用户名: 密码: 验证码:
压电智能结构分析的新方法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于智能结构具有自诊断、自适应、自修复等卓越功能,随着研究的不断深入和理论的成熟,现已从航空和军界应用,逐渐被拓展到土木工程、船舶、汽车等行业中,并且在航空、航天、潜艇、高速列车、汽车、桥梁、水坝、建筑等结构的健康监测、损伤自愈合及振动、噪声和形状控制等方面展现出良好的应用前景。近年来智能材料结构的研究应用已经引起世界各主要发达国家的极大重视,被列为优先发展领域和优先培育的21世纪高新技术产业之一。
     压电材料具有频响范围宽、响应速度快、密实度大、精确度高、良好的线性行为等优点,既可制成传感器又可制成驱动器,通过正逆压电效应来实现智能控制。许多学者对压电材料智能结构开展了大量的基础和应用研究,并已取得了丰富的研究成果。
     目前,对压电智能结构的研究内容主要包括:耦合理论;形状控制;振动控制;噪声控制;优化分析;故障诊断和监测;分析方法研究及试验研究等。本文基于广西大学秦荣教授创立的样条无网格方法和QR方法分别对压电智能复合材料层合板、压电框架结构建立新的分析模型,对压电智能结构静变形控制、形状最优控制、压电材料参数识别、振动主动控制展开研究。研究的主要工作和创新点如下:
     1.基于高阶剪切变形理论和-Iamilton变分原理,采用样条无网格方法,建立了压电智能复合板静变形分析的新模型,推导了样条无网格法刚度矩阵;基于样条无网格离散模型对压电驱动器驱动电压的灵敏度和对驱动器铺设位置的灵敏度,建立了压电智能板形状最优控制模型。通过设计不同的压电驱动器对各种边界条件、不同基体材料的压电层合板进行静变形控制和形状最优控制的算例分析,结果表明本文建立的新模型正确,能够有效的控制结构变形。样条无网格法具有精度高、输入简单、运行效率高、处理边界条件简便等优点。
     2.对压电智能层合板的变形控制进行了解析法研究,提出了符合压电材料正逆压电效应特性的压电层表面的电学边界条件。针对考虑一阶剪切影响的四边简支压电层合板,根据电学平衡方程及电学边界条件推导得到了压电层沿厚度方向电势分布为双曲函数的变化规律。算例讨论了压电层合板在机械荷载和电荷载作用下的变形、电势分布,并对结构变形进行了开环和闭环控制,结果表明推导的解析解与样条无网格解能够互相印证,吻合很好。由于单片压电驱动器控制力不足,为了提高驱动效率,对书本式压电驱动器驱动力的解析解进行了公式推导,建立了压电片层数n与压电驱动器的驱动力Mxp非线性的量化关系。算例分析表明,书本式压电驱动器的控制效果较好,能够应用于压电层合板及钢框架结构的变形控制中。
     3.建立了压电材料参数识别分析的新模型。将材料参数识别的问题转化为极小化目标函数的问题,目标函数定义为测量位移与样条无网格法计算的相应位移之差的平方和;推导了基于样条无网格法求解位移值相对于材料各参数导数的灵敏度计算公式,采用基于信赖域技巧的Levenberg-Marquardt方法极小化目标函数;在参数识别过程中,以样条无网格方法计算的理论位移为真值,以给定方差下的随机正态分布数据模拟带误差的测量位移。研究了压电复合材料板分别在机械荷载及电荷载作用下,基体材料和压电材料的参数识别问题,算例表明本文提出的材料参数识别方法具有较高的精度和较好的稳定性,是行之有效的。
     4.基于高阶剪切变形理论,推导了一种新的可以考虑剪切影响、压电效应、初始几何缺陷及P-△效应的压电智能梁柱单元。当不考虑剪切影响和压电效应时,新单元的刚度矩阵可以退化为线弹性情况下的单刚形式;通过引入初始几何缺陷影响系数的方法,可将初始几何缺陷与P-△效应联合分析,建立了相应的单元几何刚度矩阵。算例结果表明新单元模型正确,为压电智能框架结构建模奠定了理论研究基础。
     5.基于新的压电智能梁柱单元刚度矩阵,采用样条QR方法建立了压电智能框架结构的动力分析新模型;利用模态控制理论,运用LQR最优控制方法,建立了压电智能框架结构振动主动控制计算模型;将压电堆式驱动器布置在框架结构柱上,对压电钢框架结构进行了振动主动控制仿真分析,讨论了结构的P-△效应和初始几何缺陷对结构自振频率及控制力的影响。算例结果表明,本文建立的分析模型能够有效的抑制结构的振动;考虑P-△效应和初始几何缺陷后,结构的自振频率减小,控制电压明显增加,说明这两个因素对结构振动主动控制的影响是不可忽略的,分析初始几何缺陷和P-△效应对结构振动控制的影响很有意义。
     本文进行了大量的数值模拟计算,将基于新方法的分析结果与解析解和有限元解进行了比对,结果表明建立的新模型是正确和有效的,具有输入简单、计算精度高、稳定性好、物理概念清晰、处理边界条件方便、计算量少,运行速度快等优点。本文采用新方法对压电智能复合材料层合板及钢框架结构开展形状控制、振动控制、优化分析以及参数识别的理论研究和仿真分析,具有重要的理论和现实意义,提出的分析方法及得到的结论具有参考价值。
Smart structures are widely used in the military aviation and aerospace engineering due to their superior properties, such as self-diagnosis, adaptive, self-repair, etc. With the development of thorough investigation and improving theory, applications of smart structures have been extended to civil engineering, shipbuilding, automobile and other industries. A good application prospect of smart structures has been unfolded for the structural health monitoring, damage self-healing and vibration, noise and shape control in the fields of aviation, aerospace, submarines, high-speed trains, automobiles, bridges, dams and architecture. In recent years, a great deal of attention has been paid to the research and application of smart structures in the world's major developed countries, and therefore the research and application of smart structures has been classified as one of the priority development areas in terms of the21st century high-tech industries.
     Piezoelectric materials have a lot of advantages such as wide frequency response range, fast response, large compactness, high accuracy, good linear behavior, etc. and they can be used as not only sensors but also actuators. The smart control in structures can be realized by way of the unique direct and inverse piezoelectric effect of piezoelectric materials. Over the past decades, extensive studies have been carried out in the basic and applied research of piezoelectric smart structures and a wealth of research achievements have been made.
     At present, the studies of piezoelectric smart structures are mainly concerned with coupling theory, shape control, vibration control, noise control, optimization analysis, fault diagnosis and monitoring, analysis methods and experiment. Based on the spline meshless method and QR method founded by Professor Qin Rong in Guangxi University, new analysis models for piezoelectric smart laminated plates and piezoelectric frame structures are proposed to study the static deformation control, optimal shape control, active vibration control and parameter identification of piezoelectric material structures. The main work and innovations of the research in this paper are as follows:
     1. Based on Reddy's third order plate theory and Hamilton variational principle, a new model of the static deformation control for piezoelectric smart composite plate is developed and the stiffness matrix is deduced by using spline meshless method. A model of the optimal shape control for piezoelectric smart composite plate is derived according to the sensitivity matrix which is based on the spline meshless discrete model with respect to the driving voltage and location of the actuator layer. By designing different piezoelectric actuators, various boundary conditions and different matrix materials, some numerical examples of open-loop control and closed-loop control are given. The numerical results show that the developed model is correct and effective for shape control. The spline meshless method has the advantages of high precision, simple input, high efficiency and concise boundary conditions.
     2. The study of the deformation control for piezoelectric smart laminated plate by the analytical method and the find of the electrical boundary conditions of piezoelectric layer in line with the unique features of direct and inverse piezoelectric effect. Based on the electrical balance equation and electrical boundary conditions, for the simply supported piezoelectric laminated plates considering the first shear impact, the deduced electric potential distribution is expressed as a hyperbolic function along the thickness. Numerical examples are given to analyze the deformation, electric potential distribution, open-loop and closed-loop control of the piezoelectric laminated plate under mechanical loads and electric loads. The results illustrate that the analytical solutions are cross-checked with those of spline meshless method and the agreement between them is satisfactory. Due to the insufficient controlling power of monolithic piezoelectric actuator, the analytical formula of driving force for the book-block piezoelectric actuator is derived to improve the driving efficiency. Moreover, the non-linear quantitative relationship between piezoelectric film layers (n) and the driving force of the piezoelectric actuators (Mxp) is established. Examples show that better control is obtained by the book-block piezoelectric actuator. So, it can be applied to the deformation control of piezoelectric laminated plate and steel frame structure.
     3. A new model for parameters identification of piezoelectric material. Based on the displacement modeled by the spline meshless method, the parameter identification problem is formulated as the problem of minimizing the objective function which is defined as a square sum of differences between the measured displacement and the computed displacement by the spline meshless method. The sensitivity matrix is calculated by the derivation of parameters to be identified. The calculation formula of sensitivity is deduced based on the displacement values obtained by the spline meshless method in line with the derivative of each material parameter. Levenberg-Marquardt method with the trust-region based techniques, is used to solve the minimization problem. In the process of parameter identification, the calculated results obtained by the spline meshless method using the true values of material parameters replace the measured data on displacements. However, normal distribution noises are added to simulate errors in measurement. For piezoelectric composite plate under the mechanical loads and electrical loads, the identification of matrix material parameter and piezoelectric parameter are investigated. Numerical examples show that the proposed method for parameter identification in this paper has high accuracy and good stability, and is effective.
     4. Based on Reddy's third order theory, a new piezoelectric smart beam-column element is derived by considering the shear deformation effect, piezoelectric effect, initial geometric imperfection and P-A effect. When the shear effect and piezoelectric effect are not considered, the element geometric stiffness matrix derived in this paper for piezoelectric smart beam-column element derived can be degenerated to the one for the linear elastic case. With introducing its influence coefficient, the initial geometric imperfection is jointly analyzed with P-Δ effect and the corresponding element stiffness matrix is established. The correctness of this beam-column element is illustrated by some numerical examples. This work lays a theoretical foundation for the modeling of piezoelectric smart frame structure.
