用户名: 密码: 验证码:
铁帽矿石的锌铁分离与回收研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁帽是各种金属硫化物矿床在经受比较彻底的氧化、风化淋蚀作用之后,形成以铁、锰等为主的氧化物、次生硫酸盐、各种矾类及粘土质混合物的堆积体,广泛分布于硫化矿床上部或附近。铁帽矿石富含铁及其他有价金属元素,属于特殊类型的氧化矿石,具有重要的潜在开发价值。为开发利用铁帽矿石资源,本论文以广西某大型硫化矿锌矿床铁帽矿石为研究对象,围绕矿石锌铁分离和综合回收问题,借助XRD、SEM.EDS.AAS.ICP等现代仪器分析方法,运用元素地球化学、冶金原理、实验设计、热力学、动力学等理论,研究了铁帽矿石的矿物学性质,通过采用常规选矿、常规碱浸出、机械活化浸出、硫酸浸出、常规焙烧以及深度还原焙烧等工艺和技术处理矿石,系统研究了铁帽矿石的选冶加工特性、产品特征以及过程中因素影响规律和过程机理。研究结果表明:
     (1)铁帽矿石的主要矿物来源和性质与大多数氧化矿石不同,是导致铁帽矿石难选难冶的根本原因。所研究铁帽矿石中的铁主要赋存在菱铁矿和褐铁矿两种矿物中,其中菱铁矿为硫化矿床早期形成时沉积原生菱铁矿;褐铁矿为铁帽形成过程中硫化矿床的黄铁矿氧化和风化淋蚀的产物。铁帽中的锌主要赋存在菱铁矿、褐铁矿与菱锌矿三种矿物中,其中,在原生沉积菱铁矿形成过程,锌以类质同象方式进入菱铁矿中;在黄铁矿氧化和风化淋蚀为褐铁矿过程中,褐铁矿吸附拦截迁移中的硫酸锌,导致铁帽中大量的锌以吸附态形式赋存在褐铁矿中。
     (2)由于研究铁帽矿石中独立锌矿物少,锌主要以类质同象形式存在于菱铁矿中和以被吸附状态存在于褐铁矿中,因此,采用常规选矿方法处理该铁帽矿石,不仅粗精矿的品位指标与铁帽矿石原矿接近,而且回收率低,证实了该铁帽矿石为难选氧化矿石,物理选矿无法实现锌铁的有效分离。
     (3)由于研究铁帽矿石中的锌主要以类质同象形式存在于菱铁矿中和以被吸附状态存在于褐铁矿中,少量锌存在于菱锌矿中,而这三种矿物在碱性溶液的溶解特性不同,菱锌矿易溶,菱铁矿和褐铁矿难溶,因此,碱性浸出的实质是菱锌矿被溶解破坏释放锌,褐铁矿所吸附的锌被解吸进入溶液,菱铁矿不溶解性和褐铁矿中锌解吸的非自发性和非彻底性是导致铁帽矿石常规碱浸出工艺提锌难的根本原因。采用碱性浸出方法处理该铁帽矿石,单次浸出的锌浸出率低,均低于50%,采用多次碱浸和机械活化碱浸可适当提高锌的浸出率,最高达63%。
     (4)由于硫酸易于溶解破坏菱锌矿和从褐铁矿中解吸吸附锌,并且在较高浓度和较长作用时间条件下可破坏菱铁矿,因此,采用硫酸浸出比碱性浸出更容易浸出铁帽矿石中的锌,锌浸出率可达到90%以上,但铁也进入溶液,铁浸出率大于50%,将导致后续溶液锌铁分离难度大。
     (5)由于研究铁帽矿石中的锌铁紧密复杂共生,在常规焙烧过程中容易生成稳定难溶和无磁性的铁酸锌,因此,采用常规焙烧预处理该铁帽矿石,致使焙烧产品的碱性浸锌或磁选选铁效果均不理想。
     (6)由于在高温、强还原气氛中铁矿物容易较彻底地转化为易于磁选回收的金属铁颗粒,而矿石中的锌被转化为低熔点的金属锌,再挥发转化为氧化锌进入气相,因此,深度还原—磁选工艺是处理锌铁以类质同象和吸附关系共存的该类型铁帽矿石最适宜的工艺,可实现锌铁的高效分离和综合回收。采用深度还原预处理该铁帽矿石时,金属化率达到92%以上,锌挥发率达到97%以上,对深度还原产品进行磁选分离,所得铁精矿铁品位与铁回收率均在90%以上
     (7)采用响应面法分析浸出试验数据,易于确定各因素的影响主次及交叉作用规律,并获得形式简洁和预测可靠性高的二次回归方程。在碱性浸出中,各因素影响的主次顺序是:浸出时间>浸出剂浓度>浸出温度,浸出时间和浸出剂浓度两因素的交互作用影响明显大于其他两因素组合的交互作用影响。在硫酸浸出中,各因素影响的主次顺序是:硫酸浓度>浸出时间>浸出温度,与硫酸浓度配合的两因素组合交互作用影响大小接近,且明显大于无硫酸浓度参与的其他两因素组合的交互作用影响。
     (8)铁帽矿石的浸出过程动力学可以用收缩未反应芯扩散控制模型描述,模型参数与反应条件密切相关,且浸出过程的活化能较低,均小于30kJ/mol。其中,碱性浸出动力学宜采用分段收缩未反应芯扩散控制模型描述,且10~120min时段的活化能低于120~360min时段的活化能。根据模型拟合结果和活化能的分段特征,可以推断在碱性浸出中,菱锌矿溶解反应活化能低,属于快反应过程,而褐铁矿中锌的解吸脱附活化能高,属于慢反应过程,因此,碱性浸出的关键是褐铁矿中锌的解吸脱附。硫酸浸出动力学可采用整段收缩未反应芯扩散控制模型描述,且锌浸出的活化能低于铁浸出的活化能。根据模型拟合结果和活化能的特征,可以推断在硫酸浸出中,菱锌矿与菱铁矿的溶解反应活化能低,属于快反应过程,而褐铁矿中锌的解吸脱附与褐铁矿溶解的活化能高,属于慢反应过程,因此,硫酸浸出过程中锌浸出的关键仍然是褐铁矿中锌的解吸脱附。
     总之,本论文结合地质学、选矿学、冶金学等学科理论,通过试验研究和现代分析测试相结合的方法,揭示了铁帽形成机制与其矿石矿物形成和主要元素赋存状态的内在关系,探清了采用常规选冶技术处理该类型矿石存在的问题以及难于选冶分离和回收的原因,指出了该类型矿石矿物分离和综合利用的新方向。论文研究成果具有重要的学术价值,对铁帽矿石的实际开发利用具有重要的指导意义。
Gossan is the name given to a large mass formed by sulfide ore deposits after oxidation and weathering and distributed widely above or near sulfide ore deposits. Its composition is dominated by neoformed minerals bearing iron and manganese, mainly oxidate, secondary sulfate, vitriol and clay. Gossan is a special oxide ore with high contents of iron and other valuable metals and has greatly potential developing value. In order to effectively utilize it, the object of this thesis is the gossan ore derived from zinc sulfate ore deposits in Guangxi Zhuang Autonomous Region of China. It was focused on the problem of separation and recovery of zinc and iron. Mineralogy properties of the gossan ore were studied by means of modern analysis methods such as XRD, SEM, EDS, AAS and ICP and combined with the theories of element geochemistry, metallurgical principle, experiment design, thermodynamics and kinetics. Moreover, the conventional mineral processing methods, the conventional alkaline leaching, mechanical activation leaching, sulfuric acid leaching, the conventional roasting and deep reduction were used to study the feasibility and characteristics, product features, effects of operating factors and process mechanism in mineral processing and metallurgy. The results are shown in followings.
