用户名: 密码: 验证码:
焚烧炉二恶英排放特性及关键控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来中国越来越多的生活垃圾、危险废物以及医疗垃圾焚烧炉在不断投入运行。然而,在运行过程中的剧毒性物质二恶英的超标排放是所有焚烧炉所不能忽略的问题,而且引起了一系列的社会问题。本文针对现今焚烧炉运行过程中的问题进行研究,对生活垃圾、危险废物以及医疗垃圾焚烧炉的二恶英排放特性进行了调查研究,并针对性地通过相关控制方法探讨了降低二恶英排放的主要因素。另外,开发了针对飞灰和烟气中二恶英减排的新型设备和技术,通过相关的实验论证了设备的可行性和控制效果。研究的主要结果如下:
     (1)本文通过对典型的流化床生活垃圾焚烧炉二恶英排放特性进行调查分析,发现流化床在检测条件下当无活性炭喷射时其PCDD/Fs毒性浓度排放在0.073-14.8ng I-TEQ/Nm3之间,当有活性炭喷射时在0.064-4.70ng I-TEQ/Nm3之间,飞灰的PCDD/Fs浓度在254-8200ng I-TEQ/kg之间,新安装的布袋除尘器对PCDD/Fs的去除能力比旧布袋明显要高;烟气在锅炉中就存在异相催化生成的de novo反应,提高炉膛的燃烧温度对PCDD/Fs的生成有重要的作用,但不是影响PCDD/Fs排放的主要原因,烟气经净化设备的冷却过程是PCDD/Fs超标排放的主要原因;活性炭喷射能显著提高布袋除尘器的PCDD/Fs去除效率,而且新布袋条件下的去除效率要明显高于旧布袋条件,但是运行较久的布袋由于“记忆效应”的影响,即使活性炭喷射条件下也不能保证PCDD/Fs的达标排放;垃圾焚烧低负荷条件下的PCDD/Fs生成能力要强于高负荷条件,不同焚烧负荷也引起重金属的改变,其在飞灰中的重金属浓度除Cu外随焚烧负荷的增加而增加;
     (2)本文研究的3个医疗废物焚烧炉烟气中PCDD/Fs排放差距较大,炉渣中的PCDD/Fs毒性浓度要比飞灰中小1-2个数量级,3个医疗废物焚烧炉的PCDD/Fs排放因子表明医疗废物焚烧炉的排放因子普遍要高于生活垃圾焚烧炉;危险废物焚烧炉处于活性炭长期喷射条件时,短暂停止喷射并不会造成出口尾气的PCDD/Fs浓度增加,但是对于长期无活性炭喷射的焚烧炉而言,活性炭的喷射对PCDD/Fs的去除效果比较明显,而且活性炭喷射量越大其去除效果也越加明显;危险废物焚烧炉在起炉过程中PCDD/Fs排放是总烟气排放的重要组成部分,本研究表明,焚烧炉起炉阶段PCDD/Fs在单位时间内的排放能力要比正常运行条件高56倍,Start-up阶段的PCDD/Fs排放量为年总排量的55.5%,I-TEQ排放量为50.5%;氯苯在起炉和正常运行条件下的排放特性跟PCDD/Fs类似,但是在浓度上要高PCDD/Fs两到三个数量级。对氯苯跟PCDD/Fs可能的关联研究发现,高氯代的氯苯如HxCBz同PCDD/Fs浓度的关联性较好;然而,同I-TEQ关联最好的是1.2,4,5-TeCBz,是实际危险废物焚烧炉的出口烟气排放中PCDD/Fs的最佳候选指示物。
     (3)本文利用模拟飞灰研究SO2抑制二恶英生成的机理,发现当反应温度为300。C时PCDD/Fs的生成能力最强;SO:对反应中飞灰生成PCDD/Fs能力的抑制作用非常明显,而且随着温度的升高,其抑制作用增加;反应后通入SO2对PCDD/Fs抑制效果不是很明显,因此本文研究认为SO2对PCDD/Fs的抑制机理主要通过对催化剂如CuCl2的失活,而不是抑制气相的生成或者与PCDD/Fs本身参与反应;通过对反应过程中无机物质转归的模拟,发现当无SO2时,300℃前CuCl2能保持稳定,但是当温度继续增加后其分解,导致催化活性降低,模拟结果很好地印证了本实验中300℃时最大PCDD/Fs生成的现象;当有SO2时,模拟结果表明其抑制PCDD/Fs生成的机理是,一是将具有催化活性的CuCl2转变为无催化活性的CuSO4,二是减少主要反应元素C12的生成量,而且将最适生成温度从低温转移到高温。
     (4)本文对危险废物焚烧飞灰(HFA)与生活垃圾焚烧飞灰(MFA)进行比较,发现HFA的比表面要远大于MFA, HFA具有更小的颗粒直径分布,而且在10μm以下的分布要远大于WFA;通过热释放化学动力学分析表明,飞灰在低温时发生反应的活化能较低,高温时的活化能较高,约为低温条件下的两个数量级,其可能发生残炭气化的化学反应。红外谱图分析表明,低温时产物主要是H2O和CO2,应该是物理的升温反应引起的气体的挥发;高温时残炭的气化生成H2O和CO2,在碳含量过高时,有部分的CO生成;飞灰在氮气气氛处理时PCDD/Fs的去除能力在300℃时便能满足大幅度降解的要求,温度增加时去除能力更为显著,PCDD/Fs去除的主要原因是脱氯和降解的反应的结果;气流速度提高能导致飞灰中PCDD/Fs去除效率的增加,但是在脱附烟气中,当流速度增加到4cm/s时,气相中PCDD/Fs浓度和I-TEQ浓度显著增加;而且不同种类的飞灰,尽管原始飞灰中PCDD/Fs浓度不大一致,热处理后的PCDD/Fs都较小,但是脱附至烟气中PCDD/Fs的浓度却明显不同;飞灰在热处理应用平台中的应用表明,热处理后PCDD/Fs浓度的总去除效率为66.9%, I-TEQ浓度的总去除效率为54.3%,PCDD/Fs主要分布在飞灰上,说明热处理技术在含有高浓度PCDD/Fs飞灰处理中应用的可行性。
     (5)本文通过硫基抑制剂在实际危险废物焚烧炉中的应用,发现硫铁矿和硫酸铵作为抑制剂跟危险废物的掺烧能较大幅度增加烟气中的SO2浓度,能提高PCDD/Fs抑制剂的氛围浓度。硫基抑制剂的掺烧对烟气排放的PCDD/Fs减排能力相对较小,但是对整体的排放因子减量率为50%以上;基于飞灰热处理及硫基循环抑制二恶英生成与排放的应用平台的应用表明系统对SO2有一定程度的积累,而且外源硫基的添加能明显增加系统内的SO2浓度,硫铁矿作为外源硫基在系统内SO2积累能力要明显强于气体SO2作为外源硫基;应用平台初始运行下应用平台的运行虽然能在一定程度上降低PCDD/Fs排放的浓度,但是其降低程度有限。飞灰热处理的能力随着SO2积累能力的增加而提高,同时整体的PCDD/Fs排放因子也随着系统的运行而减少;应用平台在长期运行下布袋出口的PCDD/Fs排放会显著增加,可能的原因是“记忆效应”的影响,但是对于长期运行条件下的PCDD/Fs排放控制更具有效果,整体排放因子的减量率能达到80%以上,而且当硫铁矿作为外源硫基时,在10%的配比下能保证90%以上的PCDD/Fs排放因子减排,而且烟气的PCDD/Fs能保证在0.1ng1-TEQ/Nm3左右。
In recent years, more and more municipal solid waste, hazardous waste and medical waste incinerators continue to put into operation. However, excessive emissions of highly toxic substance of dioxin during combustion can't be ignored in all incinerators, and also raises some social problems. The problems during operation of incinerators nowadays in China were studied in the thesis, the dioxin emission characteristics in municipal solid waste, hazardous waste and medical waste incinerators was investigated, and the main factors to reduce the dioxin emission related to control methods were discussed in target. In addition, new equipment and technology for dioxin emission reduction in fly ash and flue gas were developed, and related experiments were carried out to demonstrate the feasibility of the device and the control effect. The main findings are as follows:
     (1) The dioxin emission characteristics in typical fluidized bed municipal solid waste incinerators were surveyed and analyzed, and found that the emissions of toxic PCDD/Fs when activated carbon was not sprayed in the testing conditions was between0.073-14.8ng I-TEQ/Nm3. and between0.064-4.70ng I-TEQ/Nm3was found when was sprayed, the PCDD/Fs in fly ash was between254-8200ng I-TEQ/kg, and the newly installed bag filter was much better than aged one in relate to removal efficiency; heterogeneous catalysis formation of de novo synthesis already existed in boiler, the increase of combustion temperature in the furnace was important in the formation of PCDD/Fs, but not the main reason affecting the PCDD/Fs emissions, the cooling process of flue gas passing through air pollution control advices was the main reason for excessive emissions of PCDD/Fs; activated carbon spraying can significantly improve the removal efficiency of bag filter, and newly installed bag filter was more useful than aged one, however, due to "memory effect" existed in aged bag filter, the activated carbon spraying condition can't even guarantee that PCDD/Fs emission was lower than standard required; the PCDD/Fs formation ability under low combustion load was higher than the high combustion load, the different combustion loads could lead to the change of heavy metals emission, which was found that all concentrations of tested heavy metals except for Cu in fly ash increased with the increase of combustion load;
     (2) The emission of PCDD/Fs among three experimented medical waste incinerators varied huge different, the toxic concentration PCDD/Fs in slag was1-2orders of magnitude lower than that in fly ash. the PCDD/Fs emission factors in three medical waste incinerators indicates that the emission factor in medical waste incinerators is generally higher than in municipal solid waste incinerators; if long-term spraying condition was operated in a hazardous waste incinerator, a brief suspension of spraying does not result in the increase of PCDD/Fs in stack, but for long-term non-activated carbon spraying condition, the spraying condition is obviously very important for the removal of PCDD/Fs. incinerator, and the removal efficiency increase with enhanced spraying amount; the PCDD/Fs emission during start-up process of the hazardous waste incinerator was most important part of total emission, the results in this study showed that the PCDD/Fs emissions capacity in per unit time during start-up process was56times higher than normal operating condition, the amout of PCDD/Fs emission in start-up stage was about55.5%of total annual emission, and the amout of I-TEQ emission in start-up stage was about50.5%of total annual emission; similar emission characteristics of chlorobenzenes under start-up and normal operating conditions was seen, but the concentration was two to three orders of magnitude higher than PCDD/Fs. The correlation of chlorobenzenes and PCDD/Fs was also studied, and found that the higher chlorinated chlorobenzenes such as HxCBz were much correlated with PCDD/Fs concentration; however, the best correlated chlorobenzenes with the I-TEQ was1,2,4.5-TeCBz, which turns out to be the best candidate of PCDD/Fs indicators at stack of real hazardous waste incinerator.