     5. Based on the piezoelectric smart beam-column element stiffness matrix derived in the above, the new dynamic analysis model for piezoelectric frame structure is developed by the spline QR method. The mode control theory and LQR optimal control method are used to establish the calculation model of active vibration control for piezoelectric frame structure. The influence of the P-A effect and initial geometric imperfection on the structural natural frequency and control power is discussed by way of laying piezoelectric stack actuators on the column. The simulation analysis of active vibration control for piezoelectric laminated beam and piezoelectric-steel frame structure is given and the results demonstrate that the vibration of the structure can be effectively suppressed by using this analysis model. With considering the P-Δ effect and initial geometric imperfection, the natural frequency of the structure decreases and the control voltage significantly increases. It is obvious that the influence of these two factors on the active vibration control can't be ignored and its study is of great significance.
     By comparing with analytical solution and finite element solution, numerical results illustrate that the new model established by the proposed methods in this paper is correct and effective and those methods have a lot of advantages, such as simple input, high accuracy, good stability, clear physical concept, concise boundary conditions, less computation, run fast, etc. In this paper, the new methods are used to study shape control, vibration control, optimization analysis, and parameter identification for piezoelectric smart composite laminates and steel frame structures, which is of great significance in theory and practice. The proposed methods as well as the obtained conclusions have an important reference value.
引文
[1]秦荣.智能结构力学[M].北京:科学出版社,2005.
    [2]黄尚廉,智能结构系统—防灾减灾的研究前沿[J].土木工程学报,2000,33(4):1-5.
    [3]黄尚廉,陶宝棋,沈亚鹏.智能结构系统—梦想、现实与未来[J].中国机械工程,2000,11(1,2):32-35.
    [4]李宏男,李军,宋钢兵.采用压电智能材料的土木工程结构控制研究进展[J].建筑结构学报,2005,26(3):1-9.
    [5]曹宗杰,闻邦椿,陈塑寰.含压电材料智能结构动态特性的研究[J].计算力学学报,2001,18(3):267-272.
    [6]王巍,杨智春.一种新型压电作动器的设计及其特性研究[J].应用力学学报,2008,25(3):434-438.
    [7]吴克恭.埋入压电材料的智能复合材料结构振动主动控制理论和实验研究[D].西北工业大学博士学位论文,2003.
    [8]Yan Y J, Yam L H. Mechanical interaction issues in piezoelectric composite structures[J]. Composite Structures,2003,59:61-65.
    [9]Zhang X N, Li Z M, Zhang J H. Book-block actuator and hybrid control of plate [A]. Proceeding of ICAPV 2000[C]. Beijing:Science Press,2000:79-85.
    [10]谢石林,张希农.书本式压电驱动器的特性分析[J].振动工程学报,2004,17(1):112-115.
    [11]张亚红,张希农,谢石林.层叠式PVDF压电作动器及圆柱壳的振动主动控制[J].力学季刊,2006,27(4):591-597.
    [12]欧进萍.结构振动控制—主动、半主动和智能控制[M].科学出版社,2003.
    [13]周星德,汪凤泉.基于预测控制策略的智能框架结构主动控制研究[J].振动、测试与诊断,2004.2(4):139-142.
    [14]周星德,汪凤泉,韩晓林.框架结构智能主动控制的研究[J].工程力学,2002,2(19):143-146.
    [15]王波.点式压电智能结构振动控制方法改进的研究[D].重庆人学博士学位论文,2004.
    [16]王社良,马乾瑛,田鹏刚,等.智能结构模态控制实验研究[J].世界地震工程,2010.6(2):37-41.
    [17]曹伟,王社良,马乾瑛,等.压电堆式驱动器对空间钢框架地震反应的主动控制[J].华北水利水电学院学报,2010,3(31):21-23.
    [18]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程振动,2002,22(3):82-90.
    [19]宗周红,任伟新,阮毅.土小工程结构损伤诊断研究进展[J].土小工程学报,2003,36(5):105-110.
    [20]李宏男等.结构健康监测[M].大连:大连理工大学出版社,2004.
    [21]Housner G W, et al.. Structure control:past, present and future [J]. Journal of Engineering Mechanics, 1997,123(9):897-971.
    [22]Chang F K. Structural health monitoring[C]. Proceeding of the 4th International Workshop on structural Health Monitoring, Sanford University:Stanford, CA,2003:363-918.
    [23]杨大智.智能材料与智能系统[M].天津大学出版社,2000.
    [24]赵晓燕,李宏男.应用压电陶瓷传感器对钢筋混凝土框-剪模型振动台试验地震损伤监测[J].振动与冲击,2006,25(4):82-85.
    [25]曾向武,胡黎明.压电陶瓷传感器在岩土工程中的应用[J].岩土工程学报,2006,28(8):983-988.
    [26]张永兵.压电智能结构及新型智能压电变摩擦阻尼器振动控制研究[D].广西大学博士学位论文,2009.
    [27]Genda Chen, Chaoqiang Chela. Semi-active Control Of the 20-story Benchmark Building with Piezoelectric Friction Dampers [J]. Journal of Engineering Mechanics,2003,130(4):393-400.
    [28]Genda Chen, Jingning Wu, Gabriel Garriett. Preliminary Design of Piezoelectric Friction Dampers for Reducing the Seismic Response of Structures [J]. Proceedings of the 14th ASCE Engineering Mechanics, Division Specialty Conference, Austin, Texas,2000:21-24.
    [29]Genda Chen, Chaoqiang Chen. Semi-active control of a steel frame with piezoelectric friction dampers [J]. Proceedings of SPIE,2003,5057:207-217.
    [30]陈波.高耸塔架结构振动反应的智能混合控制[D].武汉理工大学博士学位论文,2003.
    [31]薛伟辰,郑乔文,刘振勇,等.结构振动控制智能材料研究及应用进展[J].地震工程与工程振动学报,2006,26(5):213-217.
    [32]瞿伟廉,陈朝晖,徐幼麟.压电材料智能摩擦阻尼器对高耸钢塔结构风振反应的半主动控制[J].地震工程与工程振动.2000,20(2):74-80.
    [33]欧进萍,关新春,吴斌,等.智能型压电-摩擦耗能器[J].地震工程与工程振动,2000,20(1):81-86.
    [34]欧进萍,杨飏.压电-T型变摩擦阻尼器及其性能实验分析[J].地震工程与工程振动,2003,23(4):171-177.
    [35]杨飏,欧进萍.压电变摩擦阻尼器减振结构的数值分析[J].振动与冲击,2005,6(24):2-4.
    [36]赵大海,李宏男.模型结构的压电摩擦阻尼减振控制试验研究[J].振动与冲击,2011,6(30):272-276.
    [37]李书进,瞿伟廉,王军武.压电材料智能控制器对框架结构地震反应的主动控制[J].地震工程与工程振动,2000,20(1):100-104.
    [38]李传兵,廖吕永,张玉麟.压电智能结构的研究进展[J].压电与声光,2002,24(1):315-320.
    [39]尹林,沈亚鹏.压电类智能结构的力学行为和工程应用[J].力学进展,1998,28(2):163-172.
    [40]Crawley E F, Anderson E H. Detailed Models of Piezoceramic Actuation of Beams [J]. Journal of Intelligent Material Systems and Structures,1990,1:4-25.
    [41]Im S, Atluri S N. Effects of a Piezo-Actuators on a Finitely Deformed Beam Subject to General Loading[J]. AIAA J.,1989,27(12):1801-1807.
    [42]Chandra R, Inderjit C. Structural Modeling of Composite Beams with Induced-Strain Actuators [J]. AIAA J.,1993,31(9):1692-1701.
    [43]Poizat C., A. Benjeddou. On analytical and finite element modelling of piezoelectric extension and shear bimorphs [J]. Computers & Structures,2006,84(22-23):1426-1437.
    [44]Susanto K. Vibration analysis of piezoelectric laminated slightly curved beams using distributed transfer function method [J]. International Journal of Solids and Structures,2009,46(6):1564-1573.
    [45]丁皓江,江爱民.压电梁的多项式解(Ⅰ)—若干精确解[J].应用数学和力学,2005,26(9):1009-1015.
    [46]丁皓江,江爱民.压电梁的多项式解(Ⅱ)—典型问题解析解[J].应用数学和力学,2005,26(9):1016-1021.
    [47]Lee C K. Theory of laminated piezoelectric plates for the design of distributed sensors/actuators:part I:governing equations and reciprocal relationships [J]. J. Acoust. Soc. Amer.,1990,87(3):1144-1158.
    [48]Tauchert T R. Piezothermoelastic behavior of a laminate [J]. J. Thermal Stresses,1992,15 (1):25-37.
    [49]Mitchell J A, Reddy J N. A refined hybrid plate theory for composite laminates with piezoelectric laminar [J]. Int. J. Solids Struct.,1995,32 (2):2345-2367.
    [50]Fernandes A, Pouget J. Two-dimensional modeling of laminated piezoelectric composites:analysis and numerical results [J]. Thin Walled Structures,2001,39 (1):3-22.
    [51]于洪军,温杰,聂辉.四边简支压电层合厚板的一阶理论解析解[J].国防交通工程与技术,2006,3:22-26.
    [52]Dube G P, Kapuria S, Dumir P C. Exact Piezothermoelastic solution of Simply-supported Orthotropic Circular Cylindrical Panel in cylindrical Bending[J]. Arch. Appl. Mech,1996,66(8):537-554.
    [53]姚林泉,沈纪苹.考虑几何与压电非线性行为压电层合轴对称圆板的精确解[J].应用力学学报,2007.4(24):633-635.
    [54]姚林泉,丁睿.非线性压电效应下压电弯曲执行器的弯曲[J].计算力学学报,2006,1(23):52-57.