     (1) Compared with other oxide ores, the difference of origins and properties of gossan ore minerals lead to the difficulty in mineral processing and metallurgy. In this work, the occurrences of iron and zinc in gossan ores were investigated. The results show that iron occurs predominantly in forms of siderite and limonite, and zinc in forms of siderite, limonite and smithsonite. Siderite belongs to primary deposit born in the early stage of sulfide deposit formation, in which zinc exists in the form of isomorphism. Limonite is the product of pyrite oxidation and weathering in the process of gossan formation, and zinc sulfate is intercepted and absorbed by limonite in the course of migration.
     (2) The grade of rough concentrate is near to that of the raw ore and metal recovery is low in the conventional mineral processing. The results indicate that the methods do not realize the effective separation of zinc and iron and the gossan ore is a refractory oxide ores because independent zinc minerals content is low and zinc is the form of isomorphism and adsorption in siderite and limonite, respectively.
     (3) In alkaline leaching, the zinc leaching rate of single leaching was less than50%, and that of multi-leaching and mechanical activation leaching could be improved to a certain extent, up to63%maximumly. The results show that zinc in smithsonite could be dissolved in leaching solution, zinc on limonite could be partly desorbed under the action of external forces and zinc in siderite could not be recovered due to its solubility in leaching agent. Therefore, it could be concluded that the alkaline leaching is difficult to recover zinc from the gossan ore for the reasons above mentioned.
     (4) In sulfuric acid leaching, the zinc leaching rate is greater than90%because smithsonite is dissolved and zinc in limonite is desorbed easily at high concentration and long leaching time. However, iron is also leached with zinc leaching and the leaching rate of iron is more than50%, which results in the following separation of zinc and iron becomes more difficult.
     (5) The results of alkaline leaching and magnetic separation are not ideal because zinc ferrite which is indissoluble and nonmagnetic generated easily for complex associations between zinc and iron in the conventional roasting.
     (6) The results show that the process of deep reduction-magnetic separation is most suitable to treat this type of gossan ore which zinc is the form of isomorphism and adsorption. The effective separation and recovery of zinc and iron could be realized because iron minerals could be thoroughly changed into iron particle recovered with magnetic separation easily and zinc could be volatilized into gaseous phase under the atmosphere of strongly reduction and high temperature. The metallization rate, zinc volatile rate, iron grade and iron recovery is greater than92%,97%,90%and90%, respectively.
     (7) The influence laws of factors and quadratic regression equation with a simple form and high prediction reliability can be obtained easily by analysis of response surface method. The influence sequence is leaching time> leaching agent concentration> leaching temperature, and the interactive effect of leaching time and leaching agent concentration is more obvious than others in alkaline leaching. The influence sequence is sulfuric acid concentration> leaching time> leaching temperature, and the interactive effect of sulfuric acid concentration and the other factors is more obvious than others without sulfuric acid concentration in sulfuric acid leaching.
     (8) The leaching kinetics of gossan ores could be described with unreacted shrinking core diffusion control model, model parameters is closely related with reaction conditions, and activation energy is less than30kJ/mol. Kinetics of alkaline leaching can be described with unreacted shrinking core diffusion control model in two time scales, and the activation energy of10-120minutes was less than that of120-360minutes. According to the simulation results and the characteristics of sectional activation energy, it could be inferred that the activation energy for smithsonite dissolution was low and the leaching process belonged to fast reaction, while the activation energy of zinc desorption in limonite was high and the leaching process belonged to slow reaction, which was the key step for alkaline leaching. Kinetics of sulfuric acid leaching can be described with unreacted shrinking core diffusion control model in whole time scale, and the activation energy of zinc leaching was less than that of iron leaching. According to the simulation results and the characteristics of activation energy, it could be inferred the activation energy for smithsonite and siderite dissolution was low and the leaching process belonged to fast reaction, while the activation energy for zinc desorption and limonite dissolution was high and the leaching process belonged to slow reaction. So zinc desorption in limonite was still the key step in sulfuric acid leaching.
     In summary, in this thesis, the relations between gossan formation mechanism and mineral composition were revealed by modern analysis methods combined with the theories involved geology, mineral processing and metallurgy. The main reasons why gossan ores were difficult to be treated with conventional process were found out, and the new process for utilization of this type ores was suggested. The research results in this thesis deserve important academic value and is instructive for gossan resources exploitation and utilization.