     (3) A simulated fly ash was used to study the inhibition mechanism of SO2on dioxin, and found that when the reaction temperature was300C could generated most PCDD/Fs; SO2could obviously inhibit the PCDD/Fs formation in the fly ash, and the inhibition increased with the increase of reaction temperature; it was not very clear of inhibition effect when SO2reacted after fly ash reaction, which suggests that the inhibition mechanism of SO2on PCDD/Fs formation is mainly inactivating of catalyst, such as CuCl2, rather than inhibiting of gas phase formation or reacting with PCDD/Fs itself; rely on simulation of inorganic substances translation during the reaction, it was found that CuCl2could remain stable when temperature was lower than300C without SO2reaction, but it could decompose when the temperature continued to increase, which resulted in the reduction of catalytic activity, the simulation results confirms the phenomena in the experiment that maximum PCDD/Fs formation happened in300C very well; when SO2existed, the simulation results show that the PCDD/Fs inhibition mechanism is that, first to translate CuCl2with catalytic activity into non-catalytic activity of CuSO4. second to reduce the formation of Cl2which is the major element during reaction, and to transfer the optimum formation temperature from low to high temperature.
     (4) Hazardous waste incinerator fly ash (HFA) and municipal solid waste incinerator fly ash (MFA) were compared and found that the specific surface area of the HFA is much larger than the MFA, HFA has a smaller particle diameter distribution, and the distribution which is less than10μm is much more than WFA; The analysis of thermal desorption chemical kinetics showed that the reaction of fly ash at low temperature with low activation energy, at high temperature with high activation energy, which is about two orders of magnitude higher than in the low-temperature condition, and possibly due to its gasification chemical reaction of residual carbon. IR spectra analysis showed that the main products at low temperature were H2O and CO2, which might be caused by the physical reaction of volatile gases; the main products at high temperature of residual carbon gasification were H2O and CO2and when the carbon content was high enough could generate partial CO; the PCDD/Fs removal efficiency in fly ash under N2atmosphere treated with thermal process shows that300C was able to meet the requirement of substantial degradation, and the removal efficiency elevated significantly with the increase of temperature, which mainly due to effects of dechlorination and degradation processes; the increase of flow rate could enhance the removal efficiency of PCDD/Fs in fly ash, but in the desorbed flue gas, when the flow rate increased to4cm/s, PCDD/Fs and I-TEQ concentrations in gas phase increased significantly; and with different types of fly ash, in spite of the different PCDD/Fs concentrations level in original fly ashes. PCDD/Fs concentrations could be reduced into low level after thermal treatment, but with obviously different PCDD/Fs concentrations which desorbed into the flue gas:the thermal treatment of fly ash in pilot scale plant showed that the removal efficiency of PCDD/Fs and I-TEQ concentration were66.9%and54.3%respectively, because the PCDD/Fs are mainly distributed in fly ash, it is feasible to thermal treat with fly ash with high concentration of PCDD/Fs.
     (5) Sulfur-based inhibitors was used in a real hazardous waste incinerator, pyrite and ammonium sulfate as inhibitors co-combusted with the hazardous waste could increase the concentration of SO2in the flue gas. which could improve the inhibitor atmosphere. Co-combustion of sulfur-based inhibitors was relatively small effect to the PCDD/Fs emission reduction in flue gas, but the overall emission factor reduction efficiency could be larger than50%; the application of sulfur-based recycling and fly ash thermal treatment combination platform indicated a certain accumulation of SO2and the addition of exogenous sulfur-based inhibitors could increase the SO2concentration within the system, pyrite used as an exogenous sulfur could accumulate significantly more SO2in the system than gas SO2Although the debugging run under the new system test platform could reduce the PCDD/Fs emission in a certain extent but with limited extent. The thermal treatment capacity of fly ash increased with the increase of SO2accumulation capacity, at the same time, the whole PCDD/Fs emission factor reduced correspondingly; after long run, the PCDD/Fs emission in the outlet of pilot system increase significantly, which possibly due to "memory effect", but it was more effective of PCDD/Fs emission control for the long-term operating condition, the overall emission factor reduction efficiency could reach more than80%, and when pyrite was used as exogenous sulfur-based inhibitor could ensure more than90%reduction of PCDD/Fs emission factors and when the pyrite was10%to total treated fly ash, the PCDD/Fs emission could guarantee to lower than0.1ng I-TEQ/Nm3.
引文
Abad, E., Adrados, M.A., Caixach, J., Rivera, J. Dioxin abatement strategies and mass balance at a municipal waste management plant. Environmental Science & Technology,2001,36(1):92-99.
    Adams, B., Buekens, A., Ex, W., Joannes, J. Dioxin-emission from a MSWI related to memory effects in a 2-stage wet scrubber. Organohalogen Compounds,2000,46:178-181.
    Addink, R., Altwicker, E.R. Formation of polychlorinated dibenzo-p-dioxins/dibenzofurans from residual carbon on municipal solid waste incinerator fly ash using Na37Cl. Chemosphere.2001,44(6):1361-1367.
    Addink, R., Bakker, W.C.M., Olie, K. Influence of HC1 and Cl2 on the formation of polychlorinated dibenzo-p-dioxins/dibenzofurans in a carbon/fly ash mixture. Environmental Science & Technology, 1995,29(8):2055-2058.
    Addink, R., Govers, H.A.J., Olie, K. Desorption behaviour of polychlorinated dibenzo-p-dioxins/dibenzofurans on a packed fly ash bed. Chemosphere,1995,31(8):3945-3950.
    Addink, R., Olie, K. Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems. Environmental Science & Technology,1995,29(6):1425-1435.
