用户名: 密码: 验证码:
高Z物质宇宙线成像系统读出电子学方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宇宙线μ子成像(Cosmic-ray Moun Tomography)技术是一种新型的高Z物质检测及监测技术。传统的核材料检测技术均基于放射性源,并且对于屏蔽较好的核材料检测比较困难。宇宙线μ子是天然的高能带电粒子,具有极强的穿透性,可以轻易穿透很厚的防护层。利用这种天然存在的粒子通过待测物体后的散射角分布与该物质原子序数相关的原理,结合断层成像的算法,可以探测物体内部甚至屏蔽层内部的高Z物质的分布状态等信息,从而实现对集装箱中核材料的无损检测。
     由于宇宙线μ子成像技术在监测核材料的非法运输方面具有极大优势,因此国内外多家研究机构都进行了相关技术的研究。西北核技术研究所提出了搭建基于漂移室的宇宙线μ子成像系统,整个系统包括漂移室探测器及前置放大器、读出电子学、数据获取及图像重建三个部分。成像系统期望达到50μm的位置分辨,并且实现毫米甚至亚毫米尺寸像素点的成像结果。初期计划完成的成像系统原型样机系统,包括8块漂移室探测器共208根信号丝。
     根据成像系统的设计目标,对电子学系统提出了以下技术指标要求:
     1、时间测量精度<100ps,测量动态范围0~500ns。
     2、电荷测量精度<15fC,测量动态范围15fC~1800fC。
     由此可知,多通道信号的读出、高精度时间和电荷的测量是电子学系统设计的难点所在。
     经过对漂移室探测器信号特征及成像系统对读出电子学指标要求的研究,设计的读出插件采用如下技术路线:整个插件分为时间测量和电荷测量两部分;时间测量部分对输入模拟信号进行定时,并选用专用时间测量器件TDC(Time-to-Digital Converter)实现高精度的时间测量;电荷测量部分采用信号成形后ADC (Analog-to-Digital Converter)精确采样的测量方式,然后利用数值积分法计算电荷量;测得数据在FPGA (Field-Programmable Gate Array)内处理后通过CPLD (Complex Programmable Logic Device)经由VME (Versa Module Eurocard)接口送至上位机做进一步分析处理;数据处理和功能控制由FPGA完成。论文中将详细介绍成像系统读出电子学原型样机,包括采用的技术路线、实现方式及各部分的设计细节,并介绍了预研阶段设计的时间测量评估板的详细情况。
     本论文针对基于漂移室探测器的宇宙线高Z物质成像系统,设计研制了读出电子学原型样机。宇宙线无损无源探测系统是国际上的热门课题,国内基于漂移室探测系统的相关研究尚未见报道。论文在成像系统读出电子学的研制中,做出了以下创新性工作:
     1、使用专用时间测量芯片TDC-GP2实现低成本高精度的时间测量,电子学系统精度好于100ps。
     2、利用大规模可编程逻辑器件内嵌DSP核实现数值积分法的实时电荷计算,利用软核实现高速数据接收。
     3、设计制作了时间测量评估板,为原型样机时间测量方案的选择提供了依据。
     目前,本论文所设计的时间测量评估板已经完成,并进行了一系列的电子学测试,测试结果表明选择的时间测量芯片及定时方式满足设计指标要求。读出电子学原型样机已完成设计及制板,正在进行电子学性能测试,完成后将与漂移室探测器进行联合实验测试。
Cosmic-ray Moun Tomography is a novel technology for high-Z material detection and monitoring. Traditional nuclear material detection technology based on the radioactive source, and it is difficult to detect shielded nuclear material. Penetrating cosmic-ray Mouns are a natural radiation background on the Earth, and they can easily penetrate a thick protective layer. When they traverse an object, such particles undergo Coulombian multiple scattering processes, which depend on the material atomic number Z and density. The measurement of the multiple scattering angles can be used to detect and image an object containing high-Z material without the use of artificial radiation and in a nondestructive way. And this technology can detect shielded high-Z material and discriminate it from low-Z background material.