引文
[1]袁见齐,朱上庆,翟裕生.矿床学[M].北京:地质出版社,1985.197-202,236.
    [2]薛春纪,祈思静.基础矿床学[M].北京:地质出版社,2006.227-231,253-257.
    [3]Sanchez L., Cruells M., Rota A.. Sulphidization-cyanidation of jarosite species: Applicability to the gossan ores of Rio Tinto[J]. Hydrometallurgy,1996,42:35-49.
    [4]Vinals J., Roca A., Cruells M., et al. Characterization and cyanidation of Rio Tinto gossan ores[J]. Canadian Metallurgical Quarterly,1995,34:115-122.
    [5]Roca A., Vinals J., Arranz M., et al. Characterization and alkaline decomposition or cyanidation of beudantite-jarosite materials from Rio Tinto gossan ores[J]. Canadian Metallurgical Quarterly,1995,34:115-122.
    [6]Roca A., Cruells M, Patino F., et al. Kinetic model for the cyanidation of silver ammonium jarosite in NaOH medium[J]. Hydrometallurgy,2006,81:15-23.
    [7]Cruells M., Roca A., Patino F., etal. Cyanidation kinetics of argentian jarosite in alkaline media[J]. Hydrometallurgy,2000,55:153-163.
    [8]Patino F., Cruells M., Roca A., et al. Kinetics of alkaline decomposition and cyanidation of argentian ammonium jarosite in lime medium[J]. Hydrometallurgy,2003,70:153-161.
    [9]胡玉蓉,丁娟,邹家柱,等.铁帽型金矿石制粒堆浸提金试验研究[J].湿法冶金,2005,24(2):77-79.
    [10]巫汉泉.矽卡岩铁帽型金矿石堆浸提金工艺特性[J].黄金,2001(9):32-33.
    [11]郑其.铁帽型金矿石制粒堆浸提金工艺的探讨[J].黄金,2002,23(8):29-32.
    [12]刘升明.铁帽型金矿柱浸斌验研究[J].湿法冶金,1999(3):1-4.
    [13]马道亮.武威铁帽型金矿石的选矿工艺研究与生产实践[J].甘肃有色金属,1998(3):24-26.
    [14]梅贤恭,袁明亮,左文亮,等.铁帽型含金复合矿煤基直接还原过程中铁氧化物的行为[J].烧结球团,1997,22(6):8-11.
    [15]胡福成,张健良,杨佼庸,等.低品位高含泥铁帽金矿提金工艺的研究[J].矿冶,1995,23(8):51-56.
    [16]林星,林嵩岳.硫脲炭浸法从低品位微细铁帽金矿提金工艺研究[J].黄金科学技术,1995,3(3):37-42.
    [17]杨大锦,朱华山,陈加希,等.湿法提取锌工艺与技术[M].北京:冶金工出版社,2006.
    [18]章小鸽.锌的腐蚀与电化学[M].北京:冶金工业出版社,2008.
    [19]奚甡.世界铅锌资源开发现状及其利用[J].中国金属通报,2009(37):32-33.
    [20]戴自希,张家睿.世界铅锌资源和开发利用现状[J].世界有色金属,2009(3):22-28.
    [21]陈永海.低品位氧化锌矿直接提锌工艺研究[D].长沙:中南大学,2005.
    [22]吴荣庆.我国铅锌矿资源特点与综合利用[J].中国金属通报,2008(9):32-33.
    [23]邓晰.我国及海外主要铅锌矿[J].矿产,2008(49):29.
    [24]雷力,周兴龙,文书明,等.我国铅锌矿资源特点及开发用现状[J].矿业快报,2007(9):1-3.
    [25]Tang S.H, Qin W.Q., He M. F, et al. Flotation separation and sulfuric acid leaching of zinc oxide ore[J]. Hunan nonferrous metals,2007,6(3):5-7.
    [26]张玉梅.氧化锌矿氨性强化浸出新方法的研究[D].长沙,中南大学,2009.
    [27]翁润生.矿物与岩石辞典[M].北京:化学工业出版社,2008.112,328,351,375.
    [28]陈平.结晶矿物学[M].北京.化学工业出版社,2008.127-128.
    [29]南京大学地质学系岩矿教研室.结晶学与矿物学[M].北京:地质出版社,1978.296-298,368,425.
    [30]张志雄.矿石学[M].北京:冶金工业出版社,1981.78-79,125.
    [31]周乐光.矿石学基础[M].北京:冶金工业出版社,2007.121-122,138,195.
    [32]潘兆橹.结晶学及矿物学(下册)[M].地质出版社,1985.24-26,123-124,244-245.
    [33]Chen A.L, Zhao Z.W, Jia X.J, et al. Comprehensive utilization status and expectation of zinc oxide ores[J]. Mining and Metallurgical Engineering,2008,6:62-66.
    [34]毛素荣,杨晓军,何剑,等.氧化锌矿浮选现状及研究进展[J].国外金属选矿2007(4):4-6.
    [35]Duan, X.M, Luo, L. Review on present situation of the flotation of oxidized zinc ore[J]. Mining and Metallurgy,2009,4:47-51.
    [36]李勇,王吉坤,任占誉,等.氧化锌矿处理的研究现状[J].矿冶,2009,18(2):57-59.
    [37]石道民,杨敖.氧化铅锌矿浮选[M].昆明:云南科技出版社,1996.
    [38]刘荣荣,文书明.氧化锌矿浮选现状与前景[J].国外金属矿选矿,2002,7:17-19.
    [39]陈铁,杨佳定.一种氧化锌矿的选矿方法[P].C200610010674.5,2006.02.09.
    [40]严小陵.兰坪铅锌矿架崖山南部矿段矿石合理选矿工艺流程研究[J].云南冶金,1987(1):28-34.
    [41]张心平.氧化铅锌矿石浮选新药剂的应用研究[J].矿冶,1996,5(3):40-45.
    [42]蒋明华,杨世中,杨建宇.兰坪铅锌矿氧化矿选矿工业试验研究[J].有色金属(选矿部分),2007(3):5-7.