    Addink, R., Olie, K. The influence of oxygen concentration on PCDD/PCDF formation during de-novo synthesis on fly ash. Organohalogen Compounds,1993,11:355-358.
    Addink, R., Olie, K. Role of oxygen in formation of polychlorinated dibenzo-p-dioxins/dibenzofurans from carbon on fly ash. Environmental Science & Technology,1995,29(6):1586-1590.
    Addink, R., Paulus, R.H.W.L., Olie, K. Prevention of polychlorinated dibenzo-p-dioxins/dibenzofurans formation on municipal waste incinerator fly ash using nitrogen and sulfur compounds. Environmental Science & Technology,1996,30(7):2350-2354.
    Addink, R., Van Bavel, B., Visser, R., Wever, H., Slot, P., Olie, K. Surface catalyzed formation of polychlorinated dibenzo-p-dioxins/dibenzofurans during municipal waste incineration. Chemosphere, 1990,20(10-12):1929-1934.
    Agramunt, M.C., Schuhmacher. M., Hernandez, J.M., Domingo, J.L. Levels of dioxins and furans in plasma of nonoccupationally exposed subjects living near a hazardous waste incinerator. Journal of Exposure Analysis And Environmental Epidemiology,2005,15(1):29-34.
    Alemany L J, Berti F, Busca G, et al. Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalysts. Applied Catalysis B:Environmental,1996,10(4):299-311.
    Altarawneh, M., Carrizo. D., Ziolkowski, A., Kennedy, E.M., Dlugogorski, B.Z., Mackie, J.C. Pyrolysis of permethrin and formation of precursors of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) under non-oxidative conditions. Chemosphere,2009,74(11):1435-1443.
    Altarawneh, M., Dlugogorski, B.Z., Kennedy, E.M., Mackie, J.C. Quantum chemical investigation of formation of polychlorodibenzo-p-dioxins and dibenzofurans from oxidation and pyrolysis of 2-chlorophenol. The Journal of Physical Chemistry A.2007.111(13):2563-2573.
    Altwicker, E., Milligan, M.S. Dioxin formation from tetrachlorophenol over fly ash under breakthrough conditions. Organohalogen Compounds.1993.11:269-272.
    Altwicker. R.E. Relative rates of formation of polychlorinated dioxins and furans from precursor and de novo reactions. Chemosphere.1996.33(10):1897-1904.
    Anthony, E.J., Jia, L., Granatstein. D.L. Dioxin and furan formation in FBC boilers. Environmental Science& Technology,2001,35(14):3002-3007.
    Aracil, I., Font, R., Conesa, J.A. Semivolatile and volatile compounds from the pyrolysis and combustion of polyvinyl chloride. Journal of Analytical and Applied Pyrolysis,2005,74(1-2):465-478.
    Aurell, J., Fick, J., Haglund, P., Marklund, S. Effects of sulphur on PCDD/F formation under stable and transient combustion conditions during MSW incineration. Chemosphere.2009,76(6):767-773.
    Aurell, J., Fick, J., Marklund, S. Effects of transient combustion conditions on the formation of polychlorinated dibenzo-p-dioxins, dibenzofurans, and benzenes, and polycyclic aromatic hydrocarbons during municipal solid waste incineration. Environmental Engineering Science,2009,26(3):509-520.
    Aurell, J., Marklund, S. Effects of varying combustion conditions on PCDD/F emissions and formation during MSW incineration. Chemosphere,2009,75(5):667-673.
    Bakoglu, M.. Karademir, A., Ayberk, S. Partitioning characteristics of targeted heavy metals in IZAYDAS hazardous waste incinerator. Journal of Hazardous Materials,2003,99(1):89-105.
    Ballschmiter, K., Braunmiller, I., Niemczyk, R., Swerev, M. Reaction pathways for the formation of polychloro-dibenzodioxins (PCDD) and-dibenzofurans (PCDF) in combustion processes:Ⅱ. Chlorobenzenes and chlorophenols as precursors in the formation of polychloro-dibenzodioxins and-dibenzofurans in flame chemistry. Chemosphere,1988,17(5):995-1005.
    Ballschmiter, K., Zoller, W., Buchert, H., Class, T. Correlation between substitution pattern and reaction pathway in the formation of polychlorodibenzofurans. Fresenius' Journal of Analytical Chemistry,1985, 322:587-594.
    Banaee, J., Larson, R.A. Co-combustion of a chlorinated polymer with high-sulfur coals and other polymeric materials:Inhibition of the formation of chlorinated benzenes. Waste Management,1995,15(8): 609-614.
    Blumenstock, M., Zimmermann, R., Schramm, K.W., Kaune, A., Nikolai, U., Lenoir, D., Kettrup, A. Estimation of the dioxin emission (PCDD/FI-TEQ) from the concentration of low chlorinated aromatic compounds in the flue and stack gas of a hazardous waste incinerator. Journal of Analytical And Applied Pyrolysis,1999,49(1-2):179-190.
    Blumenstock. M., Zimmermann. R., Schramm. K.W., Kettrup, A. Influence of combustion conditions on the PCDD/F-, PCB-, PCBz-and PAH-concentrations in the post-combustion chamber of a waste incineration pilot plant. Chemosphere,2000,40(9-11):987-993.
    Blumenstock, M., Zimmermann, R., Schramm, K.W., Kettrup, A. Identification of surrogate compounds for the emission of PCDD/F (I-TEQ value) and evaluation of their on-line real-time detectability in flue gases of waste incineration plants by REMPI-TOFMS mass spectrometry. Chemosphere,2001,42(5-7): 507-518.
    Bonte, J.L., Fritsky, K.J., Plinke, M.A., Wilken, M. Catalytic destruction of PCDD/F in a fabric filter: experience at a municipal waste incinerator in Belgium. Waste Management,2002.22(4):421-426.
    Briois, C, Ryan, S., Tabor, D., Touati, A., Gullett, B.K. Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from a mixture of chlorophenols over fly ash:Influence of water vapor. Environmental Science & Technology,2007,41(3):850-856.
    Bruce, K.R., Beach, L.O., Gullett, B.K. The role of gas-phase Cl2 in the formation of PCDD/PCDF during waste combustion. Waste Management,1991,11(3):97-102.
    Buekens, A., Huang, H. Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxins/furans in municipal waste incineration. Journal of Hazardous Materials,1998.62(1): 1-33.
    Cains, P.W., McCausland, L.J., Fernandes, A.R.. Dyke, P. Polychlorinated dibenzo-p-dioxins and dibenzofurans formation in incineration:Effects of fly ash and carbon source. Environmental Science & Technology,1997,31(3):776-785.
    Chandler, A.J., Eighmy, T.T., Hartlen, J., Hjelmar. O.,1997. Municipal solid waste incinerator residues. Elsevier Science B.V.. Holland.
    Chang, F., Chen,1. Wey, M., Tsai. S. Effects of particulates, heavy metals and acid gas on the removals of NO and PAHs by V2O5-WO3 catalysts in waste incineration system. Journal of Hazardous Materials,2009, 170(1):239-246.
    Chang, M.B., Cheng, Y.C., Chi, K.H. Reducing PCDD/F formation by adding sulfur as inhibitor in waste incineration processes. Science of the Total Environment,2006,366(2-3):456-465.
    Chang, M.B., Chi, K.H., Chang-Chien, G.P. Evaluation of PCDD/F congener distributions in MW1 flue gas treated with SCR catalysts. Chemosphere,2004,55(11):1457-1467.
    Chang, M.B., Lin, J.J. Memory effect on the dioxin emissions from municipal waste incinerator in Taiwan. Chemosphere.2001.45(8):1151-1157.
    Chen, C, Lin, C., Lin, Y., Wang, L., Chang-Chien, G. Polychlorinated dibenzo-p-dioxins/dibenzofuran mass distribution in both start-up and normal condition in the whole municipal solid waste incinerator. Journal of Hazardous Materials,2008,160(1):37-44.
    Chen, C., Lin, C., Wang, L., Chang-Chien, G. The size distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in the bottom ash of municipal solid waste incinerators. Chemosphere,2006,65(3): 514-520.
    Chen, T., Gu, Y., Yan, J., Li, X., Lu, S., Dai, H., Cen, K. Polychlorinated dibenzo-p-dioxins and dibenzofurans in flue gas emissions from municipal solid waste incinerators in China. Journal of Zhejiang University-Science A,2008,9(9):1296-1303.