    [55]Heyliger P, Brooks S. Exact solutions for laminated piezoelectric plates in cylindrical bending. ASME J. Appl. Mech.,1996,63(2):903-907.
    [56]Heyliger P. Exact solutions for simply supported laminated piezoelectric plates [J]. ASME J. Appl. Mech.,1997,64 (2):299-306.
    [57]Bisegna P, Maccri F. An exact three-dimensional solution for simply supported rectangular piezoelectric plates [J]. ASME J. Appl. Mech.,1996,63 (1):628-637.
    [58]Jong S L, Long Z J. Exact electric analysis of piezoelectric laminae via state space approach [J]. Int J. Solids Structures,1996,33(7):977-990.
    [59]高坚新,沈亚鹏,王子昆.有限长压电层合简支板自由振动的三维精确解[J].力学学报,1998,30(2):168-176.
    [60]Vel S S, Batra R C. Exact solution for rectangular sandwich plates with embedded piezoelectric shear actuators. AIAA Journal,2001,39 (7):1363-1373.
    [61]Vel S S, Batra R C. Cylindrical bending of laminated plates with distributed and segmented piezoelectric actuators/sensors. AIAA Journal,2000,38 (5):857-867.
    [62]蔡金标,叶贵如,陈伟球,等.横观各向同性层合压电矩形板稳定问题的三维精确分析[J].复合材料学报,2002,19(1):69-73.
    [63]Wang J., S. Fang, L. Chen. The state vector methods for space axisymmetric problems inmultilayered piezoelectric media [J]. International Journal of Solids and Structures,2002,39(15):3959-3970.
    [64]Wang J., L. Chen, S. Fang. State vector approach to analysis of multilayered magneto-electro-elastic plates [J]. International Journal of Solids and Structures,2003,40(7):1669-1680.
    [65]Wang J., L. Qu, F. Qian. State vector approach of free-vibration analysis of magneto-electro-elastichybrid laminated plates [J]. Composite Structures,2010,92(6):1318-1324.
    [66]Benjeddou A. Advances in piezoelectric finite element modeling of adaptive structural elements:a survey [J]. Computers & Structures,2000,76:347-363.
    [67]龙驭球,龙志飞,岑松.新型有限元论[M].北京:清华大学出版社,2004.
    [68]Batissti C O, Rotunno M, Sermoneta A A. Finite element model for electrodynamic analysis of sandwich panel. In:Santini P, Rogers C A, Murotsu Y, editors. Seventh International Conference on Adaptive Structures, Basel:Technomic,1996:449-462.
    [69]Jonnalagadda K D, Blandford G E, Tauchert T R. Piezothermoelastic composite plate analysis using first-order shear deformation theory [J]. Computers & Structures,1992,5(1):79-89.
    [70]王忠东,陈塑寰.智能结构有限元动力模型的建立及主动振动控制和抑制[J].计算力学学报,1998,15(1):38-43.
    [71]钱振东,黄卫,朱德懋.主动减振板的数值分析[J].工程力学,2000,17(2):58-65.
    [72]丁根芳,王建国,覃艳.自感知压电层合梁的数值分析与数值模拟[J].工程力学,2006,23(2):131-136.
    [73]Chandrashekhara K, Teneti R. Thermally induced vibration suppression of laminated plates with piezoelectric sensors and actuators [J]. Smart Materials and Structures,1995,4:281-290.
    [74]Liu G R, Yili Z, Lam K Y, et al.. Finite element modeling of piezoelectric sensors and actuators bonded in thick composite laminates. In:Murotsu Y et al., editors. Eighth International inference on Adaptive Structures & Technologies, Besel:Technomic,1997:113-122.
    [75]Kogl M and Bucalem M L. A family of piezoelectric MITC plate elements[J].Computers & Structures, 2005,83(15-16):1277-1297.
    [76]Chee C, Tong L, Steven G P. Piezoelectric actuator orientation optimization for static shape control of composite plates [J]. Composite Structures,2002,55:169-184.
    [77]Clinton Y K, Chee C, Tong L, et al.. Static shape control of composite plates using aslope-displacement-based algorithm [J]. AIAA Journal,2002,40(8):1611-1618.
    [78]Moita J., C. Soares, C. Soares. Active control of forced vibrations in adaptive structures using a higher order model [J]. Composite Structures,2005,71(3-4):349-355.
    [79]Moita J., P. Martins, C. Mota Soares, et al.. Soares Optimal dynamic control of laminated adaptive structures using a higher order model and a genetic algorithm [J]. Computers & Structures,2008, 86(3-5):198-206.
    [80]钟美法,邓子辰,王志金.基于精细积分的压电层合板有限元分析及振动控制[J].西北工业大学学报,2010,(001):123-128.
    [81]赵国忠,顾元宪.压电薄板屈曲有限元分析及DKQ单元[J].力学学报,2001,33(4):569-576.
    [82]Gareia Lage R, Mota Soares C M, Mota Soares C A, et al., Layer wise partial mixed finite element analysis of magneto-electro-elastic plates [J]. Computers & Structures,2004,82(17-19):1293-1301.
    [83]Wu Zhen, Chen Wanji. Refined triangular element for laminated elastic-piezoelectric plates [J]. Composite Structures,2007,78(1):129-139.
    [84]Raja S, Sinha P K, Prathap G, et al., Influence of active stiffening on dynamic behaviour of piezo. hygro-thermo-elastic composite plates and shells [J]. Journal of Sound & Vibration,2004,278(1-2): 257-283.
    [85]蒋建平,李东旭.压电复合梁热机电耦合有限元模型[J].振动与冲击,2007,26(010):19-22.
    [86]蒋建平,李东旭.热载荷下压电复合板有限元建模与形变控制[J].力学学报,2007,39(4):503-509.
    [87]Robaldo A, Carrera E and Benjeddou A. A unified formulation for finite element analysis of piezoelectric adaptive plates [J]. Computers & Structures,2006,84(22-23):1494-1505.
    [88]Erturk CL, Tekinalp O. A layer wise approach to piezoelectric plates accounting for adhesive flexibility and delaminated regions [J]. Computers & Structures,2005,83(4-5):279-296.
    [89]Tian X G, Shen Y P. Finite element analysis of thermoelastic behavior of piezoelectric structures under finite deformation [J]. Acta Mech Solid A Sin,2002,15(4):312-322.
    [90]田晓耕,沈亚鹏.压电智能结构有限变形下热-机耦合的有限元分析[J].固体力学学报,2003,24(2):169-178.
    [91]Tzou H S, Ye R. Piezothermoelasticity and Precision Control of Piezoelectric System:Theory and Finite Element Analysis [J]. Journal Vibration and Acoustics,1994,116(4):489-495.
    [92]Tzou H S, Bao Y. Theory on anisotropic Piezothermoelastic shell laminates with sensor/actuator application [J]. Journal of Sound and Vibration,1995,184(3):453-473.
    [93]Koko I S, Orisamolu I R, Smith M J, et al.. Finite element based design tool for smart composite structures. In:Varadan V V, Chandra J, editors. Smart Structures and Materials, Washington, SPIE, 1997,3039:125-134.
    [94]Ha S K, Keilers C, Chang F K. Finite element analysis of composite structures containing distributed piezoceramic sensors and actuators [J]. AIAA Journal,1992,30(3):772-780.
    [95]Ray M C, Bhatacharyya R, Samanta B. Static analysis of an intelligent structure by the finite element method [J]. Computers & Structures,1994,52(4):617-631.
    [96]Carrera E. An improved Reissner-Mindlin type model for the electro-mechanical analysis of multilayered plates including piezo-layers [J]. Journal of Intelligent Material Systems and Structures, 1997,8(3):232-248.
    [97]王锋,李道奎,唐国金.基于高阶位移模式的压电层合板动力有限元模型[J].计算力学学报,2007,24(006):892-898.
    [98]Sheikh A H, Topdar P, Haldar S. An appropriate FE model for the through-thickness variation of displacement and potential in thin/moderately thick smart laminates [J]. Computers & Structures,2001, 51:401-409.
    [99]Song Cen, Ai-kah Soh, Yu-qiu Long, et al.. A new 4-node quadrilateral FE model with variable electrical degree of freedom for the analysis of piezoelectric laminated composite plates [J]. Composite structures,2002,58(4):583-599.
    [100]Kohnke P. ANSYS, Inc. Theory Release 7.1.2001:337-358.
    [101]秦荣.智能结构分析的新方法[J].工程力学,2003,20(增刊):586-591.
    [102]秦荣.智能板壳分析的样条无网格法[J].中国计算力学大会.2003
    [103]秦荣,王涛,张永兵,等.压电智能梁振动主动控制分析的新方法[J].广西大学学报,2005,30(4):267-271.
    [104]秦荣,王涛,王晓峰.压电智能梁力电耦合应力应变分析的智能样条有限点法[J].桂林工学院学报,2007,27(3):343-347.
    [105]秦荣,王涛,李双蓓.压电智能梁力电耦合位移电势分析[J].广西大学学报,2007,32(1):1-5.
    [106]王涛.智能结构分析的样条有限点法[D].广西大学硕士学位论文,2004.
    [107]王涛.压电智能结构分析的新方法研究[D].广西大学博士学位论文,2007.
    [108]Tao Wang, Rong Qin, Gui-rong Li. Active Vibration Control Analysis of Piezoelectric Intelligent Beam[C]. Proceedings of the EPMESCX, Aug.21-23,2006 Sanya, China:1194-1199.
    [109]Kai-Zhong Xie, Rong Qin, Tao Wang. Spline Element Free Method for Analysis of Intelligent Plates and Shells[C]. Proceedings of the Ninth International Symposium on Structural Engineering for Young Experts, Volume 1, Aug.18-21,2006, Fuzhou&Xiamen, China:385-391.