    [43]叶雪均.难选氧化铅锌矿石选矿试验研究[J].有色金属,2001(2):1-5.
    [44]罗琳.微细粒氧化铅锌矿复合活化疏水聚团浮选分离新工艺[J].国外金属矿选矿,2000(12):7-9.
    [45]蒋继穆.我国锌冶炼现状及近年来的技术进展[J].中国有色冶金,2006,35(5):19-23.
    [46]孙德堃.国内外锌冶炼技术的新进展[J].中国有色冶金,2004,6(3):1-4.
    [47]陈华,廖明.回转窑冶炼生产氧化锌的工艺方法[P].C02108607.9,2002.03.29.
    [48]龚恩民,艾光华,魏宗武.难选氧化锌矿石中综合回收铁的试验研究[J].中国矿业,2007,16(6):69-71.
    [49]郭晓军.氧化锌矿石除铅、除镉工艺[P].C89104956.8,1989.07.17.
    [50]潘智斌,林伟,黄侣广,等.高炉污泥提取氧化锌实践[J].柳钢科技,2001(1):38-39.
    [51]陈世民,程东凯,李裕后,等.高砷次氧化锌综合回收试验研究[J].有色矿冶,2001,17(5):29-32.
    [52]郭兴忠,张丙怀,阳海彬,等.氧化锌矿的基本物性及高温氧化焙烧实验[J].重庆大学学报,2002,25(4):137-140.
    [53]Gnoinski, J. Skorpion zinc:optimization and innovation[J]. Journal of The South African Institute of Mining and Metallurgy,2007,107(10):657-662.
    [54]De Wet, J.R., Singleton, J.D. Development of a viable process for the recovery of zinc from oxide. ores[J]. Journal of The South African Institute of Mining and Metallurgy, 2008,108(5):253-259.
    [55]Frenay, J. Leaching of oxidized zinc ore in various media[J]. Hydrometallurgy,1985,15: 243-253.
    [56]Sole, K.C., Feather, A.M., Cole, P.M. Solvent extraction in southern Africa:an update of some recent hydrometallurgical developments [J]. Hydrometallurgy,2005,78:52-78.
    [57]李国民.高硅氧化锌矿浸出脱硅工艺的研究[J].中国有色冶金,2005,8(4):32-35.
    [58]蓝卓越,胡岳华,黎维中.低品位氧化锌矿硫酸浸出工艺研究[J].矿冶工程,2002,22(3):63-65.
    [59]Qin W.Q., Li W.Z., Lan Z.Y., et al. Simulated small-scale pilot plant heap leaching of low-grade oxide[J]. Minerals Engineering,2007,8(20):694-700.
    [60]Choi W.K., Torma A.E., Ohline R.W. Electrochemical aspects of zinc sulphide leaching by Thiobacillus ferrooxidans[J]. Hydrometallurgy,1993,33(1):137-152.
    [61]Bodas M. G. Hydrometallurgical treatment of zinc silicate ore from Tailand[J]. Hydrometallurgy,1996,40:37-39.
    [62]Abdel-Aal E. A.. Kinetic of Sulfuric acid leaching of low-grade zinc silicate ore[J]. Hydrometallurgy,2000,55:247-254.
    [63]Abdel-Aal E.A., Shukry Z.E. Application of quick leaching method to an Egyptian zinc silicate ore[J]. Transactions of the Institution of Mining and Metallurgy. Section C: Mineral Processing and Extractive Metallurgy,1997,24(106):89-90.
    [64]Castro I. M. Bioleaehing of zinc and nickel from silicates using Aspergillus Niger culture[J]. Hydrometallurgy,2000,57:39-49.
    [65]Shanming He, Jikun Wang, Jiangfeng Yan. Pressure leaching of high silica Pb-Zn oxide ore in sulfuric acid medium[J]. Hydrometallurgy,2010,104(2):235-240.
    [66]Cun-xiong Li, Hong-sheng Xu, Zhi-gan Deng, et al. Pressure leaching of zinc silicate ore in sulfuric acid medium[J].Transactions of Nonferrous Metals Society of China,2010, 20(5):918-923.
    [67]Hongsheng Xu, Chang Wei, Cunxiong Li, et al.. Sulfuric acid leaching of zinc silicate ore under pressure[J]. Hydrometallurgy,2010,105(1-2):186-190.
    [68]陈世明,瞿开流.兰坪氧化锌矿石处理方法探讨[J].云南冶金,1998(10):31-34.
    [69]梅光贵,王德润,周敬元,等.湿法炼锌学[M].长沙:中南大学出版社,2001.1-2.
    [70]Vida Safari, Gilnaz Arzpeyma, Fereshteh Rashchi, et al. A shrinking particle-shrinking core model for leaching of a zinc ore containing silica[J]. Int. J. Miner. Process,2009,93: 79-83.
    [71]Ikenobu, S. Method for processing siliceous zinc ores[J]. In:Dutrizac, J.E. (Ed.), Metals and Materials Society, Warrendale,2000,13(5):427-435.
    [72]Dufresne, R.E. Quick leaching of siliceous zinc ore[J]. Journal of Metals,1976,28:8-12.
    [73]Rusen A., Sunkar A.S., Topkay Y.A.. Zinc and lead extraction from Cinkur leach residues by using hydrometallurgical method[J]. Hydrometallurgy,2008,93:45-50.
    [74]谢美求,陈志飞,冯剑,等.氧化锌矿湿法浸出提锌工艺研究[J].矿冶工程,2004,24(1):67-68.
    [75]Peng Bing, Gao Hui-mei, Chai Li-yuan, et al. Leaching and recycling of zinc from liquid waste sediments[J]. Transactions of Nonferrous Metals Society of China.2008,18: 1269-1274.
    [76]江容广.高硅氧化锌矿制硫酸锌的方法[P].C87102024.6,1987.05.16.
    [77]Shirin E., Fereshteh R., Sadrnezhaad S.K. Hydrometallurgical treatment of tailings with high zinc content[J]. Hydrometallurgy,2006,82:54-62.
