用户名: 密码: 验证码:
隐藏目标时域多信道探测系统新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究的隐蔽目标时域多信道探测系统技术,既可用于地下目标的探测,如排雷、地质勘探、公路路基检测、城市地下管网探测等,也可用于地面隐蔽目标的探测,如穿墙探测、建筑质量检测、丛林环境中的目标探测等等。因此,使用时域冲击脉冲技术,实现对隐蔽目标的探测,已成为雷达探测领域的研究热点之一,在军事和民用领域,都具有广泛的应用前景。
     本文详细论述了用于隐蔽目标的时域多信道探测系统的组成原理,对系统的重要组成部分如超宽带时域脉冲天线、高幅度多级级联的时域窄脉冲信号、时域多信道接收机等进行了深入的研究。在分析和比较了多种时域超宽带天线,并归纳出天线各参数对系统性能影响规律的基础上,设计出一种具有侧壁渐变式金属背腔的时域脉冲天线;开展时域天线阵列研究,计算分析和修正了时域阵列方向图误差;研究天线和脉冲源的匹配技术,提出对称输出的多级级联电路,并研制出适合与对称天线匹配的万伏级平衡输出窄脉冲源;设计了分时工作的时域多信道接收机并研制出隐蔽目标时域多信道探测系统实验样机,并开展了在密集多散射环境、复杂环境、强散射环境中目标探测实验,应用电磁时间反转成像算法成功实现了目标的超分辩率聚焦定位成像。
     本文内容包括:隐蔽目标时域多信道探测系统的研究背景;隐蔽目标时域多信道探测系统的组成原理;高幅度多级级联时域脉冲信号源研制;超宽带时域脉冲天线的研究;时域多信道接收机方案与实现;隐蔽目标时域多信道探测系统实验样机研制和多散射复杂环境试验;本文研究工作总结和后续研究工作的建议。
     本文的主要贡献和创新点有:
     1、设计并研制出超高幅度的对称输出多级级联固态脉冲源,并应用于隐蔽目标时域多信道探测系统;
     2、首次在时域天线领域提出并采用渐变式背腔,改善了电阻加载领结天线的时域性能,提高了系统收发隔离度;
     3、提出了时域阵列天线中,方向图乘法的修正方法,减小了计算方向图的误差,有效提升了目标定位精度;
     4、将光时域探测器件应用于隐蔽目标时域多信道探测系统中,为增大脉冲源幅度以扩展探测距离,提供了高隔离度保障;
     5、设计并研制出分时多信道时域接收系统,降低了时域探测系统的成本,为进一步扩展天线孔径,以及开展三维定位成像研究提供了可行的途径。
In this thesis, hidden target time domain multi-channel detecting system isdiscussed. The system can be used to detecting the underground target, such as mineclearance, geological prospecting, highway subgrade detection, urban undergroundpipeline detection. Besides, it also can be applied to searching for target hidden on theground, such as TWD (through-wall detecting), building quality testing, target detectionin jungle environment. Detecting the hidden targets by time domain pulse has become toone of research hotspots in radar detecting field. It has vast potential for futuredevelopment.
     In the thesis, this constitution theory of the detecting system is discussed in detail.The important components, such as ultra-wide band (UWB) time domain pulse antenna,high magnitude multiple cascaded time domain narrow pulse signal, time domainmulti-channel receiver, are researched much deeper. Based on analyzing many kinds ofUWB antennas and generalizing the influence of antenna parameters, a trapezoidalcavity-backed resistance loaded bow tie time domain antenna is designed. The error oftime domain pattern is also revised during the research of time domain UWB array.Matching technique (between antennas and impulse source) and multi-cascaded circuitis proposed. Besides, the balanced output source with ten thousand volts is developed tomatch with antenna. Then, based on designing time domain multi-channel receiver oftime sharing processing, the experimental prototype of hidden target time domainmulti-channel detecting system is manufactured. All of them are proved to work steadilyand effectively. Finally, electromagnetic time reversal (EMTR) algorithm is applied torealize super-resolution focus positioning imaging of target.
     The thesis is constituted as follows: first, the research background of hidden targettime domain multi-channel detecting system is introduced. Then, constitution theory ofthe detecting system is presented. After that, the designs of UWB time domain pulseantenna and time domain multi-channel receiver are proposed. Besides, the experimentprototype is tested in multiple scattering complex environments. Finally, the conclusionsand the following work are suggested.
     The major contributions and innovations are followed as,
     1. Symmetrical multi-cascaded solid pulse source with high power is proposed. Itis tested to well in the detecting system.
     2. The gradual back cavity design is first proposed in the field of time domainUWB antennas. It doesn’t only improve time domain performance of resistance loadedbow tie antenna, but also elevates the isolation between the receiving and transmittingelements
     3. In the time domain pattern measurement, the revised algorithm of patternmultiplication is raised to minimize the error. Therefore, the precision of target locationis elevated effectively.
     4. The optics time domain detecting device is applied for enlarging the magnitudeof pulse resource in the system. So, the longer distance and higher isolation areguaranteed.