    Chen, T., Yan, J.H., Lu, S.Y., Li, X.D., Gu, Y.L., Dai. H.F., Ni, M.J., Cen, K..F. Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in china. Journal Of Hazardous Materials,2008,150(3):510-514.
    Cheng, H.. Hu. Y. Municipal solid waste (MSW) as a renewable source of energy:Current and future practices in China. Bioresource Technology,2010,101(11):3816-3824.
    Cheng, H., Zhang, Y., Meng, A., Li, Q. Municipal solid waste fueled power generation in china:A case study of waste-to-energy in Changchun city. Environmental Science & Technology,2007,41(21):7509-7515.
    Chi, K.H., Chang, M.B. Evaluation of PCDD/F congener partition in vapor/solid phases of waste incinerator flue gases. Environmental Science & Technology,2005,39(20):8023-8031.
    Chien-Min, C. The emission inventory of PCDD/PCDF in Taiwan. Chemosphere,2004,54(10):1413-1420.
    Chin, S., Jurng, J., Lee, J., Moon, S. Catalytic conversion of 1.2-dichlorobenzene using V2O5/TiO2 catalysts by a thermal decomposition process. Chemosphere,2009,75(9):1206-1209.
    Conesa, J.A., Font, R., Fullana, A., Martin-Gullon,]., Aracil, I., Galvez, A., Molto, J., Gomez-Rico, M.F. Comparison between emissions from the pyrolysis and combustion of different wastes. Journal of Analytical and Applied Pyrolysis.2009.84(1):95-102.
    Cooper, D.A. HCB, PCB, PCDD and PCDF emissions from ships. Atmospheric Environment,2005,39(27): 4901-4912.
    Cunliffe, A.M., Williams, P.T. PCDD/PCDF Isomer patterns in waste incinerator flyash and desorbed into the gas phase in relation to temperature. Chemosphere.2007a.66(10):1929-1938.
    Cunliffe, A.M.. Williams, P.T. Desorption of PCDD/PCDF from municipal solid waste incinerator flyash under post-combustion plant conditions. Chemosphere.2007b,68(9):1723-1732.
    Cunliffe, A.M., Williams. P.T. Influence of temperature on PCDD/PCDF desorption from waste incineration flyash under nitrogen. Chemosphere,2007c,66(6):1146-1152.
    Dempsey. C.R. A comparison of organic emissions from hazardous waste incinerators versus the 1990 toxics release inventory air releases. Journal of the Air and Waste Management Association,1993,43(10): 1374-1379.
    Du, B., Zheng, M., Tian, H., Liu, A., Huang, Y., Li, L., Ba, T., Li, N., Ren, Y., Li, Y., Dong, S., Su, G. Occurrence and characteristics of polybrominated dibenzo-p-dioxins and dibenzofurans in stack gas emissions from industrial thermal processes. Chemosphere,2010,80(10):1227-1233.
    Du. Y., Chen, T., Lu, S., Yan, J.. Li, X., Cen, K., Nakamura, M., Handa, H. Comparative analysis of PCDD/Fs in soil around waste incineration plants in China using CALUX bioassay and HRGC/HRMS. Journal of Hazardous Materials,2011,192(3):1729-1738.
    Evans, C.S., Dellinger, B. Mechanisms of dioxin formation from the high-temperature pyrolysis of 2-chlorophenol. Environmental Science & Technology.2003.37(7):1325-1330.
    Evans. C.S., Dellinger, B. Mechanisms of dioxin formation from the high-temperature oxidation of 2-chlorophenol. Environmental Science & Technology,2004,39(1):122-127.
    Ferre-Huguet, N., Nadalm, M., Schuhmacher, M., Domingo, J.L. Environmental impact and human health risks of polychlorinated dibenzo-p-dioxins and dibenzofurans in the vicinity of a new hazardous waste incinerator:A case study. Environmental Science & Technology,2005,40(1):61-66.
    Fiedler, H., Hutzinger, O., Timms, C.W. Dioxins:Sources of environmental load and human exposure. Toxicological & Environmental Chemistry,1990,29(3):157-234.
    Fiedler, H., Lau, C., Eduljee, G. Statistical analysis of patterns of PCDDs and PCDFs in stack emission samples and identification of a marker congener. Waste Management and Research,2000,18(3): 283-292.
    Floyd, H. Optimization of combustion conditions to minimize dioxin emissions. Waste Management & Research,1987,5(3):311-326.
    Fujimori, T., Takaoka, M., Morisawa, S. Chlorinated aromatic compounds in a thermal process promoted by oxychlorination of ferric chloride. Environmental Science & Technology,2010,44(6):1974-1979.
    Gao, H., Ni, Y, Zhang, H., Zhao, L., Zhang, N., Zhang, X., Zhang, Q., Chen, J. Stack gas emissions of PCDD/Fs from hospital waste incinerators in China. Chemosphere,2009,77(5):634-639.
    Ghorishi, S.B., Altwicker, E.R. Rapid formation of polychlorinated dioxins/furans during the heterogeneous combustion of 1,2-dichlorobenzene and 2,4-dichlorophenol. Chemosphere,1996,32(1):133-144.
    Goemans, M., Clarysse, P., Joannes, J., De Clercq, P., Lenaerts, S., Matthys, K., Boels, K. Catalytic NOX reduction with simultaneous dioxin and furan oxidation. Chemosphere,2004,54(9):1357-1365.
    Griffin, R.D. A new theory of dioxin formation in municipal solid waste combustion. Chemosphere,1986, 15(9-12):1987-1990.
    Grochowalski, A. PCDDs and PCDFs concentration in combustion gases and bottom ash from incineration of hospital wastes in Poland. Chemosphere,1998,37(9-12):2279-2291.
    Grosso, M., Cernuschi, S., Palini, E., Lodi, M., Mariani, G. PCDD/Fs release during normal and transient operation of a full scale MSWI plant. Organohalogen Compounds.2004,66:1227-1232.
    Gullett, B.K., Bruce, K.R., Beach, L.O. Effect of sulfur dioxide on the formation mechanism of polychlorinated dibenzodioxin and dibenzofuran in municipal waste combustors. Environmental Science & Technology,1992,26(10):1938-1943.
    Gullett, B.K., Bruce, K.R.. Beach. L.O., Drago. A.M. Mechanistic steps in the production of PCDD and PCDF during waste combustion. Chemosphere,1992.25(7-10):1387-1392.
    Gullett, B.K., Dunn, J.E., Raghunathan, K. Effect of cofiring coal on formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during waste combustion. Environmental Science & Technology, 1999,34(2):282-290.
    Gullett, B.K., Sarofim, A.F., Smith, K.A., Procaccini, C. The Role of chlorine in dioxin formation. Process Safety and Environmental Protection.2000,78(1):47-52.
    Gulyurtlu, I., Crujeira, A.T., Abelha, P., Cabrita,I. Measurements of dioxin emissions during co-firing in a fluidised bed. Fuel.2007,86(14):2090-2100.
    Hagenmaier, H., Kraft, M., Brunner, H., Haag, R. Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environmental Science & Technology,1987,21(11):1080-1084.
    Hagenmaier, H., Tichaczek, K.H., Brunncr, H. Catalytic oxidation-a technology for the reduction of PCDD/PCDF emission from waste incineration facilities to below 0.1 ng TEQ/m3. Organohalogen Compounds,1990,3:65-68.
    Hatanaka, T., Imagawa, T., Takeuchi, M. Formation of PCDD/Fs in artificial solid waste incineration in a laboratory-scale fluidized-bed reactor:Influence of contents and forms of chlorine sources in high-temperature combustion. Environmental Science & Technology,2000,34(18):3920-3924.
    Hatanaka, T., Kitajima, A., Takeuchi, M. Role of copper chloride in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during incineration. Chemosphere,2004,57(1):73-79.
    Hell, K., Stieglitz, L., Dinjus, E. Mechanistic aspects of the de-novo synthesis of PCDD/PCDF on model mixtures and MSWI fly ashes using amorphous 12C- and 13c- labeled carbon. Environmental Science & Technology.2001,35(19):3892-3898.