    [78]Hua Y., Lin Z., Yan Z.. Application of microwave irradiation to quick leach of zinc silicate ore[J]. Minerals Engineering,2002,15:451-456.
    [79]Sayilgan E., Kukrer T., Ferella F., et al. Reductive leaching of manganese and zinc from spent alkaline and zinc-carbon batteries in acidic media[J]. Hydrometallurgy,2009,97: 73-79.
    [80]Seham Nagib, Inoue K.. Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching[J]. Hydrometallurgy,2000,56:269-292.
    [81]Jha M. K., Kumar V., Singh R.J.. Review of hydrometallurgical recovery of zinc from industrial wastes[J]. Resources, Conservation and Recycling,2001,33:1-22.
    [82]Subramanian VR. Galvanisers ash-a raw material for zinc sulphate industry[J]. ILZIC Quarterly,1995,3(3):59-61.
    [83]Asadi Zeydabadi B, Mowla D, Shariat MH, et al. Zinc recovery from blast furnace flue dust[J]. Hydrometallurgy,1997,47:113-25.
    [84]Caravaca C, Cobo A, Alguacil FJ. Considerations about the recycling of EAF flue dusts as source for the recovery of valuable metals by hydrometallurgical processes[J]. Resources Conservation and Recycling,1994,10:35-41.
    [85]Raghvan R, Upadhyay RN. Innovative hydrometallurgical processing technique for industrial zinc and manganese process residues[J]. Hydrometallurgy,1999,51:207-226.
    [86]Zhao Y.C., Stanforth, R. Extraction of zinc from electric arc furnace dust by alkaline leaching followed by fusion of the leaching residue with caustic soda[J]. Chinese J. Chem. Eng,2004,12(2):174-178.
    [87]寇建军,吴萍,刘达平,等.菱锌矿湿法炼锌试验研究[J].矿产综合利用,2005(2):14-17.
    [88]Deniz Turan M., Soner Altundogan H.. Fikret Tumen. Recovery of zinc and lead from zinc plant residue[J]. Hydrometallurgy,2004,75:169-176.
    [89]郑若锋.高镁菱锌矿制硫酸锌和氧化镁工艺研究[J].无机盐工业,1994(4):10-13.
    [90]Feng, L.Y., Yang, X.W. Pelletizing and alkalinene leaching of powdery low grade zinc oxide ores[J]. Hydrometallurgy,2007,89(3-4):305-310.
    [91]Zhao, Y.C., Stanforth, R. Production of Zn powder by alkaline treatment of smithsonite Zn-Pb ores[J]. Hydrometallurgy,2000,56(2):237-249.
    [92]李志华,薛怀生,姚耀春.兰坪难选氧化锌矿氨浸动力学[J].云南冶金,2003(4):22-24.
    [93]朱云,胡汉,苏云生,等.难选氧化锌矿氨浸动力学[J].过程工程学报,2002,2(2):81-85.
    [94]张元福,梁杰,李谦.铵盐浸出氧化锌矿动力学的研究[J].贵州工业大学学报(自然科学版),2002,31(1):37-41.
    [95]刘晓丹,张元福.铵盐浸出氧化锌矿动力学的研究[J].贵州工业大学学报(自然科学版),2004,33(4):82-84,89.
    [96]刘亚川,刘述平,李博,等.低品位氧化锌矿的氨—铵盐浸出研究[J].矿产综合利用,2008(2):3-6.
    [97]杨声海,李英念,巨少华,等.用NH4C1溶液浸出氧化锌矿石[J].湿法冶金,2006,26(4):179-182.
    [98]张保平,唐谟堂,杨声海.氨法处理氧化锌矿制取电锌[J].中南工业大学学报(自然科学版),2003,34(6):619-623.
    [99]张保平,唐谟堂,杨声海.锌氨体系电积锌研究[J].湿法冶金,2001,20(4):175-177.
    [100]Olper Marco, Fracchia Pier Luigi, Maccagni Massimo. Process for Recovering Zinc and Lead From Flue Dusts From Electrical Steel Works and for Recycling Said Purified Metals to the Furnace, and Installation for Implementing Said Process:EP, 0551155A1[P],1993.
    [101]Olper M, Maccagni M. Electrolytic Zinc Production From Crude Zinc Oxides With the Zinc Process[C]//2000TMS Fall Extraction & Processing:4th, Pittsburgh, Minerals, Metals and Materials Society,2000,379-396.
    [102]唐谟堂,鲁君乐,袁延胜,等Zn(II)-NH3-(NH4)2SO4-H2O系的氨络合平衡[J].中南矿冶学院学报,1994,25(6):701-705.
    [103]唐谟堂,张鹏,何静,等Zn(II)-(NH4)2SO4-H2O体系浸出锌烟尘[J].中南大学学报(自然科学版),2007,38(5):867-872.
    [104]刘三军,欧乐明,冯其明.氧化锌矿的碱法浸出研究[J].矿产保与利用,2004(4),39-43.
    [105]Liu S.J, Ou L.M, Feng Q.M, et al. Alkaline Leaching of Zn from Zinc Oxide Ore[J]. Hydrornetallurgy of China,2005,4(1):23-25.
    [106]张安沅.复分解反应一步法生产碱式碳酸锌工艺[P].C93115628.9,1993.12.09.
    [107]尹国宗.从氧化矿矿中水冶法提取锌、铜、镍、钴的工艺及其装置[P].C200510060047.8,2005.03.26.
    [108]汪明礼.碳酸氢铵加氨水处理菱锌矿的研究[J]. Applicable technology market, 1997(8):8-10.
    [109]Ailiang Chen, Zhong wei Zhao, Xijun Jia, et al. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore[J]. Hydrometallurgy, 2009,97:228-232.
    [110]赵由才,易天晟.一种用氧化锌矿生产高纯度金属锌的方法[P].C03116754.3,2003.05.07.
    [111]Youcai Zhao, Robert Standforth. Production of Zn powder by alkaline treatment of smithsonite Zn-Pb ores[J]. Hydrometallurgy,2000,56:237-249.