    [110]WANG Tao, QIN Rong, LI Shuangbei. Electromechanica Performance Analysis of the Piezoelectric Intelligent Simply Supported Beam[J].材料科学与工程学报(英文版),2007,25(6):1-4.
    [111]秦荣,张永兵,李秀梅.压电智能板分析的样条有限点法[J].桂林工学院学报,2008,28(1):25-28.
    [112]张永兵,张永申,李双蓓,等Application of Self-Tuning Fuzzy Control in Seismic Resistance of Buildings[C].第七届全球智能控制与自动化大会(WCICA'08), 重庆,2008年6月.
    [113]Rong Qin, Yongbing Zhang, Shuangbei Li. A New Theory and a New Method for Analysis of Piezoelectric Laminated Composite Plates and Shells[C].第二届国际非均质材料力学会议(ICHMM2008),黄山,2008年6月.
    [114]Yong bing Zhang, Shuangbei Li, Kaizhong Xi. Self-tuning Fuzzy Control of the 20-Story Nonlinear Benchmark Building with Piezoelectric Friction Dampers[C].第14届世界地震工程大会(14WCEE),北京,2008年10月.
    [115]张永兵,李双蓓,吴炯,等.压电变摩擦阻尼结构的模糊控制[J].广西大学学报,2009,34(1):17-21.
    [116]张永兵,秦荣,李双蓓.3层钢结构非线性地震反应的变增益模糊控制[J].振动与冲击,2008,27(10):106-111.
    [117]张永兵,秦荣,李双蓓,等.压电变摩擦阻尼器对高层建筑非线性地震反应的模糊控制算法[J].振动与冲击,2008,27(11):142-146.
    [118]张永兵,李双蓓,秦荣,等.压电变摩擦阻尼器对结构地震反应的自协调模糊控制[J].桂林工学院学报,2008,28(3):330-334.
    [119]张永兵,张永申,李双蓓,等.3层基准建筑非线性地震反应的智能控制[J].土木建筑与环境工程,2009,31(1):49-54.
    [120]张永兵.压电智能板分析的样条有限点法[D].广西大学硕士学位论文,2005.
    [121]张永兵.压电智能结构及新型智能压电变摩擦阻尼器振动控制研究[D].广西大学博士学位论文,2009.
    [122]涂远.压电智能拱分析的样条有限点法[D].广西大学硕士学位论文,2006.
    [123]文晓海.压电智能复合材料板分析的样条有限点法[D].广西大学硕士学位论文,2008.
    [124]李双蓓,文晓海,何玉斌.压电智能复合材料层合板壳结构分析的现状与发展[J].广西大学学报,2008,30(增刊):171-174.
    [125]刘鹏.压电智能板振动主动控制新方法研究[D].广西大学硕士学位论文,2010.
    [126]蒋林洁.复合材料梁及钢框架压电-SMA主动控制分析[D].广西大学硕士学位论文,2011.
    [127]涂远,杜建江,王涛.压电类智能层合结构的ANSYS仿真分析[J].广西大学学报.2005,30(4):288-292.
    [128]刘勇.压电智能板壳稳定分析的样条无网格法[D].广西大学硕十学位论文,2009.
    [129]李桂荣.高层智能框架结构分析的QR法[D].广西大学硕士学位论文,2007.
    [130]王国庆,刘正兴.压电材料平面问题应力强度因子的边界元计算[J].上海交通大学报,1998,32(12):74-76.
    [131]Xu X L, Rajapakse N D. Boundary element analysis of piezoelectric solids with defects Composites Part B,1998,22(5):655-669.
    [132]张妃二,姚立宁.复合材料层合板智能结构主动振动控制的边界元法[J].振动与冲击,2003,22(1):40-42.
    [133]Ding H J, Liang J, Chen B. Fundamental Solutions of Transversely Isotropic Piezoelectric Media. Science in china (Series A),1996,39(7):766-775.
    [134]Ding H J, Chen B, Liang J. General Solutions for Coupled Equations for Piezoelectric Media. In t. J. Solids Struct,1996,33(16):2283-2298.
    [135]丁皓江,王国庆,梁剑.压电介质平面问题的一般解和基本解[J].力学学报,1996,28(4):441-448.
    [136]姚伟岸,王辉.压电材料平面问题的虚边界元—等额配点解法[J].计算力学学报,2005,22(1):42-46.
    [137]姚伟岸,杨柳.压电材料三维问题的虚边界元—最小二乘配点法[J].计算力学学报,2007,24(6):779-794.
    [138]Qin T Y, Yu Y S, Noda N A. Numerical investigations of field-defect interactions in piezoelectric ceramics [J]. International Journal of Solids Structures,2007,44(14-15):4770-4783.
    [139]Garcfa-Sanchez F, Rojas-Diaz R, Sacz A, et al.. Fracture of magneto-electro-elastic composite materials using boundary element method(BEM) [J]. Theoretical & Applied Frature Mechanics,2007, 47(3):192-204.
    [140]Sacz A, Garcia-Sanchez F, Dominguez J. Hyper singular BEM for dynamic fracture in 2-D piezoelectric solids [J]. Computer Methods in Applied Mechanics & Engineering,2006,196(1-3):235-246.
    [141]Stavroulakis G E, Foutsitzi G, Hadjigeorgiou E. Design and robust optimal control of smart beams with application on vibrations suppression [J]. Advances in Engineering Software,2005,36:806-813.
    [142]Bailey T L, Hubbard J E. Distributed Piezoelectric Polymer Active Vibration Control of a Cantilever Beam [J]. Journal of Guidance, Control and Dynamics,1985,8(5):605-611.
    [143]Plump J, Hubbard J E, Bailey T. Nonlinear Control of a Distributed System:Simulation and Experiment Results. J. of Dynamic Systems, Measurement and control,1987,109:133-139.
    [144]Tzou H S, Gadre M. Theoretical Analysis of a Multi-Layered Thin Shell Coupled with Piezoelectric Shell Actuators for Distributed Vibration Controls. J of Sound and Vibration,1989,132(3):433-450.
    [145]周勇.压电智能结构有限元法—理论及应用[D].南京航空航天大学博士论文,2004.
    [146]于国军,杜成斌,艾亿谋.压电陶瓷用于柔性悬臂梁振动控制的试验研究[J].河海大学学报,2007,35(1):55-58.
    [147]高坚新,等.自感知主被动阻尼悬臂梁动态特性分析[J].固体力学学报,2000,21(1):1-10.
    [148]陈儒,张克才.PZT材料在结构振动主动控制方面的应用研究[J].中国宇航学会结构强度与环境工程专业委员会第十届年会暨学术交流会,1997.
    [149]Newton D, Garcia E, Homer G C. Linear piezoelectric motor. Smart Material and Structures,1998,7(3): 295-304.
    [150]田晓耕,沈亚鹏,等.支架振动的主动控制研究[J].固体力学学报,1998,19(2):184-188.
    [151]杨枫.压电智能梁基本原理及受力性能研究[D].同济大学硕士学位论文,2005.
    [152]Nguyen, Luo Q., Tong L.. Voltage and evolutionary piezoelectric actuator design optimisation for static shape control of smart plate structures[J]. Materials and Design.2007,28(2):387-399.
    [153]Luo Q., Tong L.. High precision shape control of plates using orthotropic piezoelectric actuators [J]. Finite Elements in Analysis and Design,2006,42(11):1009-1020.
    [154]Sun D., Tong L.. Design optimization of piezoelectric actuator patterns for static shape control of smart plates [J]. Smart Materials and Structures,2005,14(6):1353-1362.
    [155]Lin J.C., Nien M.H. Adaptive modeling and shape control of laminated plates using piezoelectric actuators [J]. Journal of Materials Processing Technology,2007,189:231-236.
    [156]Ren L., Parvizi-Majidi A. A Model for Shape Control of Cross-ply Laminated Shells using a Piezoelectric Actuator [J]. Journal of Composite Materials,2006,40(14):1271-1285.
    [157]丁根芳.层合压电智能结构的数值模拟和振动控制研究[D].合肥工业大学博十学位论文,2008.
    [158]Irschik H. A review on static and dynamic shape control of structures Engineering Structures [J].2002, 24:5-11.
    [159]Lee C K. Piezoelectric laminates:theory and experiments for distributed sensors and actuators [J]. in: Tzou H S, Anderson G L, Editors, Intelligent Structural Systems, Dordrecht:Kluwer,1992:75-167.
    [160]Chen C, Tong L, Steven G P. Static shape control of composite plates using a curvature-displacement based algorithm [J]. International Journal of Solids Structures,2001,38:6381-6401.
    [161]Liew K M, He X Q, Ray T. On the use of computational intelligence in the optimal shape control of functionally graded smart plates [J]. Comput Meth Appl Mech Eng,2004,193(42-44):4475-4492.
    [162]冯玮,柳春图.矩形智能板弯曲形状的主动控制[J].力学与实践,1999,21(1):25-27.
    [163]尹林,王晓明,沈亚鹏.结构变形最优控制的数值分析[J].力学学报,1995,27(6):711-718.
    [164]邓年春,邹振祝.智能梁的静态形状控制[J].应用力学学报,2003,20(2):129-123.
    [165]王建国,覃艳,丁根芳.单点配置压电层合结构的优化设计[J].合肥工业大学学报,2007,30(5):594-597.
    [166]黄海,唐纪哗,等.自适应结构理论与数值仿真研究,863航天领域空间站技术研究报告,北京航空航天大学,1998.
    [167]吴大方,黄海,等.白适应结构计算机仿真与试验研究,863航天领域空间站技术研究报告,北京航空航天大学,1998.
    [168]唐纪晔,黄海,夏人伟,等.压电层合板自适应结构的静力变形控制[J].北京航空航天大学学报,2000,26(2),239-243.
    [169]王军,郦正能,王俊兵.含SMA合PZT二元驱动器的智能复合材料结构形状控制[J].复合材料学报,2004,21(2):142-146.
