用户名: 密码: 验证码:
黄河下游利津站营养盐输送规律及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流作为连接陆地与海洋两大生态系统的纽带,是全球营养元素地球化学循环的重要环节。黄河是我国第二大河,其营养元素的输送在全球以及区域环境问题中扮演很重要的角色。本研究通过2005年~2009年逐月以及调水调沙期间逐日在黄河下游利津站营养盐观测结果,结合近30年来黄河流域营养盐的观测资料,对黄河流域营养盐的存在形态、输送通量、时间变化等问题进行了深入探讨,并着重研究了调水调沙这一重大水文事件期间黄河营养盐输送规律、影响因素以及对黄河营养盐输送的影响。主要研究结果如下:
     (1)系统观测黄河下游利津站连续5年(2005年~2009年)的营养盐。观测期间,硝酸盐浓度范围为144.6~363.6μmol/L,亚硝酸盐浓度范围为0.06~22.4μmol/L,氨氮浓度范围为0.97~48.9μmol/L,磷酸盐浓度范围为0.02~1.19μmol/L,硅酸盐浓度范围为46.07~142.9μmol/L;五年间,硝酸盐和硅酸盐的浓度呈现逐渐降低的趋势,磷酸盐的浓度呈现逐渐降低的趋势,但2007年后又升高;黄河利津站DIN/DIP范围为206~15567,黄河下游可能存在磷限制。
     (2)系统分析了黄河下游利津站2005~2009年营养盐的输送通量。发现硝酸盐、溶解无机氮、磷酸盐、硅酸盐年通量整体上均呈现明显下降的趋势;营养盐通量的季节变化明显;硝酸盐、溶解无机氮、磷酸盐、硅酸盐通量主要受径流量变化的影响,但亚硝酸盐和氨氮通量受其浓度变化的影响也很大。
     (3)系统分析了2005~2009年调水调沙期间黄河下游利津站的水沙变化。发现在调水调沙期间,多数年份里水沙关系表现为沙峰在前、水峰在后的特点,其流量-含沙量时序关系呈现顺时针变化,表明泥沙主要来自河床;但2005年和2008年调水调沙后期发生较强降雨事件,水沙关系表现为水峰在前、沙峰在后的特点,流量-含沙量时序关系则表现为逆时针变化,泥沙主要来自流域土壤。
     (4)系统分析了2005~2009年调水调沙期间黄河下游利津站营养盐的浓度变化和输送通量。发现调水调沙期间,营养盐浓度的改变与水沙变化的关系比较复杂,硝酸盐、磷酸盐和硅酸盐在多数年份里表现为低流量时浓度随径流量增加而增加,高流量时则随径流量增加而迅速降低,氨氮和亚硝酸盐的变化更加复杂;这些变化主要受到河床河滩冲刷(带入河水中大量营养盐)、河水稀释效应以及悬浮颗粒物含量等的影响。研究还发现,调水调沙期间径流量约为全年径流量的20%,硝酸盐和硅酸盐输送通量占全年通量的20%~30%,磷酸盐输送通量占全年通量的20%左右,亚硝酸盐和氨氮波动较大,但大多数年份均低于10%;硝酸盐、磷酸盐和硅酸盐的输送通量主要由其间的径流量控制。
     (5)系统分析了黄河下游营养盐的历史数据。发现在过去的三十年里(1980~2009年),2000年以前黄河下游溶解无机氮、硝酸盐、磷酸盐、硅酸盐浓度均有较高水平,并且溶解无机氮、硝酸盐呈逐渐上升的趋势,磷酸盐和硅酸盐变化不大;2000年后溶解无机氮、硝酸盐、磷酸盐、硅酸盐浓度整体上则均呈现逐渐降低的趋势,但磷酸盐在2007年后又逐步升高。影响黄河下游营养盐输送通量的主要因素为当年的径流量。
     (6)计算了黄河下游利津站营养盐的比通量,并与世界其他大河流进行了比较分析。发现黄河下游利津站硝酸盐、磷酸盐、硅酸盐的比通量都低于世界同纬度的其他河流;硝酸盐浓度远高于同纬度的其他世界河流,硅酸盐浓度在同纬度的其他世界河流中也是最高的,但磷酸盐的浓度低于同纬度的其他世界河流。黄河硝酸盐、硅酸盐的比通量低于世界同纬度的其他河流,主要原因是大规模的流域调水使得黄河下游的实际径流量大大低于其“应有的”自然径流量,而磷酸盐的比通量低于世界同纬度其他河流的原因,除了大规模调水之外,其自身浓度很低也是一个重要原因。
Rivers carrying suspended and dissolved material from the land to the ocean arethe principal link in the transfer of nutrients between these systems. As the secondriver in China, Yellow River plays an important role in the transport of nutrients.Dissolved nutrient concentrations in the Yellow River were measured monthly anddaily during the period of water-sediment regulation in the downstream region at Lijinstation from2005to2009. Combined with historic hydrographic and water-qualitydata (1980~2009), the concentrations and compositions of nutrients, and theirtemporal change were discussed in the study, especially during the period ofwater-sediment regulation. The results are concluded as following:
     (1) Dissolved nutrient concentrations in the Yellow River were measuredsystemically during2005~2009. The concentrations of nitrate and nitrite ranged from144.6to363.6μmol/L and from0.06to22.4μmol/L, while the concentration ofammonia varied from0.97to48.9μmol/L. The concentration of phosphate and silicateranged from0.02to1.19μmol/L and from46.07to142.9μmol/L, respectively. Theconcentration of nitrate and silicate decreased in2005~2009, while the concentrationof phosphate decreased before2007and then increased. The ratio of DIN/DIP rangedfrom206to15567, and it suggests that the waters of the Yellow River at Lijin arestrongly P-limited.
     (2) The fluxes of nitrate, DIN, phosphate and silicate decreased during2005~2009.Nutrient fluxes also exhibited substantial seasonal fluctuations. Discharge was themain factor that controlled the fluxes of nitrate, phosphate and silicate. And for nitriteand ammonia, concentration of nutrient was also the main factor.
     (3) The changes of water and sediment were observed during the period ofwater-sediment regulation in2005~2009. The relationship between discharge andsediment were clockwise expecting the anaphase of2008. And sediment peak was infront. It means that sediment in the water-sediment regulation mainly come from the riverbed. But the relationship between discharge and sediment were anticlockwiseduring the rain period in2005and the anaphase of water-sediment regulation in2008.And water peak was in front. It means that sediment was soil mainly come from theYellow river basin.
     (4) The concentrations and fluxes of nutrients were analyzed during the period ofwater-sediment regulation in2005~2009. The relationships of nutrients and dischargeand sediment were complicated. The concentrations of nitrate, phosphate and silicateincreased with the increase of discharge when the discharge was low, and they weredecreased with the increase of discharge when the discharge was high. They wereinfluenced by the erosion of riverbed and beach, dilution effect of river-water and theamount of suspended particulate matter. The water flux was accounted about20%ofthe whole year during the period of water-sediment regulation. The fluxes of nitrateand silicate were accounted for20%~30%, while the fluxes of phosphate wasaccounted for about20%. The fluxes of nitrite and ammonia were just accounted forless than10%in most years. Fluxes of nitrate, phosphate and silicate were mainlycontrolled by water discharge.
     (5) The series data of nutrients at the downstream of Yellow River for about30years were reviewed. The concentrations of dissolved inorganic nitrogen and nitrateincreased from1980s to2000. No obviously changes of phosphate and silicate werefound from1980s to2000. The concentrations of dissolved inorganic nitrogen, nitrateand silicate decreased after2000, while the concentration of phosphate increased from2001to2007and then decreased after2007.