    [112]马启坤,李晓阳,陈世明,等.一种处理低品位氧化锌矿石的方法[P].C02133784,5,2002.09.17.
    [113]刘振选译.舍锌粉尘利用途径的探讨[J].国外烧结球团,1988(1):33.
    [114]刘振选译.论在里雅宾斯克钢铁厂高炉中锌的行为[J].国外钢铁,1984(12):1.
    [115]宋招权.高碳高锌含铁粉尘脱锌动力学研究[J].矿产综合利用,2001(12):1-5.
    [116]佘雪峰,薛庆国,王静松,等.钢铁厂含锌粉尘综合利用及相关处理工艺比较[J].炼铁,2010,29(4):56-62.
    [117]伍成波,刁岳川,杨辉,等.含碳球团还原法处理含锌电炉粉尘的试验分析[J].重庆大学学报(自然科学版),2007,30(9):51-55.
    [118]郭兴忠,张丙怀,阳海彬.含碳氧化锌球团还原的动力学[J].重庆大学学报(自然科学版),2002,25(5):86-88.
    [119]郭兴忠,张丙怀,阳海彬.氧化锌球团还原的机理研究[J].有色金属(冶炼部分)2002(2):2-6.
    [120]郭兴忠,张丙怀,阳海彬,等.熔融还原处理低品位氧化锌矿的研究[J].矿冶工程,2003,23(1):57-60.
    [121]熊利芝,陈启元,尹周澜,等.真空碳热还原氧化锌矿动力学[J].过程工程学报,2010,10(1):133-137.
    [122]孟繁明,王文忠,八木顺一郎.用固体碳及CO/CO2还原电炉粉尘中氧化锌的研究[J].中国冶金,2007,17(2):43-47.
    [123]李时晨,朱玉芹.回转窑高温还原挥发处理难选低品位氧化锌矿[J].云南冶金, 1992(4):13-16.
    [124]袁致涛,高太,印万忠,等.我国难选铁矿石资源利用的现状及发展方向[J].金属矿山,2007(1):1-6.
    [125]U. S. Geological Survey, Mineral Commodity Summaries, January 2010[EB/OL]. http: //minerals. Usgs. gov.
    [126]方启学,卢寿慈.世界弱磁性铁矿石资源及其特征[J].矿产保护与利用,1995(4):44-46.
    [127]余永富.我国铁矿山发展动向、选矿技术发展现状及存在的问题[J].矿冶工程,2006(1):21-25.
    [128]姚培慧.中国铁矿志[M].北京:冶金工业出版社,1993.
    [129]李锡林,尹汉辉.我国菱铁矿矿床物质成分概况.菱铁矿矿床学术会议论文集,1983(6).
    [130]全宏东.矿物化学处理[M].北京:冶金工业出版社,1984.49-50,117.
    [131]孙炳泉.近年我国复杂难选铁矿石选矿技术进展[J].金属矿山,2006(3):11-13.
    [132]杨长庚.陕西大西沟菱铁矿的矿石物质组分及结构构造特征.菱铁矿矿床学术会议论文集,1983,6.
    [133]文光远,欧阳奇,周培土.威远菱铁矿选矿和烧结性能的研究[J].重庆大学学报(自然科学版),1999,22(1):99-105.
    [134]罗立群,张泾生,高远扬,等.菱铁矿干式冷却磁化焙烧技术研究[J].金属矿山,2004(10):28-31.
    [135]刘宁斌,杨杰康,周攻敏.王家滩菱铁矿烧结试验研究[J].昆钢科技,2006(2):6-12.
    [136]孙炳泉.褐铁矿选矿技术进展[J].金属矿山,2006(8):27-29.
    [137]王毓华,任建伟.阴阳离子捕收剂反浮选褐铁矿试验研究[J].矿产保护与利用,2004(8):33-35.
    [138]王毓华,陈兴华,黄传兵,等.褐铁矿反浮选脱硅新工艺试验研究[J].金属矿山,2005(7):37-39.
    [139]谢富良.铁坑褐铁矿选矿新工艺研究[J].冶金矿山设计与建设,1996(5):19-25.
    [140]李永聪,孙福印.新疆某褐铁矿的选矿工艺研究[J].金属矿山,2002(6):29-30.
    [141]陈雯.絮凝—强磁选回收易泥化褐铁矿的试验研究[J].金属矿山,2003(6):32-34.
    [142]张桂兰.难选低品位褐铁矿石的选矿试验[J].河北理工学院学报,1999(21):6-12.
    [143]周岳远,李小静,余兆禄,等CRIMM稀土永磁辊式强磁选机分选褐铁矿的生产实践[J].矿冶工程,2002,22(2):62-64.
    [144]王常任.磁电选矿[M].北京:冶金工业出版社,1998.
    [145]Fortini. Renewable energy steelmaking on a new process for ironmaking[D]. Carnegie Mellon University,2003.
    [146]赵庆生,储满仓.电炉炼钢原料及直接还原铁生产技术[J].中国冶金,2010,20(4):23-28.
    [147]Kobayashi I. A new process to produce iron directly from fine ore and coal[J]. I & M, 2001,9:19-22.
    [148]Kazuhiro Nagata, Rie Kojima, Taichi Murakami. Mechanisms of Pig Iron Making from Magnetite Ore Pellets Containing Coal at Low Temperature[J]. ISIJ International,2001, 41(11):1316-1323.
    [149]Yuan Z. F, Wang X. Q, Xu C, et al. A new process for comprehensive utilization of complex titania ore[J]. Minerals Engineering,2006,19(19):975-978.
    [150]方觉.非高炉炼铁工艺与理论[M].北京:冶金工艺出版社,2003.
    [151]徐承焱,孙体昌,杨慧芬,等.铁矿直接还原工艺及理论的研究现状及进展[J].矿产保护与利用,2010(4):48-54.
    [152]Nargin N, Aydm S, Segen K, et al. Reduction of iron ore pellets with domestic lignite coal in a rotary tube furnace[J]. International Journal Mineral Processing,1995,43(1-2): 49-59.
