用户名: 密码: 验证码:
海洋立管涡致耦合振动CFD数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于计算流体力学(CFD)与计算结构动力学(CSD)方法,对圆柱体的涡激振动响应进行数值模拟,研究不同工况下柱体受力系数、振动幅值以及尾流漩涡脱落模式等变化规律,探索海洋立管的涡激振动机理;并进一步研究带抑振装置圆柱体的涡激振动及抑振效果;在此基础上,对多个圆柱体涡激振动的干涉问题进行了数值模拟研究;最后对深水立管结构进行准三维涡激振动数值模拟。具体内容如下:
     1、流体—圆柱体结构耦合振动数值模拟方法研究
     在总结分析国内外对CFD流固耦合研究现状的基础上,本文考虑了涡激振动参数并结合CFD方法,建立流固耦合系统的涡致振动无量纲数值模型。选择SST k模型模拟流场变化,同时采用Newmark-β法控制柱体边界的运动。最后给出流固耦合求解的具体实现方法,确定流固耦合数值模拟的求解流程,并编制相应的计算程序。
     2、单圆柱体涡激耦合振动数值模拟
     首先,以单圆柱体为基础建立了单柱体涡激振动CFD数值模型,并编制fsi-xy.c结构运动程序。通过得到的受力系数与振幅变化规律,分析圆柱体在流体作用下的运动规律。给出尾流涡结构,揭示柱体振动与漩涡脱落模式间的关系。
     3、带抑振装置柱体涡激耦合振动数值模拟
     应用流体—柱体结构耦合振动数值模拟方法研究带抑振装置单柱体的二维涡激振动响应。分别建立尾翼为14mm、10mm的带三角导流板柱体以及带板状导流板柱体的流固耦合数值模型,并根据流固耦合系统求解流程对其进行模拟。分别将模拟得到的带抑振柱体振动幅值与受力系数的变趋势、振动响应时程曲线、质心运动轨迹以及不同截面柱体尾流漩涡脱落模式等结果与单圆柱体模拟结果进行比较,分析不同抑振装置的工作原理。
     4、群柱体系干扰效应数值模拟
     针对实际海洋工程中常见的串联与并列两种形式圆柱体进行涡激振动数值模拟。分别建立柱间距比L/D=3~10串联排列,以及柱距比G/D=5~10的并列排列两圆柱体流固耦合数值模型,编制fsi-2c-xy.c结构运动程序,并采用特殊宏同时控制同一时间步内的两柱体的运动。通过求解雷诺数范围为6300~18000时流体与柱体的耦合响应,分析不同排列形式下,柱间距比与流速对两柱体横向与顺流向振幅、受力系数以及质心运动轨迹的影响规律。结果表明:两种排列方式的干扰效应明显不同。
     5、立管结构准三维涡激振动数值模拟
     为更准确的模拟立管在诸多因素(如雷诺数,结构性质,流体作用等)的影响下的复杂耦联振动,同时为避免三维流场模拟计算量大、结果不易收敛等缺点,本文以静力等效为基础,将三维结构与二维流体相结合,建立准三维涡激振动流固耦合数值模型。将两端固定连接的立管简化为多质点模型,各质点在二维平面上均被视为弹簧—阻尼模型,弹簧刚度基于静力等效计算得到。分别对各质点进行二维流固耦合模拟,最终得到立管结构整体的涡激振动响应。
     最后,进行立管涡激振动无比尺实验,以验证建立的准三维数值模型。通过对比立管涡激振动物理模型实验与数值分析结果发现,两者得到的结构振动响应的变化规律基本一致。
Based on Computational fluid dynamics (CFD) and Computational structuredynamics (CSD), the vortex induced vibration (VIV) of circular cylinder is simulatednumerically. The variation regularity of the force coefficients, the amplitude ofvibration and the patterns of vortex shedding in different cases are studied, and thephenomenon of marine risers under vortex induced vibration is explored. The VIVmotion of cylinder with suppressions is analyzed, and the effect of suppressions isdiscussed. Furthermore, the interference among multi-cylinder with VIV is involved,and the quasi-3D study on the VIV motion of the deepwater risers is established. Themain content of this dissertation is as follows:
     1. Study on the numerical simulation of the fluid-structure interaction
     Based on summarizing and analyzing the CFD research status of thefluid-structure interaction both at home and abroad, a dimensionless numerical modelfor the analysis of the vortex-induced vibration of fluid-structure interaction(FSI) isestablished. Based on the coefficients of VIV and CFD method, the SST k modelis chose for the establishment the model of fluid field, and the boundary motion of thecylinder is simulated by the Newmark-β method. Finally, a computational procedureon FSI is given to solve the dynamic response of cylinder.