     Cosmic-ray Moun Tomography technology has great advantages in the monitoring of the illegal transport of nuclear materials. A number of domestic and foreign research institutions have carried out numerous studies of this technology. The Northwest Institute of Nuclear Technology (NINT) plans to build a cosmic ray muon imaging system based on the drift chamber, and the entire system consists of the drift chamber detector and its preamplifier, readout electronics, data acquisition and image reconstruction. The position resolution of the imaging system is expected to reach50μm, and the pixel size is expected to reach millimeter or even sub-millimeter. The prototype of the imaging system includes eight drift chamber detectors adding up to208signal wires.
     According to the design objective of the imaging system, the electronics system must meet the following technical requirements:
     1、With the measurement range of0to500ns, the time measurement accuracy should be less than100ps.
     2、With the measurement range of15fC to1800fC, the quantity of electric charge measurement accuracy should be less than15fC.
     Therefore, the readout of multi-channel signal, high-precision time and charge measurement are the difficulties of the design.
     After analysing the signal characteristics of drift chamber detector and the requirement of readout electronics system, we decided to use following technology routes in the design of circuit board:the board is divided into two parts, time measurement and charge measurements; the time measurement part uses a TDC (Time-to-Digital Converter) chip to achieve high-precision time measurement, after determining the timing point of the input analog signal; the charge measurement part uses an ADC (Analog-to-Digital Converter) chip to do an accuracy sample, and uses the numerical integration method to calculate the quantity of the electronic charge; after processing in the FPGA (Field-Programmable Gate Array) and the CPLD (Complex Programmable Logic Device), the data is sent to the computer via the VME interface (the Versa Module Eurocard) for further analysis processing; the data processing and the control functions are done by the FPGA. The dissertation introduces the design of the readout electronics prototype in details, including the technology route and the implementation methods mentioned above. The Time Measurement Evaluation Board (TMEB), which is designed in the pre-research stage, is also introduced in the dissertation.
     Aiming at the imaging system of high-Z material with cosmic rays, which is based on the drift chamber detector, the dissertation designed its readout electronics prototype. The detection system using cosmic-ray moun is a hot topic recently, and the research on this type of detection system based on the drift chamber has not been reported in China. In the course of the design of readout electronics, the dissertation made the following innovative works:
     1、A TDC-GP2is used to achieve low-cost high-precision time measurement, and the accuracy of the electronics system is better than100ps.
     2、A FPGA with embedded DSP core is used to achieve real-time charge calculation through the numerical integration method, and a soft-core is used to achieve high-speed data reception.
     3、The TMEB is designed and tested, and it provides a basis for the technical scheme selection of the readout electronics prototype.
     Up to now, the design of the TMEB has been completed, and a series of electronics tests have been done. The test results demonstrate that the time measurement chip and the timing method fulfill the design requirements. The design and manufacture of the readout electronics prototype has finished, and the electronics tests are already underway. Future work will include a further test combined with the drift chamber detector.
引文
[1]张沱生。核恐怖主义威胁与中国的政策,世界知识,2010,2:34-35.
    [2]http://www.iaea.org/Publications/Reports/Anrep2010/index.html.
    [3]http://www.caea.gov.cn/n16/n83690/83844.html.
    [4]褚圣麟。原子物理学,高等教育出版社,1996,P295-312.
    [5]王小兵,李荐民,李元景等。特殊核材料及放射性物质门式检测系统,核电子学与探测技术,2007,4:634-637.
    [6]N.S.P. King, E. Ables, Ken Adams, et al. An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instr. and Meth. A,1999,424:84-91.
    [7]唐世彪。中子受激辐射计算机断层扫描成像技术中若干关键问题的研究,中国科学技术大学博士学位论文,2009.
    [8]K. Borozdin, G. Hogan, C. Morris, et al. Radiographic imaging with cosmic-ray muons, Nature,2003,422:277.
    [9]E. P. George. Cosmic rays measure overburden of tunnel. Commonwealth Engineer,1955, 455-457.
    [10]L. W. Alvarez, et al. Search for hidden chambers in the pyramids. Science,1970, 167:832-839.
    [11]K. Nagamine. Geo-tomographic observation of inner-structure of volcano with cosmic-ray muons. Journal of Geography,1995,104(7):998-1007.