    Hirota, K., Hakoda. T., Taguchi, M., Takigami, M., Kim, H., Kojima, T. Application of electron beam for the reduction of PCDD/F emission from municipal solid waste incinerators. Environmental Science & Technology,2003,37(14):3164-3170.
    Hites, R.A. Dioxins:An overview and History. Environmental Science & Technology,2010,45(1):16-20.
    Hsi, H., Wang, L., Yu, T. Effects of injected activated carbon and solidification treatment on the leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans from air pollution control residues of municipal waste incineration. Chemosphere,2007.67(7):1394-1402.
    Huang, H., Buekens, A. On the mechanisms of dioxin formation in combustion processes. Chemosphere,1995, 31(9):4099-4117.
    Huang, H., Buekens, A. De novo synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans Proposal of a mechanistic scheme. Science of The Total Environment,1996,193(2):121-141.
    Huang, H., Buskens, A. Comparison of dioxin formation levels in laboratory gas-phase flow reactors with those calculated using the Shaub-Tsang mechanism. Chemosphere,1999,38(7):1595-1602.
    Hunsinger, H., Jay. K., Vehlow, J. Formation and destruction of PCDD/F inside a grate furnace. Chemosphere, 2002,46(9-10):1263-1272.
    Hunsinger, H., Seifert, H., Jay, K. Reduction of PCDD/F formation in MSWI by a process-integrated SO2 cycle. Environmental Engineering Science,2007,24(8):1145-1159.
    Hunsinger, H., Seifert, H., Jay, K. Formation and destruction of PCDD/F during start-up of MSWI. Organohalogen Compounds,2003,60-65:37-40.
    Hunsinger, H., Song. G.J., Seifert, H., Jay, K.,2004. Influence of SO2 on the formation of PCDD/F in MSWI. 3rd i-CIPEC, Hangzhou, China, pp.300-306.
    lino, F.. lmagawa, T., Gullett, B.K. Dechlorination-controlled polychlorinated dibenzofuran isomer patterns from municipal waste incinerators. Environmental Science & Technology,2000,34(15):3143-3147.
    Iino, F., Imagawa, T., Takeuchi, M., Sadakata, M. De novo synthesis mechanism of polychlorinated dibenzofurans from polycyclic aromatic hydrocarbons and the characteristic isomers of polychlorinated naphthalenes. Environmental Science & Technology,1999,33(7):1038-1043.
    Ishida, M., Shiji. R., Nie, P., Nakamura, N., Sakai, S. Full - scale plant study on low temperature thermal dechlorination of PCDDs/PCDFs in fly ash. Chemosphere,1998.37(9-12):2299-2308.
    Ishikawa, R., Buekens, A., Huang, H., Watanabe, K. Influence of combustion conditions on dioxin in an industrial-scale fluidized-bed incinerator:experimental study and statistical modelling. Chemosphere. 1997,35(3):465-477.
    Ishizuka, T., Yamamoto, T., Murayama, T., Tanaka, T., Hattori, H. Effect of calcium sulfate addition on the activity of the absorbent for dry flue gas desulfurization. Energy & Fuels,2001,15(2):438-443.
    Jay, K... Stieglitz, L. On the mechanism of formation of polychlorinated aromatic compounds with copper(II) chloride. Chemosphere,1991,22(11):987-996.
    Jun, J., Hao, P., Y, T.X. An inventory of potential PCDD and PCDF emission sources in the mainland of China. Organohalogen Compounds,2004,66:852-858.
    Karasek, F.W., Dickson, L.C. Model studies of polychlorinated dibenzo-p-dioxin formation during municipal refuse incineration. Model studies of polychlorinated dibenzo-p-dioxin formation during municipal refuse incineration,1987,237(4816):754-756.
    Kashiwabara, I.Y., Okada, K., Mori. S. Catalytic Decomposition of Dioxins from MSW Incinerator Flue Gas. Organohalogen Compounds,1994,19:337-342.
    Kaune, A., Lenoir, D., Nikolai, U., Kettrup, A. Estimating concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans in the stack gas of a hazardous waste incinerator from concentrations of chlorinated benzenes and biphenyls. Chemosphere,1994,29(9-11):2083-2096.
    Kaune, A., Lenoir, D., Schramm, K.W., Zimmermann, R., Kettrup, A., Jaeger, K., Ruckel, H.G., Frank, F. Chlorobenzenes and chlorophenols as indicator parameters for chlorinated dibenzodioxins and dibenzofurans in incineration processes:Influences of various facilities and sampling points. Environmental Engineering Science,1998,15(1):85-95.
    Kim, B., Lee, S., Maken, S., Song, H., Park, J., Min, B. Removal characteristics of PCDDs/Fs from municipal solid waste incinerator by dual bag filter (DBF) system. Fuel,2007,86(5-6):813-819.
    Kim, E., Oh, J., Chang, Y. Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Science of the Total Environment,2003,311(1-3):177-189.
    Kim, K., Hong, K., Ko, Y., Yoon, K., Kim, M. Emission characteristics of PCDD/Fs in diesel engine with variable load rate. Chemosphere,2003,53(6):601-607.
    Kim, S.C., Shin, C.K., Jung, I.R. Variation of PCDDs/PCDFs concentration in cooling system of municipal solid waste incinerators. Organohalogen Compounds,2000,46:134-137.
    Kim, Y., Lee, D. Solubility enhancement of PCDD/F in the presence of dissolved humic matter. Journal of Hazardous Materials,2002,91(1-3):113-127.
    Khachatryan, L., Burcat, A., Dellinger. B. An elementary reaction-kinetic model for the gas-phase formation of 1,3,6.8- and 1,3,7,9-tetrachlorinated dibenzo-p-dioxins from 2.4.6-trichlorophenol. Combustion and Flame,2003,132(3):406-421.Kuzuhara, S., Sato, H., Kasai, E., Nakamura, T. Influence of metallic chlorides on the formation of PCDD/Fs during low-temperature oxidation of carbon. Environmental Science & Technology,2001.37(11):2431-2435.
    Lee, Y., Park, J., Choung, J., Choi. D. Adsorption characteristics of SO2 on activated carbon prepared from coconut shell with potassium hydroxide activation. Environmental Science & Technology,2002,36(5): 1086-1092.
    Lenoir, D., Kaune, A., Hutzinger, O., Mutzenich, G., Horch, K. Influence of operating parameters and fuel type on PCDD/F emissions from a fluidized bed incinerator. Chemosphere,1991,23(8-10):1491-1500.
    Li, H., Wang, L., Chen, C., Yang, X., Chang-Chien, G., Wu, E.M. Influence of memory effect caused by aged bag filters on the stack PCDD/F emissions. Journal of Hazardous Materials,2011,185(2-3):1148-1155.
    Li, X., Yan. J., Ni, M., Cen, K. Study on mixing performance of municipal solid waste (MSW) in differential density fluidized beds (FBs). Chemical Engineering Journal,2001.84(2):161-166.
    Li, X., Zhang, J., Yan, J., Chen, T., Lu, S., Cen, K. Effect of water on catalyzed de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Journal of Hazardous Materials, 2006,137(1):57-61.
    Lin, K.S., Chang, N.B. Control strategy of PCDD/Fs in an industrial fluidized bed incinerator via activated carbon injection. Petroleum Science and Technology.2008.26(7-8):764-789.
    Lin, L., Lee, W., Li, H., Wang, M., Chang-Chien, G. Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan. Chemosphere,2007,68(9):1642-1649.
    Lin, W., Wang, L., Wang, Y, Li, H., Chang-Chien, G. Removal characteristics of PCDD/Fs by the dual bag filter system of a fly ash treatment plant. Journal of Hazardous Materials,2008,153(3):1015-1022.
    Lin, Y., Chen, K., Lin, Y., Hung, C., Chang-Chien, G. Polychlorinated dibenzo-p-dioxins/dibenzofurans distributions in ash from different units in a municipal solid waste incinerator. Journal of Hazardous Materials,2008,154(1-3):954-962.
    Ling, Y., Hou, P.C.C. A Taiwanese study of 2,3,7,8-substituted PCDD/DFs and coplanar PCBs in fly ashes from incinerators. Journal of Hazardous Materials,1998,58(1-3):83-91.