     2. Numerical simulation on vortex induced vibration of single cylinder
     The numerical model of vortex-induced vibration for single cylinder is established.And the dynamic response of a single cylinder is achieved by employing acombination of program fsi-xy.c and FLUENT. By simulating structure and flowtogether, the force coefficients and the vibration amplitude can be achieved.According to the results, the pattern of oscillating cylinder is analyzed, and therelationship between cylinder vibration and the vortex shedding model is revealed.
     3. Numerical simulation on vortex induced vibration of cylinder with suppressiondevice by FSI
     The dynamic response of cylinder with suppression device is simulatednumerically by fluid-structure interaction. In this section, three kinds of fairings arestudied, which is triangular fairing of10mm length, triangular fairing of14mm lengthand plate-shaped fairing of18mm. By analyzing numerically based on the procedure above, the dynamic response of cylinders with different cross-section can be achieved.The results show that there is influence on the vibration of cylinder because offairings. And under the effect of vibration of cylinder with fairing, the flow field isdamaged in varying degrees. Compare to the dynamic response of single, the effectsof the fairing are further explained.
     4. The effect of the interference of two cylinder in tandem and side-by-sidearrangement.
     Based on the FSI model of single cylinder, a numerical calculation method offluid-solid interaction vibration system of multi cylinders under elastic support isdeveloped. Two cylinders are arranged at space interval ratio L/D=3~10in tandemand at space interval ratio G/D=5~10at side-by-side. The motions of two cylinders indifferent arrangement are solved by the programme fsi-2c-xy.c. And depended on thespecial macro, two cylinders move together in the same time step. The range of Re isfrom6300to18000. The results achieved by simulating are the amplitude of vibration,force coefficients and the x-y trajectory, which show that there is different interferenceeffect on the different arrangement.
     5. The quasi-3D numerical simulation on dynamic response of the riser
     The vibration of riser is more complex under the influence of Reynolds number,characters of structure and fluid. The numerical model in2D can’t solve the problemof the vibration of3D risers well. So in this section a quasi-3D numerical is modeledby CFD. The quasi-3D model is based on the combination of3D structure model and2D fluid model. The riser is transformed into the multi particle model, and every masspoint is considered as the spring-damping vibration model. Based on the FSI model ofsingle cylinder, the dynamic responses of mass points are calculated in2D flow field,respectively. Depended on the results of every mass points, the dynamic response ofthe riser is approximately achieved. In order to verify the quasi-3D model, anexperiment on vortex-induced vibration of rise is conducted. By compared the resultsbetween experiment and numerical simulation, the non dimensionless displacementenvelopes between two studies is similar. It is shown that the quasi-3D model cansimulate the dynamic response of the structure in3D approximately.
引文
[1] Gabbai RD, Benaroya H. An overview of modeling and experiments of vortex-inducedvibration of circular cylinders. Journal of Sound and Vibration [J],2005,282(3-5):575-616.
    [2] Williamson CHK, Govardhan R. A brief review of recent results in vortex-induced vibrations.Journal of Wind Engineering and Industrial Aerodynamics [J],2008,96(6-7):713-735.
    [3]潘志远,崔维成,张效慈。细长海洋结构物涡激振动研究综述[J].船舶力学,2005,9(6):135-154。
    [4] Feng C C. The measurement of vortex induced effect s in flow past stationary and oscillatingcircular and d-section cylinders:[Master’s Thesis]. Canada: Department of MechanicalEngineering, University of British Columbia,1968
    [5] Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations [J]. Journal ofFluids and Structures,2004,19(4):389~447
    [6] Sarpkaya T. Fluid forces on oscillating cylinders [J]. Journal of Waterway Port Coastal andcean Division ASCE,1978,104:275-290.
    [7] Moe G, Wu Z J. The lift force on a cy1inder vibrating in a current [J]. ASCE Journal ofOffshore Mechanics and Arctic Engineering,1990,112:297-303.