     (6) The specific fluxes of nitrate, phosphate and silicate of Yellow river werecalculated and compared with world rivers. The specific fluxes of nitrate, phosphateand silicate of Yellow river were lower than that of the same latitude rivers, becausethe actual discharge was much lower than the “natural” discharge due to thelarge-scale water take-off. The concentration of nitrate and silicate of Yellow riverwere higher than that of the same latitude rivers, while the specific fluxes ofphosphate was lower due to the low concentration and the large-scale water take-off.
引文
[1]崔树彬,李韶旭,袁丽华,宋世霞.“十五”期间实现水资源开发与水环境保护的同步发展.人民黄河,2001,23(8):1~6
    [2]陈霁巍主编.黄河治理与水资源开发利用(综合卷).郑州:黄河水利出版社,1998
    [3]段水旺,章申.中国主要河流控制站氮、磷含量变化规律初探.地理科学,1999,19(5):411~416
    [4]段水旺.长江营养元素输送规律及来源的研究:[博士学位论文].北京:中国科学院地理科学与资源研究所,2000
    [5]高振会,杨建强,崔文林,张洪亮.黄河入海径流量减少对河口海洋生态环境的影响及对策.2003年中国法学会环境资源法学研究会年会论文集,p306
    [6]郭国顺.黄河调水调沙试验新闻集.郑州:黄河出版社,2002:123~124
    [7]宫敏娜.黄河及河口颗粒物中正构烷烃与多环芳烃的分布研究:[硕士学位论文].青岛:中国海洋大学,2006
    [8]何会军.河流与河口颗粒物中磷的生物地球化学特征研究:[博士学位论文].青岛:中国海洋大学,2009
    [9]黄慎勇,付忠志,赵忠富,王雪原.氮的排放标准与设计.西南给排水,2006,28(3):7~9
    [10]黄河水利委员会.黄河网.2005年7月2日
    [11]黄河水利委员会.黄河水资源公报.郑州:水利部黄河水利委员会.2002
    [12]黄河水利委员会.黄河水资源公报.郑州:水利部黄河水利委员会.2005
    [13]黄河水利委员会.黄河水资源公报.郑州:水利部黄河水利委员会.2006
    [14]黄河水利委员会.黄河水资源公报.郑州:水利部黄河水利委员会.2007
    [15]黄河水利委员会.黄河水资源公报.郑州:水利部黄河水利委员会.2008
    [16]黄河水利委员会.2005年黄河调水调沙水库调度阶段结束.人民黄河,2005,7:9
    [17]黄河水利委员会.黄河第八次调水调沙取得成功.治黄科技信息,2008
    [18]黄清辉,沈焕庭,刘新成,傅瑞标.人类活动对长江河口硝酸盐输入通量的影响.长江流域资源与环境,2001,10(6):564~569
    [19]金传良,郭治清等.中国水资源质量评价概述.水文,1996,5:1~7
    [20]李国英.黄河调水调沙.人民黄河,2002,24(11):1~2
    [21]李国英.黄河第三次调水调沙试验.人民黄河,2004,26(10):1~8
    [22]李泽刚.黄河口附近海区水文要素基本特征.黄渤海海洋,2000,18(3):20~28
    [23]廖义伟,赵咸榕.2003年黄河调水调沙试验.人民黄河,2003,25(11):25~27
    [24]刘锋,陈沈良,周永东,彭俊,陈一强,任韧希子.黄河2009年调水调沙期间河口水动力及悬沙输移变化特征.泥沙研究,2010,6:1~8
    [25]刘剑辉.黄河第八次调水调沙取得成功.菏泽日报,2008