    [153]Mendoza R, Sandoval I, Mendez J, et al. Development of a High Reducibility Acid Pellet at Imexa[J]. Materials and Manufacturing Processe,2001,16(4):519-529.
    [154]倪文,贾岩,徐承焱,等.难选鲕状赤铁矿深度还原—磁选实验研究[J].北京科技大学学报,2010,32(3):287-291.
    [155]许斌,庄剑鸣,白国华,等.低品位铁矿煤基直接的研究[J].矿产综合利用,2001(6):20-24.
    [156]朱德庆,李建,邱冠周,等.一步法直接还原新疆磁铁精矿[J].中南大学学报(自然科学版),2007,38(3):421-427.
    [157]朱德庆,徐小锋,潘建.磁铁矿球团煤基直接还原工艺中润磨的强化[J].中南大学学报(自然科学版),2007,38(5):843-849.
    [158]朱德庆,翟勇,潘建.煤基直接还原—磁选超微细贫赤铁矿新工艺[J].中南大学学报(自然科学版),2008,39(6):1132-1138.
    [159]彭志坚,罗浩,黎应君,等.巴西赤铁矿富矿粉直接还原试验研究[J].武汉科技大学学报(自然科学版),2007,30(4):338-341.
    [160]Varajao C A C, Suckal V, Vilela R A. Bulk Density as a Method to Evaluate Reducibility of Hard Hematite Ore in the Direct Reduction Process[J]. Mineral Processing and Extractive Metallurgy C,2003,112(4):52-53.
    [161]徐承焱,孙体昌,杨慧芬,等.某难选铁矿石直接还原焙烧磁选研究[J].矿冶工程,2010,30(3):36-39.
    [162]杨大伟,孙体昌,徐承焱,等.鄂西某高磷鲡状赤铁矿提铁降磷选矿试验研究[J].金属矿山,2009(10):81-83.
    [163]Youssef M A, Morsi M B. Reduction roast and magnetic separation of oxidized iron ores for the production of blast furnace feed[J]. Canadian Metallurgical Quarterly,1998, 37(5):419-428.
    [164]韩跃新,高鹏,李艳军,等.白云鄂博氧化矿石深度还原物料分选试验研究[J].现代矿业,2010(12):28-32.
    [165]高鹏,韩跃新,李艳军,等.白云鄂博氧化矿石深度还原—磁选试验研究[J].东北大学学报(自然科学版),2010,31(6):886-889.
    [166]孙永升,李淑菲,史广全,等.某鲕状赤铁矿深度还原试验研究[J].金属矿山2009(5):80-83.
    [167]李广涛,张宗华,张昱.某高磷鲕状赤褐铁矿的焙烧—磁选试验研究[J].矿业快报,2008(1):27-30.
    [168]沈慧庭,周波,黄晓毅,等.难选鲕状赤铁矿焙烧—磁选和直接还原工艺的探讨[J].矿冶工程,2008,28(5):30-34.
    [169]陈述文,曾永振,陈启平.贵州赫章鲕状赤铁矿直接还原磁选实验研究[J].金属矿山,1997(11):13-16.
    [170]张清岑.用低品位铁矿石生产直接还原铁和高纯铁粉的研究[J].矿产综合利用,1997(1):16-20.
    [171]朱子宗,张丙怀.煤基还原贫菱铁矿冶炼海绵铁的实验研究[J].重庆大学学报(自然科学版),1998,12(2):101-105.
    [172]Weissberger S., Zimmels Y.. Studies on concentration and direct reduction of the Ramim iron ore [J]. International Journal of Mineral Processing,1983,11(2):115-130.
    [173]Amitava Bandopadhyay A., Amit Ganguly b, K.N, Gupta K, et al. Investigations on the nomalous oxidation behaviour of high-carbon gas-based direct reduced iron[J]. Thermochimica Acta,1996,276:199-207.
    [174]Jin-Won Park, Joong-Chul Ahn, Hocheol Song, et al. Reduction characteristics of oily hot rolling mill sludge by direct reduced iron method[J]. Resources, Conservation and Recycling,2002,34:129-140.
    [175]Gui-su Liu, Vladimir Strezov, John A. Lucas, et al. Thermal investigations of direct iron ore reduction with coal[J]. Thermochimica Acta,2004,410:133-140.
    [176]Huifen Yang, Lili Jing, Baogang Zhang. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation[J]. Journal of Hazardous Materials,2011,185:1405-1411.
    [177]运行局.2010年全国进出口情况[EB/OL].中华人民共和国工业和信息化部,http: //www. miit. gov.cn.
    [178]铁矿石价格不断走高,钢铁企业原料成本压力增大[EB/OL].中国钢铁工业协会,http://www. chinaisa. gov.cn.
    [179]黄礼煌.金银提取技术[M].北京:冶金工业出版社,2001.151-158.
    [180]杨家红,李洪桂,赵中伟,等.矿物机械活化基础理论的研究进展[J].稀有金属与硬质合金,1998(12):38-43.
    [181]赵中伟,龙双,陈爱良,等.难选高硅型氧化锌矿机械活化碱法浸出研究[J].中南大学学报(自然科学版),2010,41(4):1246-1250.
    [182]曹琴园,李洁,陈启元,等.机械活化对氧化锌矿碱法浸出及其物化性质的影响[J].过程工程学报,2009,9(4):669-675.
    [183]曹琴园,李洁,陈启元.机械活化对异极矿碱法浸出及物理性能的影响[J].中国有色金属学报,2010,20(2):354-362.
    [184]孙建华,韦泽沼,刘斌等.响应面法优化高压脉冲电场提取匙羹藤总皂苷[J].广西大学学报(自然科学版),2011,36(3):363-368.
    [185]吴有炜.试验设计与数据处理[M].苏州:苏州大学出版社,2002.135-143.
    [186]孙金旭,朱会霞,肖东光.响应面法优化覆盆子啤酒营养液抗氧化剂研究[J].食品研究与开发,2010,6(31):59-62.
    [187]慕运动.响应面方法及其在食品工业中的应用[J].郑州工程学院学报,2001,22(3):91-94.