    [8] Blevins RD. Flow-induced vibrations,2nd edition. New York: Van Nostrand, Co.,1990.
    [9] Vikestad K., Multi frequency response of a cylinder subjected to vortex shedding and supportmotions [Phd Thesis]. Department of Marine Technology, Norwegian University of Scienceand Technology, Norway,1998.
    [10] Vikestad K. and Halse K.H., Effect of variable current on vortex-induced vibrations. Proc. of10th Int. Offshore and Polar Engineering Conference,2000a,3:493-498.
    [11] Vikestad K. and Halse K.H. VIV lift coefficients found from response build-up of anelastically mounted dense cylinder, Proc. of10th Int. Offshore and Polar EngineeringConference,2000b,3:455-460.
    [12] Blackburn H.M., Govardhan R.N. and Williamson C.H.K., A complementary numerical andphysical investigation of vortex-induced vibration [J]. Journal of Fluids and Structures,2000,15(3-4):481-488.
    [13] Downes K. and Rockwell D., Oscillations of a vertical elastically mounted cylinder in a wave:imaging of vortex pattern [J]. Journal of Fluids and Structures (17):1017-1033,2003.
    [14] Jauvtis N. and Williamson C. H. K., The effect of two degrees of freedom on vortex inducedvibration at low mass and damping [J]. Journal of Fluid Mechanics (509):23-62,2004.
    [15] Morse T.L., Govardhan R.N., Williamson C.H.K., The effect of end conditions on the vortex-induced vibration of cylinders. Journal of Fluids and Structures [J],2008,4(8):1227-1239.
    [16] Guo HY, Lou M, Dong XL. Experimental Study on Vortex-Induced Vibration of RisersTransporting Fluid [J]. Proceedings of the Sixteenth International Offshore and PolarEngineering Conference, San Francisco, California, USA,2006.
    [17]娄敏,海洋输流立管涡激振动实验研究及数值模拟[博士学位论文].青岛,中国海洋大学,2007.
    [18] Guo HY, Lou M, Dong XL and Qi XL, Numerical and Physical Investigation on theVortex-Induced Vibration of Marine Riser [J]. China Ocean Engineering,2006,20(3):373-382.
    [19] Guo H.Y., Lou M.,2008, Effect of internal flow on vortex-induced vibration of risers [J],Journal of Fluids and Structures,24:496–504.
    [20] zhang Yongbo, Meng Fanshun., Guo Haiyan, Experimental investigation of vortex-inducedvibration responses of tension riser transporting fluid[C]. Proceedings of the ASME200928th International Conference on Ocean, Offshore and Arctic Engineering. Hawaii, USA.OMAE2009-79759.
    [21]张建侨,宋吉宁等.质量比对柔性立管涡激振动影响试验研究[J].海洋工程,2009,Vol.27, No.4:38~44.
    [22] Vandiver J.K. and Li L.SHEAR7V4.4Program Theoretical Manual. Department of OceanEngineering, MIT, Cambridge, MA, USA,2005.
    [23] Vandiver J., Steve Leverette, Christopher J. Wajnikonis PE, Hayden Marcollo.User Guide forSHEAR7Version4.5. Department of Ocean Engineering, MIT, Cambridge, MA, USA,2007.
    [24] Triantafyllou MS. VIVA Extended User's Manual, Massachusetts Institute of Technology,Department of Ocean Engineering, Cambridge, MA, USA,2003.
    [25] Larsen CM, et al. VIVANA-Theory manual. marintek513102.01, Trondheim, Norway,2000.
    [26] Finn L, Lambrakos K, Maher J. Time domain prediction of riser VIV. In: Proceedings of theFourth International Conference on Advances in Riser Technologies, Aberdeen, Scotland,1999.
    [27] Birkoff G. and Zarantanello E.H., Jets, Wakes and Cavities, Academic Press, New York,1957.
    [28[Bishop R.E.D. and Hassan A.Y., The Lift and Drag Forces on a Circular Cylinder Oscillatingin a Flowing Fluid [J]. Proceedings of the Royal Society of London,1964, Series A,51-75.
    [29] Hartlen R.T. and Currie I.G., Lift-oscillator model of vortex induced vibration [J]. Journal ofthe Engineering Mechanics,1970,96:(5):577–591.