    [12]Hiroyuki K. M. Tanaka, et al. Development of a two-fold segmented detection system for near horizontally cosmic-ray muons to probe the internal structure of a volcano. Nucl. Instr. and Meth. A,2003,507:657-669.
    [13]K. Nagamine, et al. Probing the inner structure of blast furnaces by cosmic-ray muon radiography. Proceedings of the Japan Academy, Series B,2005,81:257-260
    [14]Hiroyuki K. M. Tanaka, Izumi Yokoyama. Muon radiography and deformation analysis of the lava dome formed by the 1944 eruption of Usu, Hokkaido, Contact between high-energy physics and volcano physics. Proceedings of the Japan Academy, Series B,2008, 84(4):107-116.
    [15]L. J. Schultz, K. N. Borozdin, J. J. Gomez, et al. Image reconstruction and material Z discrimination via cosmic ray muon radiography. Nucl. Instr. and Meth. A,2004, 519:687-694.
    [16]L. J. Schultz, G. S. Blanpied, et al. ML/EM Reconstruction Algorithm for Cosmic Ray Muon Tomography. Nuclear Science Symposium Conference Record, IEEE,2006,4:2574-2577.
    [17]L. J. Schultz. Cosmic ray muon radiography, Ph.D. dissertation. Dept. Elec. and Comp. Eng., Portland State Univ., Portland, OR,2003.
    [18]L. Cu'ellar, K. N. Borozdin, K. Chung. et al. A Range Muon Tomography Performance Study. Nuclear Science Symposium Conference Record, IEEE,2010,67-69.
    [19]K. N. Borozdin, C. Morris, A. V. Klimenko. et al. Passive Imaging of SNM with Cosmic-Ray Generated Neutrons and Gamma-Rays. Nuclear Science Symposium Conference Record, IEEE,2010,3864-3867.
    [20]P. M. Jenneson. Large vessel imaging using cosmic-ray muons. Nucl. Instr. and Meth. A, 2004,525:346-351.
    [21]S. J. Stanley, D. Rhodes, P. M. Jenneson, et al. See inside:The development of a cosmic ray muon imaging system to aid the cleanup of the UK's nuclear waste legacy. Annals of Nuclear Energy,2008,35:507-517.
    [22]M. Benettoni, G. Bonomi, P. Calvini, et al. Muon radiography with the CMS Muon Barrel chambers. Nuclear Science Symposium Conference Record, IEEE,2007,2:1021-1025.
    [23]A. Piccotti, R. Arnaldi, L. Bianchi, et al. Cosmic Ray Radiography with RPC for High-Z material Identification. IEEE, ANIMMA 2009-2009 1st International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications.
    [24]V. Anghel, J. Armitage, J. Botte, et al. Cosmic Ray Muon Tomography system Using Drift Chambers for the Detection of Special Nuclear Materials. Nuclear Science Symposium Conference Record, IEEE,2010,547-551.
    [25]K. Gnanvo, Leonard V. Grasso III, M. Hohlmann, et al. Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors. Nucl. Instr. and Meth. A,2011,652:16-20.
    [26]Daigo Shoji, Hiroyuki K. M. Tanaka. Kuniyoshi Takamatsu. Development of a simple-material discrimination method with three plastic scintillator strips:For easy inspection of mass-conserved system. Nucl. Instr. and Meth. A,2011,654:608-612.
    [27]叶瑾。利用宇宙线对高z物质进行成像的技术研究,清华大学博士学位论文,2009.
    [28]谭新建。宇宙线μ成像蒙特卡罗模拟研究,兰州大学硕士学位论文,2009.
    [29]王烈铭,王红艳,刘志英等。宇宙射线μ子探测裂变核材料的成像算法。核电子学与探测技术,2011,31:874-877.
    [30]庞洪超,刘森林,王红艳等。宇宙射线μ子探测高z材料的仿真研究。原子能科学技术,2011,45:872-874.
    [31]王月。灰色关联聚类在宇宙射线μ子探测成像中的应用。中国科学技术大学硕士学位论文,2011.
    [1]Dar A. Atmospheric Neutrinos, Astrophysical Neutrons, and Proton-Decay Experiments. Physical Review Letters,1983,51(3):227-230.