    [188]Box G E P, Draper N R. Empirical model-building and response surface[M]. Canada: John Wiley & Sons Inc,1987.
    [189]Dr. David Thompson. Reponse surface experimentation[J]. Journal of Food Processing and Preservation,1982,6:155-188.
    [190]周瑶,徐怀德,米林峰,等.响应面法优化黄芪酒发酵工艺[J].食品科学,2011,32(4):293-296.
    [191]孙康.宏观反应动力学及其解析方法[M].北京:冶金工业出版社,1998.
    [192]朱炳辰.化学反应工程[M].北京:化学工业出版社,1993.
    [193]占寿祥,郑雅杰.硫铁矿烧渣酸浸反应动力学研究[J].化学工程,2006,34(11):36-39.
    [194]覃文庆,唐双华,厉超.高硅低品位氧化锌矿的酸浸动力学[J].矿冶工程,2008,28(1):62-66.
    [195]Mohammad Ashraf, Zafar Iqbal Zafar, Tariq Mahmood Ansari. Selective leaching kinetics and upgrading of low-grade calcareous phosphate rock in succinic acid[J]. Hydrometallurgy,2005,80:286-292.
    [196]Levenspiel,0.,1999. Chemical Reaction Engineering, Second ed. John Wiley and Sons, New York.
    [197]Ekinci Z, Colak S, Cakici A. Technical note leaching kinetics of sphalerite with pyrite in chloride saturated water[J]. Minerals Engineering,1998,11(3):279-283.
    [198]Breed A W, Hansford G S. Studies on the mechanism and kinetics of bioleaching[J]. Mineral Engineering,1999,12(4):383-392.
    [199]Abdel-Aal, E.A.. Kinetics of sulfuric acid leaching of low-grade zinc silicate ore. Hydrometallurgy,2000,55:247-254.
    [200]戴曦.有色冶金原理[M].长沙:中南大学出版社,1998.39-55,125-129.
    [201]张洪恩.红铁矿选矿[M].北京:冶金工业出版社,1983.21-87.
    [202]朱家骥.中国铁矿选矿技术[M].北京:冶金工业出版社,1994.13-31.
    [203]傅崇说.有色冶金原理(第2版)[M].北京:冶金工业出版社,2005.23-87.
    [204]周波.难选鲕状赤铁矿焙烧—磁选和直接还原的研究[D].南宁:广西大学,2008.
    [205]阙绍娟.高铁锌焙砂浸出试验研究[D].南宁:广西大学,2010.
    [206]黄炜,谢颂明.锌焙砂还原焙烧工艺的试验研究[J].有色冶炼,2000,29(4):31-33.
    [207]柏少军,文书明,刘殿文,等.云南某难选菱铁矿石选矿试验研究[J].金属矿山,2010(5):73-76.
    [208]Kwauk M.. Fluidized roasting of oxidic Chinese iron ore[J]. Scientia Sinica,1979, 22(11):1265-1291.
    [209]彭海良.常规湿法炼锌中铁酸锌的行为研究[J].湖南有色金属,2004,20(5):20-22.
    [210]Dan k. Xia, Christopher A. Pichles.对铁酸锌形成反应速率减慢的动力学研究[J].株冶科技,1998,26(2):13-18.
    [211]窦明民.锌冶金中铁酸锌生成及离解机理研究[J].云南冶金,2003(32):63-66.
    [212]李素清,许绍权.现代锌冶金的几个化学问题[J].化学世界,1993(8):97-100.
    [213]穆陇生.锌精矿焙烧工艺条件对湿法炼锌总硫利用率及锌浸出率的影响[J].中国有色冶金,2009(2):27-29.
    [214]Nathalie Leclerc, Eric Meux, Jean-Marie Lecuire. Hydrometallurgical extraction of zinc from zinc ferrites[J]. Hydrometallurgy,2003,70:175-183.
    [215]刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984.86-101,304-311.
    [216]牟保磊.元素地球化学[M].北京:北京大学出版社,1999.41-47,66-70.
    [217]谢世业,陈大经,辛厚勤等.广西环江县北山地区喷流沉积铅锌矿资源潜力及找矿方向[J].矿产与地质,2004(3):217-219.
    [218]郜兆典.广西北山式铅锌黄铁矿床成矿模式及找矿远景[J].南方国土资源,2003(11):25-27.
    [219]欧正,吴财芳,卢韬等.广西环江上朝铅锌矿床地质特征研究[J].地质学刊,2009,33(3):315-319.
    [220]孙邦东,潘其云.广西环江县北山铅锌黄铁矿矿床发现史[J].广西地质,1994,7(3):69-73.
    [221]汪金傍,王显富.广西北山铅锌黄铁矿矿床地质特征及成因的探讨[J].中国岩溶,1988(9):52-57.
    [222]薛云兴,朱永峰.克拉玛依侏罗纪橄榄玄武岩中菱铁矿的成因[J].岩石学报,2007,23(5):1108-1122.
    [223]饶筑平,周淑芳.新平鲁奎山菱铁矿成因探讨[J].云南地质,1982,1(3):209-223.
    [224]沈冰,刘飞燕,朱志敏.滇中地区层控菱铁矿成因机制探讨[J].矿产与地质,2006,20(3):260-263.
    [225]邱柱国.沉积矿床成因亚类的划分及沉积菱铁矿的成因[J].矿床地质,1987,6(1):68-78.
    [226]王濮,潘兆橹,翁玲宝.系统矿物学[M].北京:地质出版社,1987.344-368.
    [227]方海兰,徐凤琳,刘凡,等.中南地区几种地带性土壤中的氧化铁类型与钼吸附特性[J].热带亚热带土壤科学,1997,6(3):182-186.
    [228]Kalhari M, Racz G. J., Loewen-Rudgers L. A(杨定国译).铁铝氧化物吸附锌的机理[J].云南农业科技,1980(6):45-48.
    [229]刘永红,董元彦,岳霞丽,等.锌在铁氧化物和土壤上的吸附[J].湖北农业科学,2006,45(6):734-737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700