    [26]刘立芳.黄河调水调沙期间悬浮颗粒物中有机碳含量及莱州湾碳的行为特征:[硕士学位论文].青岛:中国海洋大学,2006
    [27]吕中秀,张红进.东营市水污染状况及防治对策.黄河三角洲研究,2000,3:50~52
    [28]马骏,李晓,许珂艳.2008年黄河调水调沙效果分析.水资源与水工程学报,2008,19(5):87~93
    [29]马广慧.黄河流域水资源开发利用对水文循环及生态环境的影响研究:[硕士学位论文].南京:河海大学,2007
    [30]冉祥滨.三峡水库营养盐分布特征与滞留效应研究:[博士学位论文].青岛:中国海洋大学,2009
    [31]任景玲,张经.罗纳河中的铝、营养盐及常量元素的研究.青岛海洋大学学报,2002,32(6):993~1000
    [32]邵晓梅.黄河流域节水农业关键问题的区域特征研究:[博士后研究工作报告].北京:中国农业科学院,2005
    [33]孙广生主编.黄河水资源管理.郑州:黄河水利出版社,2001
    [34]沈焕庭主编.长江河口物质通量.北京:海洋出版社,2001:35~37
    [35]史红星,刘会娟,曲久辉,代瑞华,王明华.无机矿质颗粒悬浮物对富营养化水体氨氮的吸附特性.环境科学,2005,26(5):72~76
    [36]谭家强.黄河对渤海的营养盐输送研究:[硕士学位论文].青岛:中国海洋大学,2002
    [37]王东启.长江口滨岸潮滩沉积物反硝化作用及N2O的排放和吸收:[博士学位论文].上海:华东师范大学,2005
    [38]王厚杰,杨作升,毕乃双,李海东.2005年黄河调水调沙期间河口入海主流的快速摆动.科学通报,2005,50(23):2656~2662
    [39]王婷.2002~2004年及调水调沙期间黄河下游营养盐的变化特征:[硕士学位论文].青岛:中国海洋大学,2007
    [40]徐建华,董明军,李晓宇,胡跃斌.2006年调水调沙期间小浪底库区异重流分析.人民黄河,2007,29(6):17~20
    [41]叶青超等.黄河下游河流河貌.北京:科学出版社,1990
    [42]叶青超,吴祥定,杨勤业,唐克丽,钱意颖,曾庆华,熊贵枢.黄河流域环境演变与水沙运行规律研究.山东:科学技术出版社,1994
    [43]叶常明,谢永明,穆环珍,王宏,孙洁华.沱江氮污染物转化规律及污染容量.环境科学学报,1986,6(1):37~42
    [44]喻明湘.三门峡水库泥沙问题.水利水电工程设计,1998,1:5
    [45]于志刚,米铁柱,谢宝东,姚庆祯,张经.二十年来渤海生态环境参数的演化和相互关系.海洋环境科学,2000,19(1):15~19
    [46]赵文林主编.黄河泥沙.郑州:黄河水利出版社,1996
    [47]赵悦,张安鲁,刘云.浅谈黄河调水调沙.科技资讯,2009,4:156~157
    [48]张翠云,张胜,贾秀梅,叶思源.三氮吸附性能对比实验研究.勘察科学技术,2001,5:37~39
    [49]张金良,魏向阳,柴成果,赵咸榕,曲少军,陶新.黄河2007年汛前调水调沙生产运行分析.人民黄河,2007,29(10):22~27
    [50]张娇.黄河及河口烃类有机物的分布特征及源解析:[博士学位论文].青岛:中国海洋大学,2008
    [51]张经主编.中国主要河口的生物地球化学研究.北京:海洋出版社,1997.208~209
    [52]中国预防医学科学院环境卫生监测所.全球环境监测系统~长江、黄河、珠江、太湖水质动态研究(1980~1989)1990.
    [53]中国水利部,全国水文年鉴,1958~1980,第4卷
    [54] Admiraal W., Breugem P., Jacobs D.M.L.H.A., De Ruyer Van Steveninck E.D.. Fixation ofdissolved silicate and sedimentation of biogenic silicate in the lower river Rhine duringdiatom blooms. Biogeochemistry,1990,9:175~185.