    [2]H. Jokisch, et al. Cosmic-ray Muon Spectrum up to 1 TeV at 75° Zenith Angle. Physical Review D,1979,19(5):1368-1372.
    [3]B. Rastin. An Accurate Measurement of the Sea-Level Muon Spectrum within the Range 4 to 3000 GeV/c. J. Phys. G,1984, Nucl. Phys 10:1609-1628.
    [4]M. Motiki, et al. Precise Measurement of Atmospheric Muon Fluxes at Sea Level. In Proceedings of the ICRC 2001,927, Hamburg, Germany.
    [5]T. Sanuki, et al. Atmospheric Muons at Various Altitudes. In Proceedings of the ICRC 2001, 950, Hamburg, Germany.
    [6]K. Hagiwara, et al. Particle Data Group. Review of particle physics. Physical Review D 2002, 66(1).
    [7]谢一冈,陈昌,王曼等。粒子探测器与数据获取,科学出版社,2003,P5-16.
    [8]汪晓莲,李澄,邵明等。粒子探测技术,中国科学技术大学出版社,2009,P93.
    [9]叶瑾。利用宇宙线对高Z物质进行成像的技术研究,清华大学博士学位论文,2009.
    [10]A. H. Walenta, J. Heintze, B. Schurlein. The multiwire drift chamber a new type of proportional wire chamber. Nucl. Instr. Meth.,1971, A92:373-380.
    [11]刘建北。BESⅢ漂移室性能的实验研究,中国科学院研究生院博士学位论文,2005.
    [1]谢一冈,陈昌,王曼等。粒子探测器与数据获取。科学出版社,2003.
    [2]K. Borozdin, G. Hogan, C. Morris, et al. Radiographic imaging with cosmic-ray muons, Nature,2003,422:277.
    [3]L. J. Schultz, G. S. Blanpied, et al. ML/EM Reconstruction Algorithm for Cosmic Ray Muon Tomography. Nuclear Science Symposium Conference Record, IEEE,2006,4:2574-2577.
    [1]虞孝麒。核电子学方法,中国科学技术大学,1996.
    [2]郭建华。北京谱仪(BESIII)飞行时间读出电子学系统设计与实现,中国科学技术大学博士学位论文,2005.
    [3]安琪。粒子物理实验中的精密时间间隔测量,核技术,2006年第29卷第6期.
    [4]王芝英。核电子技术原理,原子能出版社。
    [5]张延。用FPGA实现高精度时间间隔测量,中国科学院研究院硕士学位论文,2006.
    [6]宋健。基于FPGA的精密时间-数字转换电路研究,中国科学技术大学博士学位论文,2006.
    [7]Jozef Kalisz, Ryszard Szplet, Andrzej Poniecki. Field programmable gate array based time-to-digital converter with 200 ps resolution. IEEE Trans. Instrum. Meas.,1997,46:51-55.
    [8]Ryszard Szplet, Jozef Kalisz, Rafal Szymanowski. Interpolating time counter with 100 ps resolution on a single FPGA device. IEEE Trans. Instrum. Meas.,2000,49:879-883.
    [9]Mohamed Serraj Andaloussi, Mounir Boukadoum, El-Mostapha Aboulhamid. A novel time-to-digital converter with 150 ps time resolution and 2.5 ns pulse-pair resolution.14th Int. Conf. Microelectronics,2002, P123-126.
    [10]Mark D. Fries, John J. Williams. High-precision TDC in an FPGA using a 192MHz quadrature clock. Proc. IEEE Conf. Rec. NSS.,2002,1:580-584.
    [11]Jinyuan Wu, Zonghan Shi, Irena Y. Wang. Firmware-only implementation of time-to-digital converter in field programmable gate array. IEEE Conf. Rec. NSS.,2003,1:177-181.
    [12]Marek Zielinski, Dariusz Chaberski, Marcin Kowalski, Robert Frankowski, et al. High-resolution time-interval measuring system implement in single FPGA device. Measurement,2004,35:311-317.