    Lothgren, C.-J., van Bavel, B. Dioxin emissions after installation of a polishing wet scrubber in a hazardous waste incineration facility. Chemosphere,2005,61(3):405-412
    Luijk, R., Akkerman, D.M., Slot, P., Olie, K., Kapteijn, F. Mechanism of formation of polychlorinated dibenzo-p-dioxins and dibenzofurans in the catalyzed combustion of carbon. Environmental Science & Technology,1994,28(2):312-321.
    Lu, S.Y, Peng, Z., Yan, J.H., Li, X., Chen, T., Ni, M.J., Cen, K.F. Degradation of PCDDs/Fs by mechanochemical treatment of fly ash from a medical waste incinerator. Organohalogen Compounds, 2005,69:2482-2485.
    Lundin, L., Marklund, S. Thermal degradation of PCDD/F in municipal solid waste ashes in sealed glass ampules. Environmental Science & Technology,2005,39(10):3872-3877.
    Lundin, L., Marklund, S. Distribution of mono to octa-chlorinated PCDD/Fs in fly ash from a municipal Solid-waste incinerator. Environmental Science & Technology,2008,42(4):1245-1250.
    Mari, M., Borrajo, M.A., Schuhmacher, M., Domingo. J.L. Monitoring PCDD/Fs and other organic substances in workers of a hazardous waste incinerator:A case study. Chemosphere,2007,67(3):574-581.
    Misaka, Y., Yamanaka, K., Takeuchi, K., Sawabe, K., Shobatake, K. Removal of PCDDs/DFs and dl-PCBs in MWI fly ash by heating under vacuum. Chemosphere,2006,64(4):619-627.
    Moreno-Castilla, C., Carrasco-Marin, F., Utrera-Hidalgo, E., Rivera-Utrilla, J. Activated carbons as adsorbents of sulfur dioxide in flowing air. Effect of their pore texture and surface basicity. Langmuir, 1993,9(5):1378-1383.
    Mulholland, J.A., Ryu, J. Formation of Polychlorinated dibenzo-p-dixoins by CuCl;-catalyzed condensation of 2.6 chlorinated phenols. Combustion Science and Technology,2001,169(1):107-126.
    Naikwadi. K.P.. Karasek. F.W. Prevention of PCDD formation in MSW incinerators by inhibition of catalytic activity of fly ash produced. Chemosphere,1989,19(1-6):299-304.
    Nakahata. D.T., Mulholland, J.A. Effect of dichlorophenol substitution pattern on furan and dioxin formation. Proceedings of the Combustion Institute,2000,28(2):2701-2707.
    Neuer-Etscheidt, K., Nordsieck, H.O., Liu, Y., Kettrup, A., Zimmermann, R. PCDD/F and other micropollutants in MSW1 crude gas and ashes during plant start-up and shut-down processes. Environmental Science & Technology,2005,40(1):342-349.
    Nganai, S., Lomnicki, S.M., Dellinger. B. Formation of PCDD/Fs from the copper oxide-mediated pyrolysis and oxidation of 1,2-dichlorobenzene. Environmental Science & Technology,2010.45(3):1034-1040.
    Ni, Y., Zhang, H., Fan, S., Zhang. X., Zhang, Q., Chen, J. Emissions of PCDD/Fs from municipal solid waste incinerators in China. Chemosphere.2009,75(9):1153-1158.
    Nie, Y. Development and prospects of municipal solid waste (MSW) incineration in China. Frontiers of Environmental Science & Engineering in China.2008.2(1):1-7.
    Oberg, T., Bergstrom. J.G.T. Hexachlorobenzene as an indicator of dioxin production from combustion. Chemosphere,1985,14(8):1081-1086.
    Ogawa, H., Orita, N., Horaguchi. M., Suzuki, T., Okada, M., Yasuda. S. Dioxin reduction by sulfur component addition. Chemosphere.1996.32(1):151-157.
    Oh, J., Gullett, B., Ryan, S., Touati, A. Mechanistic relationships among PCDDs/Fs, PCNs, PAHs, CIPhs, and ClBzs in municipal waste incineration. Environmental Science & Technology.2007,41(13):4705-4710.
    Oh, J., Lee, K., Lee, J., Chang, Y. The evaluation of PCDD/Fs from various Korean incinerators. Chemosphere,1999,38(9):2097-2108.
    Olie, K., Schoonenboom, M.H., Buijs, A., Addink, R. Formation studies of PCDDs and PCDFs using stable isotopes (18° and 13·). Organohalogen Compounds,1995,23:329-334.
    Olie, K., Vermeulen, P., Hutzinger, O. Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace compounds of fly ash and flue gas of some municipal incinerators in the Netherlands. Chemosphere,1977.6(8): 445-459.
    Palladas, A., Samaras, P., George, S. The effect of sulphur on the inhibition of PCDD/F formation during co-combustion of coal and solid waste. Organohalogen Compounds,2004,66:1233-1239.
    Pandelova, M., Lenoir, D., Schramm, K..W. Correlation between PCDD/F, PCB and PCBz in coal/waste combustion. Influence of various inhibitors. Chemosphere,2006,62(7):1196-1205.
    Pandelova, M., Lenoir, D., Schramm, K..W. Inhibition of PCDD/F and PCB formation in co-combustion. Journal of Hazardous Materials,2007,149(3):615-618.
    Pandelova, M.E., Lenoir, D., Kettrup, A., Schramm, K. Primary measures for reduction of PCDD/F in co-combustion of lignite coal and waste:effect of various inhibitor. Environmental Science& Technology,2005,39(9):3345-3350.
    Paolo. D. Influence of surface properties and iron addition on the SO2 adsorption capacity of activated carbons. Carbon,2002,40(5):729-734.
    Pekarek, V., Puncochar, M., Bures, M., Grabic, R., Fiserova, E. Equilibrium calculations for better understanding of the effects of SO2 and H2O2 on the de novo synthesis of PCDD/F in the N2+10% O2 atmosphere under model laboratory conditions. Organohalogen Compounds,2006,68:1224-1227.
    Pekarek, V., Puncochar, M., Bures, M., Grabic, R., Fiserova. E. Effects of sulfur dioxide, hydrogen peroxide and sulfuric acid on the de novo synthesis of PCDD/F and PCB under model laboratory conditions. Chemosphere,2007.66(10):1947-1954.
    Qu, X., Wang, H., Zhang, Q.. Shi, X., Xu, F., Wang, W. Mechanistic and kinetic studies on the homogeneous gas-phase formation of PCDD/Fs from 2.4,5-trichlorophenol. Environmental Science & Technology, 2009,43(11):4068-4075.
    Quaβ, U., Fermann, M., Broker, G. The European dioxin air emission inventory project—final results. Chemosphere,2004,54(9):1319-1327.
    Raghunathan, K., Gullett, B.K. Role of sulfur in reducing PCDD and PCDF formation. Environmental Science & Technology,1996.30(6):1827-1834.
    Rath, J., Staudinger, G. Cracking reactions of tar from pyrolysis of spruce wood. Fuel,2001,80(10): 1379-1389.
    Ruokojarvi, P.H., Asikainen, A.H., Tuppurainen, K.A., Ruuskanen, J. Chemical inhibition of PCDD/F formation in incineration processes. Science of the Total Environment,2004,325(1-3):83-94.
    Ruokojarvi, P.H., Halonen, I.A., Tuppurainen, K.A., Tarhanen, J., Ruuskanen, J. Effect of gaseous inhibitors on PCDD/F formation. Environmental Science & Technology,1998,32(20):3099-3103.
    Ryan, S.P., Li, X., Gullett, B.K., Lee, C.W., Clayton, M., Touati, A. Experimental study on the effect of SO2 on PCDD/F emissions:Determination of the importance of gas-phase versus solid-phase reactions in PCDD/F formation. Environmental Science & Technology,2006,40(22):7040-7047.
    Ryu, J., Mulholland, J.A. Dioxin and furan formation on CuCl2 from chlorinated phenols with one Ortho chlorine. Proceedings of the Combustion Institute,2002,29(2):2455-2461.
    Ryu, J., Mulholland, J.A., Takeuchi, M., Kim, D., Hatanaka, T. CuCl2-catalyzed PCDD/F formation and congener patterns from phenols. Chemosphere,2005,61(9):1312-1326.
    Ryu, J., Mulholland, J.A., Kim, D.H., Takeuchi, M. Homologue and isomer patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans from phenol precursors:Comparison with municipal waste incinerator data. Environmental Science & Technology,2005,39(12):4398-4406.