    [170]Yao J T P. Concept of structure control [J]. ASCE Journal of Structure Division,1972,98(ST7):1567-1574.
    [171]赵国忠,顺元宪,李云鹏.压电智能桁架的灵敏度分析与优化设计[J].固体力学学报,2002,23(2):150.158.
    [172]龙连春.智能桁架结构受力性态最优控制的建模与分析[D].北京工业大学博士学位论文,2003.
    [173]马乾瑛.基_丁MSMA/GMM的空间结构地震反应主动控制研究[D].砖安建筑科技大学博士学何论文,2011.
    [174]周星德.柔性框架结构智能振动主动控制方法的研究[D].尔南人学博士学位论文,2001.
    [175]陈定球.压电梁柱构件的动力方程及其在结构主动振动控制中的应用[D].同济大学硕士学位论文,2001.
    [176]Sadri, A. R. Wynne, J. Wright. Robust strategies for active vibration control of plate-like structures: theory and experiment [J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering,1999,213(6):489-504.
    [177]Lee, Y. J. Yao. Structural vibration suppression using the piezoelectric sensors and actuators [J]. Journal of Vibration and Acoustics,2003,125:109-113.
    [178]Singh S P, Pruthi H S, Agarwal V P. Efficient modal control strategies for active control of vibrations [J]. Journal of Sound & Vibration,2003,262(3):563-575.
    [179]王波,干荣秀,黄尚廉.压电智能梁振动的组合模态控制法[J].压电与声光,2004,26(006):510-513.
    [180]唐纪晔,黄海,夏人伟.压电复合材料层合板白适应结构的振动控制[J].计算力学学报,2000, 17(4):41-446.
    [181]孙东昌,王大钧,XuZ.智能板振动控制的分布压电单元法[J].力学学报,1996,28(6):692-699.
    [182]王宗利,林启荣,刘正兴.压电智能梁的状态相关LQR振动控制[J].上海交通大学学报,2001,35(4):503-508.
    [183]常军,陈敏,刘正兴.基于能量准则的梁振动多模态主动控制的LQR法[J].固体力学学报,2004,25(4):423-429.
    [184]Ang K K, Wang S Y, Quek S T. Weighted energy linear quadratic regulator vibration control of piezoelectric composite plates [J]. Smart Materials & Structures,2002,11:98-106.
    [185]Vasques C M A, Rodrigues J D. Active vibration control of smart piezoelectric beams:Comparison of classical and optimal feedback control strategies [J]. Computers & Structures,2006,84(22-23): 1402-1414.
    [186]周星德,陈国荣,张华.智能框架结构作动器最优配置研究[J].土木工程学报,2003,8(36):20-23.
    [187]陈文英,阎绍泽,褚福磊.免疫遗传算法在智能桁架结构振动主动控制系统优化设计中的应用[J].机械工程学报,2008,44(002):196-200.
    [188]Valliappan A, Qi K. Finite element analysis of a 'smart' damper for seismic structural control [J]. Computers and Structures,2003,81:1009-1017.
    [189]徐亚兰,陈建军,王小兵.模型不确定压电柔性结构的多目标振动控制[J].应用力学学报,2006,23(3):377-382.
    [190]胡卫兵,冯瑛,李立州.压电摩擦阻尼器的自适应控制抗震分析[J].噪声与振动控制,2008,2(1):97-101.
    [191]A.L. Araujo, C.M. Mota Soares, J. Herskovits, et al.. Compos. Struct.2002,58:307-318.
    [192]A.L. Araujo, C.M. Mota Soares, J. Herskovits, et al.. Inverse Probl. Sci. Eng.2006,14:483-493.
    [193]A.L. Araujo, H.M.R. Lopes, M.A.P. Vaz, C.M. Mota Soares, et al.. Compos. Struct.2006,84: 1471-1479.
    [194]A.L. Araujo, C.M. Mota Soares, J. Herskovits, et al.. Inverse Probl. Sci. Eng.2009,17:145-157.
    [195]A.L. Araujo, C.M. Mota Soares, J. Herskovits, et al.. Compos. Struct.2009,87:168-174.
    [196]Wang W T, Kam T Y. Material characterization of laminated composite plates via static testing [J]. Composite Structures,2000,50(4):347-352.
    [197]王晓纯,沈新普,徐秉业.各向异性层合板弯曲刚度系数的反演分析[J]_复合材料学报,1997,14(2):108-113.
    [198]周小军.基于有限元分析的正交各向异性复合材料结构材料参数识别[D].广_西大学硕士学位论文,2008.
    [199]郭相武.基于有限元分析的正交各向异性复合材料性能参数识别及其测点优化布置[D].广西大学硕士学位论文,2010.
    [200]姚祺.基于分层法的功能梯度材料有限元分析及其材料参数识别[D].广西大学硕士学位论文,2011.
    [201]Deobald L R, Gibson R E. Determination of elastic constants of orthotropic plates by a modal analysis/ rayleigh-ritz technique [J]. Journal of Sound and Vibration,1988,124(2):269-283.
    [202]Kernevez J P, Knopf-Lenoir C, Touzot G, et al. An identification method applied to an orthotropic plate bending experiment [J]. International Journal for Numerical Methods in Engineering,1978,12: 129-139.
    [203]黄立新,孙秀山,刘应华,等.正交各向异性孔板的材料参数识别[J].工程力学,2004,21(4):28-33.
    [204]X. S. Sun, L. X. Huang, Y. H. Liu, et al.. Elasto-plastic Analysis of Two-dimensional Orthotropic Bodies with the Boundary Element Method [J]. Computers, Materials, Continua,2004,1(1):91-105.
    [205]L. X. Huang, Z. H. Xiang, X.S. Sun, et al.. A study of the optimal measurement placement for parameter identification of orthotropic composites by the boundary element method [J]. Computational Mechanics,2006,38(3):201-209.
    [206]Huang L X, Sun X S, Liu Y H, et al.. Parameter identification for two-dimensional orthotropic material bodies by the boundary element method [J]. Engineering Analysis with Boundary Elements,2004, 28(2):109-121.
    [207]刘玉印.基于边界元法的正交各向异性复合材料结构性能参数识别[D].广西大学硕士学位论文,2009.
    [208]王元淳,刘玉敏.正交各向异性平面弹性问题物性值v12和G12的反分析[J].力学与实践,2001,23(1):38-40.
    [209]黄立新.平面正交各向异性体材料参数识别的边界元法[D].清华大学博士学位论文,2004.
    [210]王林.基于等参单元的功能梯度材料参数识别[D].广西大学硕士学位论文,2011.
    [211]向宏军,石志飞.梯度功能压电材料的一组参数识别[J].北京交通大学学报,2006,30(1):30-35.
    [212]向宏军.功能梯度压电智能梁的特性分析及其应用[D].北京交通大学博士学位论文,2004.
    [213]刘迪辉,汪晨,李光耀.薄壁钢管材料参数反求[J].中国机械工程,2008,19(6):688-690.
    [214]高晖,郑刚,李光耀.基于响应面方法的材料参数反求[J].机械工程学报,2008,44(8):102-105.
    [215]Rikards R, Chate A, G Gailis. Identification of elastic properties of laminates on experiment design [J]. International Journal of Solids and Structures,2001,38:5097-5115.
    [216]陈少伟,成艾国,胡朝辉,等.基于遗传蚁群融合算法的超弹性材料参数识别[J].中国机械工程,2010,21(21):2627-2631.
    [1]秦荣,陈祥福,梁福崇.结构力学的样条函数方法及其最新进展[J].工程力学,1991,8(1):36-43.
    [2]龙驭球,龙志飞,岑松.新型有限元论[M].北京:清华大学出版社,2004.
    [3]王培军,李国强.火灾下轴向约束钢梁的样条有限元法[J].同济大学学报,2007,35(12):1592-1596.
    [4]秦荣.结构力学的样条函数方法[M].南宁:广西人民出版社,1985.
    [5]秦荣.计算结构动力学[M].桂林:广西师范大学出版社,1995.
    [6]秦荣.计算结构非线性力学[M].南宁:广西科学出版社,1999.
    [7]秦荣.计算结构力学[M].北京:科学出版社,2001.
    [8]秦荣.智能结构力学[M].北京:科学出版社,2005.
    [9]秦荣.工程结构非线性[M].北京:科学出版社,2006.
    [10]秦荣.高层与超高层建筑结构[M].北京:科学出版社,2007.
    [11]秦荣.大跨度桥梁结构[M].北京:科学出版社,2008.
    [12]秦荣.大型复杂结构体系可靠度[M].北京:科学出版社,2009.
    [13]秦荣.超限高层建筑结构分析的QR法[M].北京:科学出版社,2010.
    [14]秦荣.大型复杂结构非线性分析的新理论新方法[M].北京:科学出版社,2011.
    [15]秦荣,梁爱明.高层框架分析的新方法[J].工程力学,1988,5(2):35-45.
    [16]秦荣.高层建筑结构分析的新方法[J].工程力学,1991,8(4):41-50.
    [17]秦荣.高层建筑结构稳定性分析的新方法[J].工程力学论文集,南宁:广西科技出版社,1992.
    [18]秦荣.高层建筑结构弹塑性分析的新方法[J].土木工程学报,1994,27(6):3-10.
    [19]秦荣.板壳分析的样条有限点法[J].固体力学学报,1984,5(2).
    [20]Qin Rong. Spline Function Methods for Nonlinear Analysis of Reinforced Concrete Structures [J]. In: Building for 21st Century Vol.1,1995.
    [21]Qin Rong. New Theory and New Method for Elastic-plastic Analysis of Structures Engineering [J]. Computation and Computer Simulation, ECCS-1,1995.
    [22]Qin Rong. Spline Function Method for Dynamic Response [J]. First World Congress on Computational Mechanics,1986, U.S.
    [23]Qin Rong. Spline Function Methods for Dynamic Analysis of Tall Building Structures [J]. Computational Mechanics,1991.