    [55] Benitez-Nelson C.R.. The biogeochemical cycling of phosphorus in marine systems. EarthScience Review,2000,51:109~135.
    [56] Bergstr m L., Brink N.. Effects of differentiated applications of fertilizer N on leachinglosses and distribution of inorganic N in the soil. Plant and Soil,1986,93:333~345.
    [57] Bert Bolin and Robert B. Cook, eds. The major biogeochemical cycles and their interactions.SCOPE Rep21. New York: John Wiley,1983
    [58] Brimblecombe P. and Stedman D.H.. Historical evidence for a dramatic increase in nitratecomponent of acid rain. Nature,1982,298:460~462.
    [59] Billen G., Lancelot C., Meybeck M. N.. P and Si retention along the aquatic continuum fromland to ocean. In: Mantoura R F C, Martin J. M. and Wollast R. eds. Ocean Margin Processesin Global Change, John Wiley&Sons.1991:19~44.
    [60] Bennet E.M., Carpenter S.R., Caraco N.F.. Human impact on erodable phosphorus andeutrophication: a global perspective. Bio. Science,2001,51:227~234.
    [61] Berner E., and Berner R.. Global Environment: Water, Air and Geochemical Cycles. PrenticeHall, Old Tappan, N. J.,1996
    [62] Beaulac M. N., Reckhow K. H.. An examination of land use-nutrient export relationships.Water Resources Bulletin.1982,18(6):1013~1024
    [63] Cornell S., Rendeli A., Jicklis T.. Atmospheric inputs of dissolved organic nitrogen to theoceans. Nature,1995,376:243~246
    [64] Degobbis D., Gilmartin M.. Nitrogen, phosphorus, and biogenic silicon budgets for thenorthern Adriatic Sea. Oceanologica Acta.,1990,13:31~45.
    [65] Degens E.T., Kempe S., Richey J.E. et. al.. Biogeochemistry of Major World Rivers. SCOPERep.42, John Wily&Sons, New York,1991
    [66] DeMaster D.J., Pope R.H.. Nutrient dynamics in Amazon shelf waters: Results fromAMASSEDS. Continental Shelf Research,1996,16:263~289.
    [67] Galloway J.N., William H.S., Hiram L.H. et al.. Nitrogen fixation: anthropogenicenhancement-environmental response. Global Biogeochemistry Cycles,1995,9(2):235~252
    [68] Garnier J., Billen G., Coste M.. Seasonal succession of diatoms and Chlorophyceae in thedrainage network of the Seine River: observations and modeling. Limnology&Oceanography,1995,40:750~765.
    [69] Garnier J., Billen G., Hannon E., Fonbonne S., Videnina Y., Soulie M.. Modeling the transferand retention of nutrients in the drainage network of the Danube River. Estuarine, Coastaland Shelf Science,2002,54:285~308.
    [70] Gong Y., Yao Q.Z., Douglas G., Chen H.T., Mi T.Z., Tan J.Q., Yu Z.G.. Seasonal variation andsources of dissolved nutrients in the Yellow River, China, Journal of hydrology, under review
    [71] Gordeev V.V.. River input of water, sediment, major ions, nutrients and trace metals fromRussian territory to the Arctic Ocean. In: Lewis EL, Johns EP, Lemke P, editors. TheFreshwater Budget of the Arctic Ocean. Kluwer, Norwell, Mass.,2000:297~322.
    [72] Guo L.D., Zhang J.Z., Gueguen C.. Speciation and fluxes of nutrients (N, P, Si) from theupper Yukon River. Global biogeochemical cycles,2004,18, GB1038, doi:10.1029/2003GB002152.
    [73] Heckrath G., Brookes P.C., Poultion P.R., Goulding K.W.T.. Phosphorus leaching from soilcontaining different phosphorus concentration in the Broadbalk experiment. Journal ofEnvironmental Quality,1995,24:904~910.