    [30] Skop R.A. and Griffin O.M., A model for the vortex-excited resonant response of bluffcylinders [J]. Journal of Sound and Vibration,1973,27(2):225–233
    [31] Mathelin L, Langre E.D.,Vortex-induced vibrations and waves under shear flow with a wakeoscillator model [J]. European Journal of Mechanics-B/Fluids,2005,24(4):478-490.
    [32]李效民,顶张力立管动力响应数值模拟及其疲劳寿命预测[博士学位论文].青岛:中国海洋大学,2010.
    [33] GUO Hai-yan, LI Xiao-min(李效民), LIU Xiao-chun, Numerical prediction of vortexinduced vibrations on top tensioned riser in consideration of internal flow [J]. China OceanEngineering,2008,22(4):675-682.
    [34] Wan, D.C. and Turek, S., Direct Numerical Simulation of Particulate Flow via Multigrid FEMTechniques and the Fictitious Boundary Method[J], International Journal for NumericalMethod in Fluids, in press. Currently available at http://www3.interscience.wiley.com/cgibin/jissue/108061200DOI:10.1002/fld.1129.
    [35] Wan, D.C., Turek, S. and Liudmila S. Rivkind: An Efficient Multigrid FEM SolutionTechnique for Incompressible Flow with Moving Rigid Bodies, Numerical Mathematics andAdvanced Applications[J], Springer-Verlag, Berlin,(2004),844-853.
    [36] Decheng Wan, Stefan Turek, Modeling of Liquid-solid Flows with Large Number of MovingParticles By Multigrid Fictitious Boundary Method[J], Conference of Global ChineseScholars on Hydrodynamics.
    [37]万德成,二维多圆柱涡激运动的数值模拟[J],第二十一届全国水动力学研讨会赞第八届全国水动力学学术会议赞两岸船舶与海洋工程水动力学研讨会文集
    [38]王福军,计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004
    [39] FLUENT湍流模型帮助
    [40]王国兴,海底管线管管跨结构涡致耦合振动的数值模拟与实验研究[博士学位论文].青岛:中国海洋大学,2006.
    [41] Ferziger J.H., Peric M., Computational methods for fluid Dynamics[M]. Berlin: Springer-Verlag,1996
    [42] Patanker S.V., Spalding D.B, A calculation processure for heat, mass and momentum transferin three-dimensional parabolic flows[J]. Heat Mass Transfer,1972,15:1787-1806.
    [43]陶文铨,数值传热学[M].西安:西安交通大学出版社,2001
    [44] Patankar S.V, Numerical Heat Transfer and Fluid Flow [J]. Hemisphere, Washington,1980.
    [45] Van Doormal J.P, Raithby G.G., Enhancement of the SIMPLE method for predictingincompressible fluid flows [J]. Numerical Heat Transfer,1984,7:147-163.
    [46] Wang L.B., Tao W.Q., Heat transfer and fluid flow characteristics of plate-arrays of aligned atangles to the flow direction [J]. Heat Mass Transfer,1995,18:843-852.
    [47] Yuan Z.X., Tao W.Q, Wang Q.W., Numerical prediction for laminar forced convection heattransfer in parallel channels with streamwise periodic rod-disturbances [J]. Numer MethodsFluids,1998,28:1371-1381.
    [48] Wang L.B., Jiang G.D., Tao W.Q., Numerical simulation on heat transfer and fluid flowcharacteristics of arrays with nonuniform plate length positioned obliquely to the flowdirection [J]. Heat Transfer,1998,120(4):991-998.
    [49]Hasnaoui M, Bilgen E, Vasseur P, Robillard L, Mixed convective heat transfer in a horizontalchannel heated periodically from below [J]. Numer Heat Transfer, Part A,1991,20:297-315.
    [50] Clough R,结构动力学[M].北京:高等教育出版社,2006.
    [51]潘志远,崔维成,刘应中,低质量—阻尼因子圆柱体的涡激振动预报模型[J].船舶力学,2005,19(5):115-124.
    [52] Khalak A., Williamson C.H.K., Motions, forces and mode transitions in vortex-inducedvibrations at low mass-damping [J]. Journal of Fluids and Structures,1999,13:813-851.
    [53] FLUENT UDfs help document
    [54]梁亮文,万德成,横向受迫振荡圆柱低雷诺数绕流问题数值模拟[J],海洋工程,2009,27(4):45-60.