    [13]D. K. Xie, Q. C. Zhang, G. S. Qi, et al. Cascading delay line time-to-digital converter with 75 ps resolution and a reduced number of delay cells. Rev. Sci. Instrum.,2005,76,014701.
    [14]Rafal Szymanowski, Jozef Kalisz. Field programmable gate array time counter with two-stage interpolation. Rev. Sci. Instrum.2005,76,045104.
    [15]Jinyuan Wu, Zonghan Shi. The 10 ps Wave Union TDC:Improving FPGA TDC resolution beyond its cell delay. Proc. IEEE Nucl. Sci. Symp.,2008, P3440-3446.
    [16]TDC-GPX datasheet. Ultra-high performance 8 channel time-to-digital converter.2006.
    [17]HPTDC manual ver2.2. High performance time to digital converter.2004.
    [18]TDC-GPX PLL regulation circuits, Application note No.13.
    [1]杨涛,赵波,张弛。一种无延迟线的恒比定时器,核电子学与核探测技术,2002,5:244-246.
    [2]TDC-GP2.2-channel Universal Time-to-Digital Converter, version2.0, May,2010.
    [3]Cyclone Device Handbook, C5V1-1.4,2003, Altera Corporation.
    [4]Configuration Handbook, CF5V1-2.2, August 2005, Altera Corporation.
    [5]Universal Serial Specification Revision 2.0.
    [6]CY7C68013 datasheet, Revised January 15,2002, Cypress Semiconductor Corporation.
    [7]EZ-USB FX2 Technical Reference Manual, Rev.A,2008, Cypress Semiconductor Corporation.
    [8]EZ-Loader Design Notes.1998, Cypress Semiconductor Corporation.
    [9]LT1084 datasheet, Linear Technology Corporation.
    [10]LM7905 datasheet,2001, National Semiconductor Corporation.
    [11]AMS1117 datasheet, Advanced Monolithic Systems.Inc.
    [12]武安河,邰铭,于洪涛。Windows 2000/XP WDM设备驱动程序开发,北京:电子工业出版社,2003.
    [13]WinDriver v6.03 User's Guide.2003, Jungo Ltd.
    [1]窦飞,梁昊。漂移室数据获取系统设计报告,2011.
    [2]LT1993-4 datasheet. Linear Technology.
    [3]赵豫斌,江晓山。BESⅢ漂移室电子学时间测量电路的三种方案比较,核电子学与核探测技术,2007,27:455-457.
    [4]ADCMP600 datasheet, Analog Devices.
    [5]MAX5234 datasheet, MAXIM.
    [6]REF3212 datasheet, Texas Instruments.
    [7]虞孝麒。核电子学方法,中国科学技术大学,内部教材.
    [8]AD8007 datasheet, Analog Devices.
    [9]AD9228 datasheet, Analog Devices.
    [10]Fully Differential-Amplifiers, James Karki, Texas Instruments, Application Report, SLOA054D, January 2002.
    [11]AD8138 datasheet, Analog Devices.
    [12]NCP4680 datasheet, ON Semiconductor.
    [13]Cyclone Ⅲ Device Handbook, CIII5V1-2.0,2008, Altera Corporation.
    [14]潘松,黄继业,王国栋。现代DSP技术,西安电子科技大学出版社,2003.
    [15]MAXII Device Handbook, MII5V1-3.3,2009, Altera Corporation.
    [16]刘宝莹。BESⅢμ子鉴别器VME数据读出插件研究。中国科学技术大学硕士学位论文。
    [17]The VME bus Handbook. A User's Guide to the VME64 and VME64x Bus Specifications.
    [18]LM7905 datasheet,2001, National Semiconductor Corporation.
    [19]NCP566 datasheet, ON Semiconductor.
    [20]NCP4680 datasheet, ON Semiconductor.
    [1]张岳华,李锋,金革等。惯性约束核聚变实验中子飞行时间谱仪的时间测量插件,2007,3:227-230.
    [2]Constant-Fraction Differential Discriminator/SCA 583B datasheet, ORTEC.
    [3]Time-to-Amplitude Converter 567 datasheet, ORTEC.
    [4]PCI Format MCA Plug-In Card TRUMP-PCI-8K/2K, ORTEC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700