    [74] Holmes R. M., Peterson B. J., Gordeev V. V., Zhulidov A. V., Meybeck M., Lammers R. B.,Vo¨ro¨smarty C. J.. Flux of nutrients from Russian rivers to the Arctic Ocean: Can weestablish a baseline against whichto judge future changes? Water Resource reaearch,2000,36(8):2309~2320
    [75] House W.A., Leach D., Warwick M.S., Whitton B.A., Pattinsonc S.N., Rylandb G., PinderbA., Ingramb J., Lishmand J.P., Smith S.M., Rigg E., Denison F.H.. Nutrient transport in theHumber Rivers. Sci. Total Environ.,1997,194/195:303~320.
    [76] Humborg C., Ittekkot V., Cociasu A., Bodungen B.V.. Effect of Danube river dam on BlackSea biogeochemistry and ecosystem structure. Nature,1997,386:385~388.
    [77] Humborg C., Conley D.J., Rahm L., Wulff F., Cociasu A., Ittekkot V.. Silicon retention inriver basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marineenvironments. Ambio.,2000,29(1):45~50.
    [78] Jacobs T.C., Gilliam J.W.. Nitrate loss from agricultural drainage waters: Implications fornonpoint source control. Report No.209of the Water Resources Research Institute of theUniversity of North Carolina.,1983
    [79] Liu S.M., Zhang J., Chen H.T., Wu Y., Xiong H., Zhang Z.F.. Nutrients in the Changjiang andits tributaries. Biogeochemistry,2003,62:1~18
    [80] Mayer L.M., Gloss S.P.. Buffering of silica and phosphorus in a turbid river. Limnology andOceanography,1980,25:12~22.
    [81] Meybeck M.. Carbon, nitrogen, and phosphorus transport by World Rivers. American Journalof Science,1982,282:401~450.
    [82] Meybeck M., Cauwet G., Dessery S., Somville M., Gouleau D., Billen G.. Nutrients (organicC, P, N, Si) in the eutrophic river Loire (France) and its estuary. Estuarine, Coastal andShelf Science,1988,27:595~624.
    [83] Meybeck M.. Global analysis of river systems: from Earth system controls to Anthropocenesyndromes. Philosophical Transactions of the Royal Society B.,2003,358:1935~1955.
    [84] Middelburg J.J.,Soetaert K.,Herman P.M.J.. Denitrification in marine sediments: A modelstudy. Global Biogeochemical Cycles,1996,10:661~673
    [85] Millot R., Gallardet J., Dupre B., Allegre C.J.. The global control of silicate weathering ratesand the coupling with physical erosion: New insights from rivers of the Canada Shield. EarthPlanet Sci. Lett.,2002,196:83~98.
    [86] Nixon S.W., Ammerman J.W., Atkinson L.P., Berounsky V.M., Billen G., Boicourt W.C.,Boynton W.R., Church T.M., DiToro D.M., Elmgren R., Garber J.H., Giblin A.E., JahnkeR.A., Owens N.J.P., Pilson M.E.Q., Seitzinger S.P.. The fate of nitrogen and phosphorus atthe land-sea margin of the North Atlantic Ocean. Biogeochemistry,1996,35:141~180.
    [87] Owens N.J.P.. Estuarine nitrification: a naturally occurring fluidized bed reaction? Estuarine,coastal and shelf science,1986,22:31~44
    [88] Pacini N., Gachter R.. Speciation of riverine particulate phosphorus during rain events.Biogeochemistry,1999,47:87~109
    [89] Prosterman R.L., Hanstad T., Li P.. Can China feed itself? Scientific American November,1996:70~76.
    [90] Ruttenberg K.C.. Phosphorus Cycle. In: Encyclopedia of Ocean Sciences. Academic Press2001:2149~2162
    [91] Redfield A.C.. The biological control of chemical factors in the environment. AmericanScientist,1958,46:205~222.
    [92] Rabalais N.N., Wiseman W.J., Turner R.E., Gupta B.K., Dortch Q.. Nutrient changes in theMississippi River and the system responses on the adjacent continental shelf. Estuaries andcoasts,1996,19:386~407.