    [55]万德成,用水深平均雷诺方程模拟有限长直立圆柱绕流[J],上海大学学报(自然科学版),1995,1(3):259-268.
    [56]陈文曲,任安禄,邓见,双圆柱绕流诱发振动的数值模拟[J],空气动力学学报,2005,23(4):442-448.
    [57]陈文礼,李惠,基于RANS的圆柱风致振动的CFD数值模拟[J].西安建筑科技大学学报,2006,38(4):509-513.
    [58]周国成,柳贡民,马俊,罗巩固,圆柱涡激振动数值模拟研究[J].噪声与振动控制,2010,5:51-59.
    [59]赵刘群,陈兵,低雷诺数下圆柱涡激振动的二维有限元数值模拟[J].海洋技术,2006,25(4)117-121.
    [60]何长江,段忠东,二维圆柱涡激振动数值模拟[J].海洋工程,2008,26(1)57-63.
    [61]Xu Jun-ling, Zhu Ren-qing, Numerical simulation of VIV for an elastic cylinder mounted onthe spring supports with low mass-ratio [J]. Journal of Marine Science and Application,2009,8:237-245.
    [62]黄智勇,潘志远,崔维成,两向自由度低质量比圆柱体涡激振动的数值计算[J].船舶力学,2007,11(1):1-9.
    [63] D. Sun, J.S. Owen, N.G. Wright., Application of the k turbulence model for a wind-induced vibration study of2D bluff bodies [J]. Journal of wind engineering and industrialaerodynamics,2009,97:77-87.
    [64] E. Guilmineau, P. Queutey., Numerical simulation of vortex-induced vibration of a circularcylinder with low mass-damping in a turbulent flow [J]. Journal of fluids and structures [J],2004,19:449-466.
    [65] K. Namkoong, H.G. Choi, J.Y. Yoo., Computation of dynamic fluid-structure interaction intwo-simensional laminar flows using combined formulation[J]. Journal of fluids andstructures,2005,20:51-69.
    [66] Shuzo Murakami, Akashi Mochida, Shigehiro Sakamoto. CFD analysis of wind-structureinteraction for oscillating square cylinders [J]. Journal of wind engineering and industrialaerodynamics,1997,72:33-46.
    [67]徐枫,欧进萍,肖仪清,不同截面形状柱体流致振动的CFD数值模拟[J].工程力学,2009,26(4):7-15.
    [68]盛磊祥,陈国明,许亮斌,减振器绕流流场的CFD分析[J].中国造船,2007,48:475-480.
    [69]Prasanth T.K., Behara S., Singh S.P, Kumar R., Mittal S., Effect of blockage on vortex-induced vibrations at low Reynolds numbers [J]. Journal of Fluids and Structures,2006,22865-876.
    [70]Braza M., Chassaing P., Haminh H., Numerical study and physical analysis of the pressureand velocity fields in the near wake of a circular cylinder [J]. Fluid Meth,1986,165:79-130.
    [71]Lecointe Y., Piquet J., On the use of several compact methods for the study of unsteadyincompressible viscous flow round a circular cylinder [J]. Comput Fluids,1984,12:255-280.
    [72]Mendes P.A., Branco F.A., Analysis of fluid-structure interaction by an Arbitrary Lagrangian-Eulerian Finite Element formulation [J]. International journal for Numerical method influids,1990,30:897-919.
    [73]Williamson C.H.K., Roshko, A Vortex formation in the wake of an oscillating cylinder [J].Fluids and Structure,1988,2:355-381.
    [74]Bishop R.E.D., Hassan A.Y., The lift and drag forces on a circular cylinder oscillating in aflowing fluid, Phil. Trans. R. Soc. Lond. A,1964,277:51-75.
    [75]聂武,刘玉秋.海洋工程结构动力学分析[M].哈尔滨工程大学出版社,2002
    [76] Paolo Simantiras, Neil Willis., Investigation on vortex induced oscillations and helical strakeseffectiveness at very high incidence angles [J]. ISOPE,1999
    [77] Jaiswal V, Vandiver J K., Performance of Strakes and Farings [J]. SHEAR7UsergroupMeeting,2007,June21
    [78] Prof. A.H.Techet.13.42Lecture: Vortex Induced Vibrations,18March2004
    [79]王海青,海洋立管涡激振动及抑振的无比尺模型实验研究[硕士学位论文],青岛,中国海洋大学,2009.