    [24]秦荣,赵艳林.用QR法和样条加权残数法求解高层框剪结构的地震反应[J].工程力学,1993,10(2):1-7.
    [25]秦荣.高层框架双重非线性分析的QR法[J].计算力学,1997,14(S):13-16.
    [26]秦荣.高层结构几何非线性分析的QR法[J].工程力学,1996,13(1):8-15.
    [27]秦荣.板壳非线性分析的新理论新方法[J].工程力学,2004,21(1).
    [28]秦荣,梁汉吉.高层建筑筒体结构动力分析的新方法[J].世界地震工程,2005,21(3).
    [29]李秀梅,秦荣.样条无单元法在弹性地基板分析中的应用[J].固体力学学报,2005,8(26):110-114.
    [30]杨仕升,秦荣.建筑结构抗震能力评估技术的研究及应用[J].世界地震工程,2004,4(20):110-114.
    [31]李秀梅.高层钢框架结构体系分析的新方法[D].广西大学博士学位论文,2008.
    [32]王涛.压电智能结构分析的新方法研究[D].广西大学博士学位论文,2007.
    [33]秦荣,王涛,张永兵,等.压电智能梁振动主动控制分析的新方法[J].广西大学学报,2005,30(4):267-271.
    [34]秦荣,王涛,王晓峰.压电智能梁力电耦合应力应变分析的智能样条有限点法[J].桂林工学院学报,2007,27(3):343-347.
    [35]秦荣,王涛,李双蓓.压电智能梁力电耦合位移电势分析[J].广西大学学报,2007,32(1):1-5.
    [36]秦荣,张永兵,李秀梅.压电智能板分析的样条有限点法[J].桂林工学院学报,2008,28(1):25-28.
    [37]Tao Wang, Rong Qin, Gui-rong Li. Active Vibration Control Analysis of Piezoelectric Intelligent Beam[C]. Proceedings of the EPMESCX, Aug.21-23,2006 Sanya, China:1194-1199.
    [38]Kai-Zhong Xie, Rong Qin, Tao Wang. Spline Element Free Method for Analysis of Intelligent Plates and Shells[C]. Proceedings of the Ninth International Symposium on Structural Engineering for Young Experts, Volume 1, Aug.18-21,2006, Fuzhou&Xiamen, China:385-391.
    [39]WANG Tao, QIN Rong, LI Shuangbei. Electromechanica Performance Analysis of the Piezoelectric Intelligent Simply Supported Beam[J].材料科学与工程学报(英文版),2007,25(6):1-4.
    [40]Rong Qin, Yongbing Zhang, Shuangbei Li. A New Theory and a New Method for Analysis of Piezoelectric Laminated Composite Plates and Shells[C]第二届国际非均质材料力学会议(ICHMM2008),黄山,2008年6月.
    [41]李双蓓,文晓海,何玉斌.压电智能复合材料层合板壳结构分析的现状与发展[J].广西大学学报,2008,30(增刊):171-174.
    [42]张永兵.压电智能板分析的样条有限点法[D].广西大学硕士学位论文,,2005.
    [43]张永兵.压电智能结构及新型智能压电变摩擦阻尼器振动控制研究[D].广西大学博士学位论文,2009.
    [44]涂远.压电智能拱分析的样条有限点法[D].广西大学硕士学位论文,2006.
    [45]文晓海.压电智能复合材料板分析的样条有限点法[D].广西大学硕士学位论文,2008.
    [46]刘鹏.压电智能板振动主动控制新方法研究[D].广西大学硕士学位论文,2010.
    [47]刘勇.压电智能板壳稳定分析的样条无网格法[D].广西大学硕士学位论文,2009.
    [48]蒋林洁.复合材料梁及钢框架压电-SMA主动控制分析[D].广西大学硕士学位论文,2011.
    [49]孙慷,张福学.压电学(上册)[M].北京:国防工业出版社,1984.
    [50]杨大智.智能材料与结构[M].上海:上海交通大学出版社,2001.
    [51]奏自楷,等.压电石英晶体[M].国防工业出版社,1980.
    [52]吴克恭.埋入压电材料的智能复合材料结构振动主动控制理论和实验研究[D].西北工业大学博士学位论文,2003.
    [53]钱锋.层合压电智能结构振动主动控制数值模拟及其优化[D].合肥工业大学博士学位论文,2011.
    [54]邓年春.结构的主被动一体化振动控制研究[D].哈尔滨工业大学博士学位论文,2004.
    [55]王军.二元智能复合材料结构的形状和振动控制研究[D].北京航空航天大学博士学位论文,2003.
    [56]周勇.压电智能结构有限元法—理论及应用[D].南京航空航天大学博士论文,2004.
    [57]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [1]Kapuria S., P. Kumari, J. Nath. Efficient modeling of smart piezoelectric composite laminates:a review [J]. Acta Mechanica,2010,1-18.
    [2]Mannini A, Gaudenzi P. Multi-layer higher-order finite elements for the analysis of free-edge stresses in piezoelectric actuated laminates [J]. Composite Structures,2003,61(3):271-278.
    [3]C. N. Della and D. Shu. Vibration of aelaminated composite laminates:A Review Applied Mechanics Reviews 60,2007,1-20.
    [4]Lee C K. Theory of laminated piezoelectric plates for the design of distributed sensors/actuators:part I:governing equations and reciprocal relationships [J]. J. Acoust. Soc. Amer.,1990,87(3):1144-1158.
    [5]Tauchert T R. Piezothermoelastic behavior of a laminate [J]. J. Thermal Stresses,1992,15(1):25-37.
    [6]丁皓江,江爱民.压电梁的多项式解(Ⅰ)-若干精确解[J].应用数学和力学,2005,26(009):1009-1015.
    [7]丁皓江,江爱民.压电梁的多项式解(Ⅱ)-典型问题解析解[J].应用数学和力学,2005,26(009):1016-1021.
    [8]姚林泉,沈纪苹.考虑几何与压电非线性行为压电层合轴对称圆板的精确解[J].应用力学学报,2007,4(24):633-635.
    [9]姚林泉,丁睿.非线性压电效应下压电弯曲执行器的弯曲[J].计算力学学报,2006,1(23):52-57.
    [10]姚林泉,丁睿.非线性压电效应下压电层合板的弯曲[J].应用力学学报,2005,1(22):107-110.
    [11]Wang J., L. Qu, F. Qian. State vector approach of free-vibration analysis of magneto-electro-elastic hybrid laminated plates [J]. Composite Structures,2010,92(6):1318-1324.
    [12]丁根芳,王建国,覃艳.自感知压电层合梁的数值分析与数值模拟[J].工程力学,2006,23(2):131-136.
    [13]Kogl M, Bucalem M L. A family of piezoelectric M1TC plate elements [J]. Computers & Structures, 2005,83(15-16):1277-1297.
    [14]R. A. Arciniega, J. N. Reddy. Large deformation analysis of functionally graded shells [J]. International Journal of Solids and Structures,2006,9(1):1-17.
    [15]H. Santos, J. N. Reddy. A finite element model for the analysis of 3D axisymmetric laminated shells with piezoelectric sensors and actuators [J]. Composite Structures,2006,75(2):170-178.
    [16]蒋建平,李东旭.压电复合梁热机电耦合有限元模型[J].振动与冲击,2007,26(010):19-22.
    [17]蒋建平,李东旭.热载荷下压电复合板有限元建模与形变控制[J].力学学报,2007,39(4):503-509.
    [181王锋,李道奎,唐国金.基于高阶位移模式的压电层合板动力有限元模型[J].计算力学学报,2007,24(006):892-898.
    [19]钟美法,邓子辰,王志金.基于精细积分的压电层合板有限元分析及振动控制[J].西北工业大学学报,2010,001:123-128.
    [20]Heidary F, Reza E M, Fariborz H, et al.. A new 4-node quadrilateral FE model vibration of a thermo elastic composite plate [J]. Composite Structures,2006,74(1):99-105.
    [21]Quan Nguyen, Liyong Tong, Shape control of smart composite plate with non-rectangular piezoelectric actuators [J]. Composite Structures,2004,66(1-4):207-214.
    [22]Nguyen Q., Tong L. Voltage and evolutionary piezoelectric actuator design optimisation for static shape control of smart plate structures [J]. Materials and Design.2007,28(2):387-399.
    [23]王军,郦正能,王俊兵.含SMA合PZT二元驱动器的智能复合材料结构形状控制[J].复合材料学报,2004,21(2):142-146.
    [24]秦荣.智能结构力学[M].北京:科学出版社,2005.
    [25]秦荣.智能结构分析的新方法[J].工程力学,2003,20(增刊):586-591.
    [26]秦荣.智能板壳分析的样条无网格法[J].中国计算力学大会.2003.
    [27]秦荣,王涛,张永兵,等.压电智能梁振动主动控制分析的新方法[J].广西大学学报,2005,30(4):267-271.
    [28]秦荣,王涛,王晓峰.压电智能梁力电耦合应力应变分析的智能样条有限点法[J].桂林工学院学报,2007,27(3):343-347.
    [29]秦荣,王涛,李双蓓.压电智能梁力电耦合位移电势分析[J].广西大学学报,2007,32(1):1-5.
    [30]秦荣,张永兵,李秀梅.压电智能板分析的样条有限点法[J].桂林工学院学报,2008,28(1):25-28.
    [31]Tao Wang, Rong Qin, Gui-rong Li. Active Vibration Control Analysis of Piezoelectric Intelligent Beam[C]. Proceedings of the EPMESCX, Aug.21-23,2006 Sanya, China:1194-1199.
    [32]Kai-Zhong Xie, Rong Qin, Tao Wang. Spline Element Free Method for Analysis of Intelligent Plates and Shells[C]. Proceedings of the Ninth International Symposium on Structural Engineering for Young Experts, Volume 1, Aug.18-21,2006, Fuzhou&Xiamen, China:385-391.