    Ryan. S. The formation of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/F) via the de novo synthesis in the catalytic extraction process (CEP) and the role of iron chloride [Doctor degree]. New York, Rensselaer Polytechinic Institute,2001
    Ryan, S.P., Altwicker, E.R. Understanding the role of iron chlorides in the de novo synthesis of polychlorinated dibenzo-p-dioxins/dibenzofurans. Environmental Science & Technology,2004,38(6): 1708-1717.
    Sakai, S., Watanabe, J., Honda, Y., Takatsuki, H., Aoki, I., Futamatsu, M., Shiozaki, K. Combustion of brominated flame retardants and behavior of its byproducts. Chemosphere,2001,42(5-7):519-531.
    Sam-Cwan, K.. Hwan, J.S.,11-Rok. J., Ki-Hun, K., Myung-Hee. K., Jae-Hyung, K., Jun-Heung, Y., Seung-Jin, K., Jae-Cheon, Y., Dong-Hee. J. Removal efficiencies of PCDDs/PCDFs by air pollution control devices in municipal solid waste incinerators. Chemosphere,2001,43(4-7):773-776.
    Samaras, P., Blumenstock, M., Lenoir, D., Schramm, K.W., Kettrup, A. PCDD/F prevention by novel inhibitors:Addition of inorganic S-and N-compounds in the fuel before combustion. Environmental Science & Technology,2000,34(24):5092-5096.
    Schetter, G., Horch, K., Brunner, H., Hagenmaier, H. Low temperature thermal treatment of filter ash from municipal waste incinerators for dioxin decomposition on a technical scale. Organohalogen Compounds, 1990,3:165-168.
    Sierhuis, W.M., de Vries, C., Born, J.G.P. PCDD/F emissions related to theoperating conditions of the flue gas cleaning system of MWI-Amsterdam.Chemosphere,1996.32(1):159-168.
    Shao, K., Yan, J., Li, X., Lu, S., Wei, Y., Fu, M. Inhibition of de novo synthesis of PCDD/Fs by SO2 in a model system. Chemosphere,2010,78(10):1230-1235.
    Shaub, W.M., Tsang, W. Dioxin formation in incinerators. Environmental Science & Technology,1983,17(12): 721-730.
    Sidhu, S.S., Maqsud. L., Dellinger, B., Mascolo, G. The homogeneous, gas-phase formation of chlorinated and brominated dibenzo-p-dioxin from 2,4.6-trichloro-and 2.4.6-tribromophenols. Combustion and Flame,1995.100(1-2):11-20.
    Song. G., Kim, S.H., Seo. Y. Kim, S. Dechlorination and destruction of PCDDs/PCDFs in fly ashes from municipal solid waste incinerators by low temperature thermal treatment. Chemosphere,2008,71(2): 248-257.
    Stach, J., Pekarek, V., Grabic, R., Lojkasek, M.. Pacakova, V. Dechlorination of polychlorinated biphenyls, dibenzo-p-dioxins and dibenzofurans on fly ash. Chemosphere,2000,41(12):1881-1887.
    Stanmore, R.B. The formation of dioxins in combustion systems. Combustion and Flame,2004,136(3): 398-427.
    Stieglitz, B.R.L., Zwick, G., Will, R., Roth, W., Hedwig, K. Influence of elemental sulfur on the de-novo-synthesis of organochlorine compounds from residual carbon on fly ash. Chemosphere,1998. 37(9-12):2261-2278.
    Stieglitz. L., Vogg, H. On formation conditions of PCDD/PCDF in fly ash from municipal waste incinerators. Chemosphere,1987.16(8-9):1917-1922.
    Stieglitz, L., Vogg, H., Zwick, G., Beck, J., Bautz. H. On formation conditions of organohalogen compounds from particulate carbon of fly ash. Chemosphere,1991,23(8-10):1255-1264.
    Stieglitz, L., Zwick, G., Beck, J., Bautz, H., Roth, W. The role of particulate carbon in the de-novo synthesis of polychlorinated dibenzodioxins and-furans in fly-ash. Chemosphere,1990,20(10-12):1953-1958.
    Stieglitz, L., Zwick, G., Beck, J., Roth, W., Vogg, H. On the de-novo synthesis of PCDD/PCDF on fly ash of municipal waste incinerators. Chemosphere,1989,18(1-6):1219-1226.
    Tejima, H., Nakagawa, I., Shinoda, T., Maeda, I. PCDDs/PCDFs reduction by good combustion technology and fabric filter with/without activated carbon injection. Chemosphere,1996,32(1):169-175.
    Tejima, H., Nishigaki, M., Fujita, Y., Matsumoto, A., Takeda, N., Takaoka, M. Characteristics of dioxin emissions at startup and shutdown of MSW incinerators. Chemosphere,2007,66(6):1123-1130.
    Telfer, M., Gullett, B. Experimental investigation of homogeneous gas-phase SO2 and Cl2 reactions for PCDD/Fs suppression. Organohalogen Compounds.2002,56:353-356.
    Thomas, M. Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. Waste Management,2004,24(1):53-79.
    Tundo, P., Zinovyey, S.S., Selva, M., Perosa, A., Raccanelli, S. Multiphase catalytic hydrodehalogenation:A new PCDD/PCDF detoxification method. Organohalogen Compounds,2000,45:380-383.
    Tuppurainen, K., Halonen, I., Ruokojarvi, P., Tarhanen, J., Ruuskanen, J. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms:A review. Chemosphere,1998,36(7): 1493-1511.
    Vogg, H., Metzger, M., Stieglitz, L. Recent findings on the formation and decomposition of PCDD/PCDF in municipal solid waste incineration. Waste Management and research,1987,5(3):285-294.
    Vogg, H., Stieglitz, L. Thermal behavior of PCDD/PCDF in fly ash from municipal incinerators. Chemosphere,1986.15(9-12):1373-1378.
    Wang, H.C., Hwang, J.F., Chi, K.H., Chang, M.B. Formation and removal of PCDD/Fs in a municipal waste incinerator during different operating periods. Chemosphere.2007.67(9):S177-S184.
    Wang, L., Hsi, H., Chang. J., Yang, X., Chang-Chien, G., Lee, W. Influence of start-up on PCDD/F emission of incinerators. Chemosphere,2007,67(7):1346-1353.
    Wang, L., Lee, W., Tsai, P., Lee, W., Chang-Chien, G. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter plants. Chemosphere,2003,50(9):1123-1129.
    Weber, R., Nagai, K., Nishino, J., Shiraishi, H., Ishida, M., Takasuga, T, Konndo, K., Hiraoka, M. Effects of selected metal oxides on the dechlorination and destruction of PCDD and PCDF. Chemosphere,2002, 46(9-10):1247-1253.
    Weber, R., Sakurai, T. Formation characteristics of PCDD and PCDF during pyrolysis processes. Chemosphere,2001,45(8):1111-1117.
    Weber, R., Sakurai, T., Hagenmaier, H. Formation and destruction of pcdd/pcdf during heat treatment of fly ash samples from fluidized bed incinerators. Chemosphere,1999,38(11):2633-2642.
    Weber, R., Sakurai, T., Hagenmaier, H. Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO; catalysts. Applied Catalysis B:Environmental,1999,20(4):249-256.
    Weber, R., Sakurai, T., Ueno, S., Nishino, J. Correlation of PCDD/PCDF and CO values in a MSW incinerator—indication of memory effects in the high temperature/cooling section. Chemosphere,2002, 49(2):127-134.
    Weber, R., Takasuga, T., Nagai. K., Shiraishi, H., Sakurai, T., Matuda, T., Hiraoka, M. Dechlorination and destruction of PCDD, PCDF and PCB on selected fly ash from municipal waste incineration. Chemosphere,2002,46(9-10):1255-1262.
    Wevers, M., De Fre, R. Dioxin emission reduction of a municipal waste incinerator by injection of activated carbon-the abatement of memory effects. Organohalogen Compounds,1998,36:342-346.
    Wielgosiriski, G., Grochowalski, A., Machej, T., Pajak, T., Cwigkalski, W. Catalytic destruction of 1,2-dichlorobenzene on V2O5-WO3/Al2O3-TiO3 catalyst. Chemosphere,2007,67(9):S150-S154.