    [93] Sferratore A., Billen G., Garnier J., Smedberg E., Humborg C., Rahm L.. Modelling nutrientfluxes from sub-arctic basins: Comparison of pristine vs. dammed rivers. Journal of MarineSystems,2008,73:236~249
    [94] Seitzinger S.P.. Denitrification in freshwater and coastal marine ecosystems: ecological andgeochemical significance. Limnology and Oceanography,1988,33:702~724.
    [95] Steegen A., Govers G., Nachtergaele J., Takken I., Beuselinck L., Poesen J.. Sediment exportby water from an agricultural catchment in the Loam Belt of central Belgium.Geomorphology,2000,33:25~36
    [96] Suchet P.A., Probst J.L., Ludwig W.. Worldwide distribution of continental rock lithology:Implications for the atmospheric/soil CO2uptake by continental weathering and AlkalinityRiver transport to the oceans. Global Biogeochem. Cycles,2003,17,1038, doi:10.1029/2002GB001891.
    [97] Tian R.C., Hu F.X., Martin J.M.. Summer nutrient fronts in the Changjiang (Yangtze River)estuary. Estuarine, Coastal and Shelf Science,1993,37:27~41.
    [98] Tréguer P., Nelson D.M., Bennekom V.A.J., Demaster D.J., Leynaert A., Quéguiner B.. Thesilica balance in the world ocean: a reestimate. Science,1995,268:375~379.
    [99] Torrecilla N.J., Galve J.P., Zaera L.G., Retamar J.F., Alvarez A.N.A.. Nutrient sources anddynamics in a Mediterranean fluvial regime (Ebro river, NE Spain) and their implications forwater management. Journal of Hydrology,2005,304:166~182
    [100] Turner R.E., Rabalais N.N.. Coastal eutrophication near the Mississippi River delta.Nature,1994,368:619~621.
    [101] Turner R.E., Rabalais N.N., Justic D., Dortch Q.. Global patterns of dissolved N, P andSi in large rivers. Biogeochemistry,2003,64:297~317.
    [102] Vaclav S.. Global population and the nitrogen cycle. Scientific American,1997, July:76~81
    [103] Vitousek P.M., Aber J., Howarth R.W., Likens G.E., Matson P.A., Schindler D.W.,Schlesinger W.H., Tilman G.D.. Human Alteration of the Global Nitrogen Cycle: Causes andConsequences. Ecological Society of America, Issues in Ecology,2000,30/08/2000
    [104] V r smarty C.J., Sharma K.P., Feket B.M. et al.. The storage and aging of continentalrunoff in large reservoir systems of the world. Ambio,1997,26(4):210-219.
    [105] Wafar M.V.M., Corre L.P., Birrien J.L.. Transport of carbon, nitrogen and phosphorus ina Brittany River, France. Estuarine coastal and shelf science,1989,29:489~500.
    [106] Yu Z.G., Mi T.Z., Yao Q.Z., Xie B.D., Zhang J.. Nutrients concentration and changes indecade-scale in the central Bohai Sea. Acta Oceanologica Sinica,2001,20(1):65~75.
    [107] Zhang J., Yan J., Zhang Z.F.. Nationwide river chemistry trends in China: Huanghe andChangjiang. Ambio,1995,24:275~279.
    [108] Zhang J.. Nutrient elements in large Chinese estuaries. Continental shelf research,1996,16(8):1023~1045.
    [109] Zhang J., Zhang Z.F., Liu S.M., Wu Y., Xiong H., Chen H.T.. Human impacts on the largeworld rivers: Would the Changjiang (Yangtze River) be an illustration? Globalbiogeochemical cycles,1999,13(4):1099~1105.
    [110] Zhang Shuo. The Biogeochemistry of a Large Turbid River:The Huanghe and its Delta.Hamburg,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700