    [33]WANG Tao, QIN Rong, LI Shuangbei. Electromechanica Performance Analysis of the Piezoelectric Intelligent Simply Supported Beam[J].材料科学与工程学报(英文版),2007,25(6):l-4.
    [34]Rong Qin, Yongbing Zhang, Shuangbei Li. A New Theory and a New Method for Analysis of Piezoelectric Laminated Composite Plates and Shells[C]第二届国际蜚均质材料力学会议(ICHMM2008),黄山,2008年6月.
    [35]王涛.智能结构分析的样条有限点法[D].广西大学硕士学位论文,2004.
    [36]涂远.压电智能拱分析的样条有限点法[D].广西大学硕士学位论文,2006.
    [37]文晓海.压电智能复合材料板分析的样条有限点法[D].广西大学硕士学位论文,2008.
    [38]王涛.压电智能结构分析的新方法研究[D].广西大学博士学位论文,2007.
    [39]蒋林洁.复合材料梁及钢框架压电-SMA主动控制分析[D].广西大学硕士学位论文,2011.
    [40]刘鹏.压电智能板振动主动控制新方法研究[D].广西大学硕士学位论文,2010.
    [41]杨德庆,刘正兴.自由端受集中力作用下压电悬臂梁弯曲问题解析解[J].力学季刊,2003,24(3):327-333.
    [42]张琳楠,石志飞.均布荷载作用下压电材料简支梁的解析解[J].应用数学和力学,2003,24(10):1075-1082.
    [43]张琳楠,石志飞.梯度功能压电悬臂梁的几个解析解[J].复合材料学报,2002,19(4):106-113.
    [44]向宏军,石志飞.梯度功能压电材料的一组参数识别[J].北京交通大学学报,2006,30(1):30-35.
    [45]王洪军,温杰,聂辉.四边简支压电层合厚板的一阶理论解析解[J].国防交通工程与技术,2006,3:22-26.
    [46]H. Y. Sheng, H. Wang, J. Q. Ye. State space solution for thick laminated piezoelectric plate with clamped and electric open-circuited boundary conditions [J]. International Journal of Mechanical Sciences,2007,49(1):806-818.
    [47]刘艳红,李家宇,卿光辉.压电热弹性材料四边简支层合板的精确解[J].工程力学,2008,25(4):230-235.
    [48]秦荣.结构力学的样条函数方法[M].南宁:广西人民出版社,1985.
    [49]龙驭球,龙志飞,岑松.新型有限元论[M].北京:清华大学出版社,2004.
    [50]J. N. Reddy. A Refined Nonlinear Theory of Plates with Transverse Shear Deformatation [J]. Int. J. solids & structures,1984,20(9-10):881-896.
    [51]龙述尧.用样条有限点法解薄板动力问题[J].上海力学,1981,(4):23-29.
    [52]Tzou H. S. Development of a Light-weight Robot End-effect Using Polymeric Piezoelectric Bimorph, Proceeding of the 1989 IEEE International Conference On Robotics and Automation,1989,14-19: 1704-1709.
    [53]陈塑寰,马爱军,刘中生.智能结构的梁有限元模型[J].宇航学报,1997,18(2):72-77.
    [54]Franco Correia V M, Aguiar Gomes M A, Afzal Sulemanetal. Modeling and design of adaptive Composite structures. Computer Methods in Applied Mechanics and Engineering,2000,185: 325-346.
    [55]周勇.压电智能结构有限元法-理论及应用[D].南京航空大学博士论文,2004.
    [1]A.L. Araujo, C.M. Mota Soares, J. Herskovits, et al.. Compos. Struct.2002,58:307-318.
    [2]A.L. Araujo, C.M. Mota Soares, J. Herskovits, et al.. Inverse Probl. Sci. Eng.2006,14:483-493.
    [3]A.L. Araujo, H.M.R. Lopes, M.A.P. Vaz, et al.. Compos. Struct.2006,84:1471-1479.
    [4]A.L. Araujo, C.M. Mota Soares, J. Herskovits, et al.. Inverse Probl. Sci. Eng.2009,17:145-157.
    [5]A.L. Araujo, C.M. Mota Soares, J. Herskovits, et al.. Compos. Struct.2009,87:168-174.
    [6]周小军.基于有限元分析的正交各向异性复合材料结构材料参数识别[D].广西大学硕士学位论文,2008.
    [7]郭相武.基于有限元分析的正交各向异性复合材料性能参数识别及其测点优化布置[D].广西大学硕士学位论文,2010.
    [8]姚祺.基于分层法的功能梯度材料有限元分析及其材料参数识别[D].广西大学硕士学位论文,2011.
    [9]黄立新,孙秀山,刘应华,等.正交各向异性孔板的材料参数识别[J].工程力学,2004,21(4):28-33.
    [10]X. S. Sun, L. X. Huang, Y. H. Liu, et al.. Elasto-plastic Analysis of Two-dimensional Orthotropic Bodies with the Boundary Element Method [J]. Computers, Materials, Continua,2004,1(1):91-105.
    [11]L. X. Huang, Z. H. Xiang, X. S. Sun, et al.. A study of the optimal measurement placement for parameter identification of orthotropic composites by the boundary element method [J]. Computational Mechanics,2006,38(3):201-209.
    [12]Huang L X, Sun X S, Liu Y H, et al.. Parameter identification for two-dimensional orthotropic material bodies by the boundary element method [J]. Engineering Analysis with Boundary Elements, 2004,28(2):109-121.
    [13]黄立新.平面正交各向异性体材料参数识别的边界元法[D].清华大学博士学位论文,2004.
    [14]刘玉印.基于边界元法的正交各向异性复合材料结构性能参数识别[D].广西大学硕士学位论文,2009.
    [15]王晓纯,沈新普,徐秉业.各向异性层合板弯曲刚度系数的反演分析[J].复合材料学报,1997,14(2):108-113.
    [16]Wang WT, Kam TY. Material characterization of laminated composite plates via static testing [J]. Composite Structures,2000,50(4):347-352.
    [17]王林.基于等参单元的功能梯度材料参数识别[D].广西大学硕士学位论文,2011.
    [18]陈少伟,成艾国,胡朝辉,等.基于遗传蚁群融合算法的超弹性材料参数识别[J].中国机械工程,2010,21:2627-2631.
    [19]Rikards R, Chate A, G Gailis. Identification of elastic properties of laminates on experiment design [J]. International Journal of Solids and Structures,2001,38:5097-5115.
    [20]李双蓓,周小军,黄立新,等.基于有限元法的正交各向异性复合材料结构材料参数识别[J].复合材料学报,2009,4:197-202.
    [21]H. T. Banks, R.C. Smith, D.E. Brown, et al.. Silcox:J. Sound Vib.1997,199:777-799.
    [22]向宏军,石志飞.梯度功能压电材料的一组参数识别[J].北京交通大学学报,2006,30(1):30-35.
    [23]向宏军.功能梯度压电智能梁的特性分析及其应用[D].北京交通大学博士学位论文,2004.
    [24]席少霖,赵凤治.最优化计算方法[M].上海:上海科学技术出版社,1983.
    [25]K.Levenberg. A method for the solution of certain noulinear problems in least squares Quart Appl. Math.1944,2:164-166.
    [26]D. W. Marquaxdt. An algorithm for least-squares estimation of noulinear inequalites, SIAMJ Appl. Math,1963,11:431-441.
    [27]袁亚湘,孙文瑜.最优化理论与方法[M].科学出版社,2005.
    [28]杨柳.奇异非线性方程组及非线性最小二乘问题的求解[D].湘潭大学硕士论文,2003.
    [29]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [30]J. E. Dennis, Jr., R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-Hall, Inc., Englewood Cliffs, New Jersey 1983).
    [31]施浒立,赵彦.误差设计新理论与方法[M].北京:科学出版社,2007.
    [1]丁根芳.层合压电智能结构的数值模拟和振动控制研究[D].合肥工业大学博士学位论文,2008.
    [2]王建国,覃艳,丁根芳.单点配置压电层合结构的优化设计[J].合肥工业大学学报,2007,30(5):594-597.
    [3]林西强,任钧国.含压电片层合板的静变形控制[J].固体力学学报,1998,19(4):305-312.
    [4]王中东,雷玉祥,陈塑寰.智能结构静态形状中压电执行元件最优位置选择[J].吉林大学自然科学学报,1998,4(2).
    [5]王涛.压电智能结构分析的新方法研究[D].广西大学博士学位论文,2007.
    [6]邓年春.结构的主被动一体化振动控制研究[D].哈尔滨工业大学博士学位论文,2004.
    [7]唐纪晔,黄海,夏人伟,等.压电层合板自适应结构的静力变形控制[J].北京航空航天大学学报,2000,26(2):239-243.
    [8]黄海,唐纪哗,等.自适应结构理论与数值仿真研究,863航天领域空间站技术研究报告,北京:北京航空航天大学,1998.
    [9]吴大方,黄海,等.自适应结构计算机仿真与试验研究,863航天领域空间站技术研究报告,北京:北京航空航天大学,1998.
    [10]王军,郦正能,王俊兵.含SMA合PZT二元驱动器的智能复合材料结构形状控制[J].复合材料学报,2004,21(2):142-146.
    [11]Chen C, Tong L, Steven G P. Static shape control of composite plates using a curvature-displacement based algorithm [J]. International Journal of Solids Structures,2001,38:6381-6401.
    [12]Chen C, Tong L, Steven G P. Piezoelectric actuator orientation optimization for static shape control of composite plates [J]. Composite Structures,2002,55(2):169-184.
    [13]Quan Nguyen, Liyong Tong. Shape control of smart composite plate with non-rectangular piezoelectric actuators [J]. Composite Structres,2004,66(1-4):207-214.
    [14]Nguyen Q, Tong L. Voltage and evolutionary piezoelectric actuator design optimisation for static shape control of smart plate structures [J]. Materials and Design.2007,28(2):387-399.