    Wikstrom, E., Marklund, S. Secondary formation of chlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, benzenes, and phenols during MSW combustion. Environmental Science & Technology,2000,34(4): 604-609.
    Wikstrom, E., Persson, A., Marklund, S. Secondary formation of PCDDs, PCDFs, PCBs, PCBz, PCPhs and PAHs during MSW combustion. Organohalogen Compounds,1998,36:65-68.
    Wikstrom, E., Ryan, S., Touati, A., Gullett, B.K. Key parameters for de novo formation of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environmental Science & Technology,2003,37(9):1962-1970.
    Wikstrom, E., Ryan, S., Touati, A., Gullett, B.K. In situ formed soot deposit as a carbon source for polychlorinated dibenzo-p-dioxins and dibenzofurans. Environmental Science & Technology,2004, 38(7):2097-2101.
    Wikstrom, E., Tysklind, M., Marklund, S. Influence of variation in combustion conditions on the primary formation of chlorinated organic micropollutants during municipal solid waste combustion. Environmental Science & Technology,1999.33(23):4263-4269.
    Xie, Y., Xie, W., Liu, K., Dicken, L., Pan, W., Riley, J.T. The effect of sulfur dioxide on the formation of molecular chlorine during co-combustion of fuels. Energy & Fuels,2000,14(3):597-602.
    Xu, F., Wang, H., Zhang, Q., Zhang, R., Qu, X., Wang, W. Kinetic properties for the complete series reactions of chlorophenols with OH radicals—relevance for dioxin formation. Environmental Science & Technology,2010,44(4):1399-1404.
    Xu, M., Yan, J., Lu, S., Li, X., Chen, T, Ni, M., Dai, H., Wang, F., Cen, K. Concentrations, profiles, and sources of atmospheric PCDD/Fs near a municipal solid waste incinerator in eastern China. Environmental Science & Technology,2009,43(4):1023-1029.
    Yamamoto, T., Inoue, S., Sawachi, M. Post furnace formation and progressive chlorination of PCDD and PCDF in municipal waste incinerator. Chemosphere,1989,19(1-6):271-276.
    Yan, J.H., Chen, T., Li, X.D., Zhang, J.. Lu, S.Y., Ni, M.J., Cen, K.F. Evaluation of PCDD/Fs emission from fluidized bed incinerators co-firing MSW with coal in China. Journal of Hazardous Materials,2006, 135(1-3):47-51.
    Yan, J.H., Xu, M.X., Lu, S.Y.. Li. X.D., Chen, T., Ni, M.J., Dai, H.F., Cen, K.F. PCDD/F concentrations of agricultural soil in the vicinity of fluidized bed incinerators of co-firing MSW with coal in Hangzhou, China. Journal of Hazardous Materials.2008,151(2-3):522-530.
    Yan, J.H., Zhu, H.M., Jiang, X.G., Chi, Y, Cen, K.F. Analysis of volatile species kinetics during typical medical waste materials pyrolysis using a distributed activation energy model. Journal of Hazardous Materials,2009,162(2-3):646-651.
    Yan, M., Li, X., Chen, T., Lu, S., Yan, J., Cen, K. Effect of temperature and oxygen on the formation of chlorobenzene as the indicator of PCDD/Fs. Journal of Environmental Sciences,2010,22(10): 1637-1642.
    Yan, M, Li, X.D., Lu, S.Y., Chen, T., Chi, Y., Yan, J.H., Chen, T., Chi, Y. Persistent organic pollutant emissions from medical waste incinerators in China. Journal of Material Cycles and Waste Management, 2011,13:213-218.
    Young, C.W., Chen, C.L., Chou, C.R., Lee, C.S. Effect of fly ash on the removal of dioxins over SCR catalysts. Organohalogen Compounds,2007.67:2455-2458.
    Young, C.W., Chen, C.L., Chou. C.R., Wang, H.K. Deactivation of SCR catalysts on the removal of dioxins. Organohalogen Compounds,2009,71:26-29.
    Zhang, H., Ni, Y., Chen, J., Zhang, Q. Influence of variation in the operating conditions on PCDD/F distribution in a full-scale MSW incinerator. Chemosphere,2008,70(4):721-730.
    Zhang, Q., Li, S., Qu, X., Shi, X., Wang, W. A quantum mechanical study on the formation of PCDD/Fs from 2-chlorophenol as precursor. Environmental Science & Technology,2008,42(19):7301-7308.
    Zhang, Q., Yu, W., Zhang, R., Zhou, Q., Gao, R., Wang, W. Quantum chemical and kinetic study on dioxin formation from the 2.4,6-TCP and 2,4-DCP precursors. Environmental Science & Technology,2010, 44(9):3395-3403.
    Zhou, H., Zhong, Z., Jin, B., Huang, Y., Xiao, R. Experimental study on the removal of PAHs using in-duct activated carbon injection. Chemosphere,2005,59(6):861-869.
    Zhu, J.L., Wang, Y.H., Zhang, J.C., Ma, R.Y. Experimental investigation of adsorption of NO and SO2 on modified activated carbon sorbent from flue gases. Energy Conversion And Management,2005, 46(13-14):2173-2184.
    Zimmermann, R., Blumenstock. M., Heger, H.J., Schramm, K.W., Kettrup, A. Emission of nonchlorinated and chlorinated aromatics in the flue gas of incineration plants during and after transient disturbances of combustion conditions:Delayed emission effects. Environmental Science & Technology,2001,35(6): 1019-1030.
    Zimmermann, R., Heger, H.J., Blumenstock, M., Dorfner, R., Schramm, K.W., Boesl, U., Kettrup, A. On-line measurement of chlorobenzene in waste incineration flue gas as a surrogate for the emission of polychlorinated dibenzo-p-dioxins/furans (I-TEQ) using mobile resonance laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry,1999,13(5):307-314.
    Zimmermann, R., Lenoir, D., Kettrup, A., Nagel, H., Boesl, U. On-line emission control of combustion processes by laser-induced resonance-enhanced multi-photon ionization/mass spectrometry. Symposium (International) on Combustion,1996,26(2):2859-2868.
    柴兴峰.硫铁矿影响二恶英生成的试验研究及医疗垃圾焚烧炉灰渣中二恶英分布特性[硕士].杭州,浙江大学,2008
    陈彤.城市生活垃圾焚烧过程中二恶英的形成机理及控制技术研究[博士学位论文].杭州,浙江大学,2006
    国家环保总局GWKB3-2000,生活垃圾焚烧污染控制标准.北京:国家环保总局,2000
    黄颖.福建省二恶英类持久性有机污染物污染状况更新调查.化学工程与装备,2010,10:171-172.
    娇维红,那永洁,郑明辉,吕清刚.城市垃圾与煤混烧的灰渣中重金属的特性分析.工程热物理学报,2005.26(3):347-350.
    李建新,严建华,金余其,倪明江,岑可法.生活垃圾焚烧飞灰重金属特性分析.浙江大学学报(工学版),2004,38(4):490-494.
    李润东,聂永丰,王雷,李爱民,池涌,岑可法.垃圾焚烧飞灰中重金属和二恶英等痕量污染物分析.燃烧科学与技术.2004,10(6):479-483.
    吕亚辉,黄俊,余刚,杨曦.中国二噁英排放清单的国际比较研究.环境污染与防治,2008,30(6):71-74.
    孙路石,陆继东,李敏,李培生.垃圾焚烧中Cd、Pb、Zn挥发行为的研究.中国电机工程学报,2004,24(8):157-161.
    孙志勇,孙海燕,李玉平.活性炭吸附二氧化硫的实验研究.榆林学院学报,2008,18(4):67-70.
    王军,蒋建国,随继超,杨仕键,张妍.垃圾焚烧飞灰基本性质的研究.环境科学,2006,27(11):2283-2287.
    徐文龙,刘晶昊.我国垃圾焚烧技术现状及发展预测.中国环保产业,2007,11:24-29.
    严密,李晓东,陈彤,陆胜勇,严建华.垃圾焚烧炉烟气中二恶英指示物研究.燃烧科学与技术,2010,16(3):257-261.
    余刚,杨小玲,黄俊,2008.中国二嗯英类持久性有机污染物减排控制战略研究.中国环境科学出版社,北京.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700