孙建华,汪伟,郑可为.船用核动力装置二回路PID神经网络解藕控制研究[J].哈尔滨工程大学学报,2007,28(6):656-659,668.
    [128]林萌,胡锐,杨燕华.核电厂控制与保护系统动态仿真[J].核动力工程,2004,25(6):562-566.
    [129]胡锐,杨燕华,林萌等.核电站控制保护及辅助系统仿真方法研究[J].核动力工程,2006,27(1):80-84.
    [130] Zhang Yongsheng, Ma Yunyi. A Simplified Lumped Parameter Model for U-TubeSteam Generator[C], The International Conference on Electrical and ControlEngineering,WuHan, China, Jun.2010, pp253-256.
    [131] Zhang Yongsheng, Ma Yunyi, Tang Ying. Research on the Condensation and FeedwaterControl System for Nuclear Power Plant[C], The2010International Conference onComputer Application and System Modeling, TaiYuan, China, Oct.2010, Vol.3,pp63-66.
    [132] Liang Chen, Cuizhu Wang, Yang Yu et al. The research on boiler drum water levelcontrol system based on self-adaptive fuzzy-PID[C].2010Chinese Control andDecision Conference, Xuzhou, China, May,2010, pp:1582-1584.
    [133] Wei Peng and Da-fa Zhang. Research on Fuzzy Control for Steam Generator WaterLevel[C].2010International Conference on Computer, Mechatronics, Control andElectronic Engineering, Changchun, China, Aug.,2010, pp:527-529.
    [134] Wei Zhang, Guoqing Xia and Xinqian Bian. Research on Fuzzy-PID Swith controllerApplied to Pressure Control of Once-through Steam Generator[C].2010InternationalConference on Electronics and Information Engineering, Kyoto, Japan, Aug.,2010,vol.2, pp:319-324.
    [135] Yonghong Huang, Nianping Li, Yangchun Shi et al. Genetic Adaptive Control forDrum Level of a Power Plant Boiler[C]. IMACS Multiconference onComputerEngineering in Systems Applications, Beijing, China, Oct.2006, pp:1965-1968.
    [136] Pu Han, Xin-Jin Mao, Hai-Rong Sun et al. Adaptive Neural Network Control for DrumWater Level Based on Fuzzy self-Tuning[C]. Proceeding of the Fifth InternationalConference on Machine Learing and Cybernetics, Dalian, China, Aug.2006,pp:314-318.
    [137] Xue-kui Wang, Xu-Hong Yang, Gang Liu et al. Adaptive Neuro-Fuzzy InferrenceSystem PID Control for SG Water Level of Nuclear Power Plant[C]. Proceeding of theEighth International Conference on Machine Learing and Cybernetics, Baoding, China,Jul.2009, pp:567-572.
    [138] Wei Zhang, Guoqing Xia, Jie Su et al. Research on Multi-variable Fuzzy PredictiveControl Based on Integrated Model of secondary System of the Nuclear PowerPlant[C]. International Conference on Intelligent Control and Information Processing,Dalian, China, Aug.2010, pp:54-58.
    [139] Wei Zhang, Xinqian Bian, Hegao Cai et al. Research on Fuzzy Coordinated controlbased on fuzzy neural network Applied to Pressure Control of Once-through SteamGenerator[C]. International Conference on Information and Automation, Harbin,China, Jun.2010, pp:1641-1645.
    [140] Zhang Yongsheng, Ma Yunyi. Research on Fuzzy Control System of the Water Levelfor Steam Generator[C], The International Conference on Electrical Engineering andAutomatic Control2010, Zibo, China, Nov.2010, Vol.1, pp:379-381.
    [141]刘光亚,凌球.现代常规潜艇的小堆AIP技术[J].核技术,2008,31(2):152-156.
    [142]曹志荣.潜艇用小型低功率反应堆技术分析与研究[J].
    [143] MESMA AIP系统提高了巴基斯坦海军“阿哥斯塔”90B型潜艇的作战潜能[J].2008年欧洲水下防务技术展译文集,2009:184-190.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700