    [15]Luo Q, Tong L. An accurate laminated element for piezoelectric smart beams including peel stress [J]. Computational Mechanics,2004,33(2):108-120.
    [16]Luo Q, Tong L. High precision shape control of plates using orthotropic piezoelectric actuators [J]. Finite Elements in Analysis and Design,2006,42(11):1009-1020.
    [17]Sun D, Tong L. Design optimization of piezoelectric actuator patterns for static shape control of smart plates [J].Smart Materials and Structures,2005,14(6):1353-1362.
    [18]Bruch Jr J. C, Sloss J.M., Adali S, Sadek 1. Slocations/lengths and applied voltage for shape control of beams Structures,2000,9(2):205-211.
    [19]Liew K. M, He X Q, Ray T. On the use of computational intelligence in the optimal shape control of functionally graded smart plates [J]. Comput Meth Appl Mech Eng,2004,193(42-44):4475-4492.
    [20]Ren L, Parvizi-Majidi A. A Model for Shape Control of Cross-ply Laminated Shells using a Piezoelectric Actuator [J]. Journal of Composite Materials,2006,40(14):1271.
    [21]Lin J.C., Nien M.H. Adaptive modeling and shape control of laminated plates using piezoelectric actuators [J]. Journal of Materials Processing Technology,2007,189:231-236.
    [22]谢石林,张希农.书本式压电驱动器的特性分析[J].振动[程学报,2004,17(1):112-115.
    [23]张亚红,张希农,谢石林.层叠式PVDF压电作动器及圆柱壳的振动主动控制[J].力学季刊,2006,27(4):591-597.
    [24]姚林泉,丁睿.非线性压电效应下压电弯曲执行器的弯曲[J].计算力学学报,2006,1(23):52-57.
    [1]欧进萍.结构振动控制—主动、半主动和智能控制[M].科学出版社,2003.
    [2]陈定球.压电梁柱构件的动力方程及其在结构主动振动控制中的应用[D].同济大学硕士学位论文.2007.
    [3]张永兵,秦荣,李双蓓.3层钢结构非线性地震反应的变增益模糊控制[J].振动与冲击,2008,27(10):106-111.
    [4]张永兵,秦荣,李双蓓,等.压电变摩擦阻尼器对高层建筑非线性地震反应的模糊控制算法[J].振动与冲击,2008,27(11):142-146.
    [5]张永兵,张永申,李双蓓,等.3层基准建筑非线性地震反应的智能控制[J].土木建筑与环境工程,2009,31(1):49-54.
    [6]杨飏,欧进萍.压电变摩擦阻尼器减振结构的数值分析[J].振动与冲击,2005,6(24):2-4.
    [7]周星德.柔性框架结构智能振动主动控制方法的研究[D].东南大学博士学位论文,2001.
    [8]周星德,汪凤泉,韩晓林.框架结构智能主动控制的研究[J].工程力学,2002,2(19):143-146.
    [9]周星德,陈国荣,张华.智能框架结构作动器最优配置研究[J].土木工程学报,2003,8(36):20-23.
    [10]王波.点式压电智能结构振动控制方法改进的研究[D].重庆大学博士学位论文,2004.
    [11]王社良,马乾瑛,田鹏刚,等.智能结构模态控制实验研究[J].世界地震工程,2010,6(2):37-41.
    [12]曹伟,王社良,马乾瑛,等.压电堆式驱动器对空间钢框架地震反应的主动控制[J].华北水利水电学院学报,2010,3(31):21-23.
    [13]HAN Sangjun. Active/passive seismic control of structures [D]. The Catholic University of America, 2002.
    [14]胡卫兵,冯瑛,李立州.压电摩擦阻尼器的自适应控制抗震分析[J].噪声与振动控制,20082(1):97-101.
    [15]Hong-Nan Li, Jun Li. Improved bang-bang control for a new type of piezoelectric friction damper. Proceedings of SPIE,2005,5760:423-433.
    [16]李军.智能压电摩擦阻尼器的控制理论与试验研究[D].大连理工大学硕士学位论文,2005.
    [17]赵大海.基于压电摩擦阻尼器的结构振动控制理论与试验研究[D].大连理工大学博士学位论文,2008.
    [18]赵大海,李宏男.模型结构的压电摩擦阻尼减振控制试验研究[J].振动与冲击,2011,6(30):272-276.
    [19]秦荣.智能结构力学[M].北京:科学出版社,2005.
    [20]郭兰满,黄迪山,朱晓锦.传递矩阵法分析轴向受力智能梁的振动和稳定性[J].振动、测试与诊断,2011,31(1):78-84.
    [21]舒兴平,沈蒲生.平面钢框架结构二阶效应的有限变形理论分析[J].钢结构,1999,14(1):5-9.
    [22]王成立.考虑初始缺陷影响的空间钢框架结构稳定分析的新方法[D].广西大学硕士学位论文, 2007.
    [23]王成立,李双蓓.两种改进考虑初始几何缺陷的非线性梁单元[J].建筑结构,2009,39(增刊):23-41.
    [1]欧进萍.结构振动控制—主动、半主动和智能控制[M].北京:科学出版社,2003.
    [2]秦荣.智能结构力学[M].北京:科学出版社,2005.
    [3]马乾瑛.基于MSMA/GMM的空间结构地震反应主动控制研究[D].西安建筑科技大学博士学位论文,2011.
    [4]张永兵.压电智能结构及新型智能压电变摩擦阻尼器振动控制研究[D].广西大学博士学位论文,2009.
    [5]Genda Chen, Chaoqiang Chela. Semi-active Control of the 20-story Benchmark Building with Piezoelectric Friction Dampers [J]. Journal of Engineering Mechanics,2003,130(4):393-400.
    [6]Genda Chen, Jingning Wu, Gabriel Garriett. Preliminary Design of Piezoelectric Friction Dampers for Reducing the Seismic Response of Structures [J]. Proceedings of the 14th ASCE Engineering. Mechanics, Division Specialty Conference, Austin, Texas,2000:21-24.
    [7]Genda Chen, Chaoqiang Chen. Semi-active control of a steel frame with piezoelectric friction dampers [J]. Proceedings of SPIE,2003,5057:207-217.
    [8]陈波.高耸塔架结构振动反应的智能混合控制[D].武汉理工大学博士学位论文,2003.
    [9]薛伟辰,郑乔文,刘振勇,等.结构振动控制智能材料研究及应用进展[J]_地震工程与工程振动学报,2006,26(5):213-217.
    [10]瞿伟廉,陈波,李学安,等.压电材料智能力矩控制器对具有不确定参数升船结构顶部厂房地震反应的鲁棒控制[J].地震工程与工程振动,2001,21(2):145-151.
    [11]欧进萍,关新春,吴斌,等.智能型压电-摩擦耗能器[J].地震工程与工程振动,2000,20(1):81-86.
    [12]欧进萍,杨飏.压电-T型变摩擦阻尼器及其性能实验分析[J].地震工程与工程振动,2003,23(4):171-177.
    [13]杨飏,欧进萍.压电变摩擦阻尼器减振结构的数值分析[J].振动与冲击,2005,6(24):2-4.
    [14]赵大海,李宏男.模型结构的压电摩擦阻尼减振控制试验研究[J].振动与冲击,2011,6(30):272-276.
    [15]周星德,汪凤泉.基于预测控制策略的智能框架结构主动控制研究[J].振动、测试与诊断,2004,2(4):139-142.
    [16]周星德,汪凤泉,韩晓林.框架结构智能主动控制的研究[J].工程力学,2002,2(19):143-146.
    [17]周星德,陈国荣,张华.智能框架结构作动器最优配置研究[J].土木工程学报,2003,8(36):20-23.
    [18]周星德,汪凤泉,韩晓林,等.基于灵敏度分析的智能框架结构综合设计研究[J].振动、测试与诊断,2003,3(23):213-216.
    [19]周星德,汪凤泉.基于遗传算法的智能框架结构作动器最优配置[J].振动、应用科学学报,2002,1(20):90-93.
    [20]陈定球.压电梁柱构件的动力方程及其在结构主动振动控制中的应用[D].同济大学硕士学位论 文,2005.
    [21]王波.点式压电智能结构振动控制方法改进的研究[D].重庆大学博十学位论文,2004.
    [22]李宏男,李军,宋钢兵.采用压电智能材料的土木工程结构控制研究进展[J].建筑结构学报,2005,26(3):1-9.
    [23]王社良,马乾瑛,田鹏刚,等.智能结构模态控制实验研究[J].世界地震工程,2010,6(2):37-41.
    [24]曹伟,王社良,马乾瑛,等.压电堆式驱动器对空间钢框架地震反应的主动控制[J].华北水利水电学院学报,2010,3(31):21-23.
    [25]Kamada T, Fujita T, Hatayama T, et al. Active Vibration of Frame structures of Shear and Bending Type with Smart Structure Using Piezoelectric Actuator [C]. Proceedings of SP1E,1997,3041:75-86.
    [26]HAN Sangjun. Active/passive seismic control of structures [D]. The Catholic University of America, 2002.
    [27]秦荣,赵艳林.用QR法和样条加权残数法求解高层框剪结构的地震反应[J].工程力学,1993,10(2):1-7.
    [28]魏燕定,娄军强,吕永桂,等.振动主动控制中线性二次型最优控制问题研究[J].浙江大学学报(工学版),2009,43(3):420-424.
    [29]Ang K K, Wang S Y, Quek S T. Weighted energy linear quadratic regulator vibration control of piezoelectric composite plates. Smart Mater Struct,2002,11:98-106.
    [30]常军,陈敏,刘正兴.基于能量准则的梁振动多模态主动控制的LQR法[J].固体力学学报,2004,25(4):423-429.
    [31]韦克昌.基于压电堆的智能旋翼高效驱动机构设计分析与试验研究[D].南京航空航天大学硕士学位论文,2006.
    [32]赵更新.土木工程结构分析程序设计[M].中国水利水电出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700