    [80]Sumner D., Two circular cylinder in cross-flow: A review. Journal of Fluids and Structures,2010,26:849-899.
    [81]Alam, M.M., Moriya, M., Sakamoto, H., Aerodynamic characteristics of two side-by-sidecircular cylinders and application of wavelet analysis on the switching phenomenon [J].Journal of Fluids and Structures2003a,18:325–346.
    [82]Alam, M.M., Moriya, M., Takai, K., Sakamoto, H., Fluctuating fluid forces acting on twocircular cylinders in a tandem arrangement at a subcritical Reynolds number [J]. Journal ofWind Engineering and Industrial Aerodynamics2003b,91:139–154.
    [83]Xu, G., Zhou, Y., Strouhal numbers in the wake of two inline cylinders [J]. Experiments inFluids2004,37:248–256.
    [84]Zhang, H., Melbourne, W.H., Interference between two circular cylinders in tandem inturbulent flow [J]. Journal of Wind Engineering and Industrial Aerodynamics1992,41–44:589–600.
    [85]Zdravkovich, M.M., The effects of interference between circular cylinders in cross flow [J].Journal of Fluids and Structures,1987,1:239–261.
    [86]Zdravkovich, M.M., Review of flow interference between two circular cylinders in variousarrangements [J]. ASME Journal of Fluids Engineering1977,99:618–633.
    [87]Zdravkovich, M.M., Pridden, D.L., Interference between two circular cylinders; series ofunexpected discontinuities [J]. Journal of Industrial Aerodynamics1977,2:255–270.
    [88] Guo Xiao-hui, Lin Jian-zhong, Tu Cheng-xu, Wang Hao-li, Flow past two rotating circularcylinder in a side-by-side arrangement [J]. Journal of Hydrodynamics,2009,21(2):143-151.
    [89]Carmo B.S., Meneghini J.R., Numerical investigation of the flow around two circularcylinders in tandem [J]. Journal of Fluids and Structures,2006,22:979-988.
    [90]Meneghini J.R., Saltara F., Numerical simulation of flow interference between two circularcylinders in tandem and side-by-side arrangement [J]. Journal of Fluids and Structure,2001,15:327-350.
    [91]曹洪建查晶晶万德成,基于OpenFOAM编程数值模拟双圆柱绕流流动[J],中国力学学会学术大会'2009论文摘要集。
    [92]Igarashi T., Characteristics of the flow around two circular cylinder arranged in tandem [J].Bulletin of the JSME,1981,24(188):323-329.
    [93]Mittal S., Kumar V., Flow-induced oscillations of two cylinder in tandem and staggeredarrangements [J]. Journal of fluids and structures,2001,15:717-736.
    [94] Prasanth T. K., Mittal S., Vortex-induced vibration of two circular cylinders at low Reynoldsnumber [J]. Journal of Fluids and Structures,2009,25:731-741.
    [95]Prasanth T. K., Mittal S., Flow-induced oscillation of two circylar cylinders in tandemarrangement at low Re [J]. Journal of Fluids and Structures,25:1029-1048.
    [96]徐枫,欧进萍,正三角形排列三圆柱绕流与涡致振动数值模拟[J].空气动力学学报,2010,28(5):582-590.
    [97]李昕,刘亚坤,周晶,马恒春,海底悬跨管道动力响应的试验研究和数值模拟[J].工程力学,2003,20(1):21-25.
    [98]黄维平,王爱群,李华军,海底管道悬跨段流致振动试验研究及涡激力模型修正[J].工程力学,2007,24(12):153-157
    [99]张永波,深海输液立管涡激振动预报及抑振技术研究[博士学位论文],青岛,中国海洋大学,2011.
    [100]刘碧涛,李巍,尤云祥,曲衍,范模,内孤立波与深海立管相互作用数值模拟[J].海洋工程,2011,29(4):1-7
    [101]万德成,用多重网格虚拟边界法数值模拟三维多圆柱立管涡激运动,现代数学和力学(MMM-XI):第十一届全国现代数学和力学学术会议论文集2009年
    [102]徐斌,Matlab有限元—结构动力学分析与工程应用[M].北京:清华大学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700