     5. Time domain multi-channel receiver of time sharing processing is developed fordecreasing the cost of time domain detecting system. Feasible way is also given forenlarging antenna caliber and developing three dimensional localizations in the nextwork.
引文
[1] L. B. Felsen. Transient Electromagnetic Fields. Topics in Applied Physics, vol.10,Springer-Verlag, Berlin and New York,1976
    [2]董晓龙,汪文秉.瞬态电磁学的新进展:超宽带,短脉冲电磁学的理论和应用.电子科技导报,1997, vol.12:20-24
    [3] C. Hülsmeyer. German Pat, No.165546,1904
    [4] G. Leimbach and H. L wy. German Pat, No.237944,1910
    [5] Hulsenbeck&Co.. German Pat, No.489434,1926
    [6] C. D. Taylor, D. H. Lam, T. H. Shumpert. Electromagnetic Pulse Scattering in Time VaryingInhomogeneous Media. IEEE Transaction on AP,1969, vol.17:585-589
    [7] D. E. Merewether. Transient Currents Induced on a Metallic Body of Revolution by anElectromagnetic Pulse. IEEE Transaction on EMC,1971, vol13:41-44
    [8] A. Benson. Applications of ground penetrating radar in assessing some geological hazards:examples of groundwater contamination, faults, caves. Journal of Applied Geophysics,1995,vol.33:177-193
    [9] S. Gogineni. High-resolution mapping of near surface internal snow layers with a widebandradar. IEEE Proceedings of the Tenth International Conference on GPR,2004,769-761
    [10] A.J.Delaney, S.A.Arcone. Crevasse detection with GPR across the Ross Ice Shelf, Antarctica.IEEE Proceedings of the Tenth International Conference on GPR,2004,777-780
    [11] J. C. Ralston, D. W. Hainsworth, R. J. McPhee. Application of ground penetrating radar forcoal thickness measurement. IEEE Speech and Image Technologies for Computing andTelecommunications,1997, vol.2:835-838
    [12] P. C. Jha, V. R. Balasubramaniam. GPR applications in mapping barrier thickness in coal minessome case studies. IEEE Proceedings of the Tenth International Conference on GPR,2004,605-608
    [13] S. A. Hagrey, C. Muller. GPR study of pore water content and salinity in sand. GeophysicsProspect,2000, vol.48:63-85
    [14] Y. G. Choi et al. Case history of radar system and imaging techniques to the foundation of thestone pagoda at Chungung-dong. IEEE Proceedings of the Tenth International Conference onGPR,2004,483-486
    [15] GPR’94, Proceedings of the Fifth International Conference on Ground Penetrating Radar,Vol.1-3, Ontario, Canada, June1994
    [16] D. J. Daniels. Introduction to Subsurface Radar. IEE Proceedings Radar and Signal,1988,vol.135(4):278-320
    [17] D.J. Smith, et al. Ground penetrating radar antenna frequencies and maximum probable depthsof penetration in quaternary sediments, Journal of Application Geophysics,1995, vol.33:93-100
    [18] S. Vitebskiy, L. Carin, M. Ressler. et al. Ultra-wideband, short-pulse ground penetrating radar:simulation and measurement. IEEE Transactions on Geoscience and Remote Sensing,1997,Vol.35(3):762-772
    [19] B. J. Allred, et al. GPR detection of drainage pipes in farmlands. IEEE Proceedings of theTenth International Conference on GPR,2004,307-310
    [20] U. Spagnolini, V. Rampa. Multitarget Detection/Tracking for Monostatic Ground PenetratingRadar Application to Pavement Profiling. IEEE Transaction on Geoscience and remote sensing,1999, vol.37(1):383-394
    [21] D. Huston, N. Pelczarski, B. Esser. Damage detection in roadways with ground penetratingradar. SPIE,2000, vol.4084:91~94.
    [22] L. Capineri, L. Masotti, G. Pinelli.3-D Radar imaging of buried utilities by features estimationof hyperbolic diffraction patterns in radar scans. Proceedings of the Tenth InternationalConference on GPR,2004, vol.1:403-406
    [23] C. R. Liu, J. Li, X. Gan, H. Xing, X. Chen. New model for estimating the thickness andpermittivity of subsurface layers from GPR data. IEE Proc. Radar, Sonar and Navigation,2002,vol.149(6):315-319
    [24] J. D. Redman, A. P. Annan, Y. Das. GPR for Anti-Personnel Landmine Detection: Results ofExperimental and Theoretical Studies. SPIE,2003, vol.5089:358~374.
    [25] Y. Sun, J. Li. Time-frequency analysis for plastic landmine detection via forward-lookingground penetrating radar. IEE Proc. Radar, Sonar and Navigation,2003,Vol.150(4):253-261
    [26] H. Brunzell. Detection of Shallowly Buried Objects Using Impulse Radar. IEEE Transactionon Geoscience and Remote Sensing,1999, Vol.37(2):875-886
    [27] Clyde C. Deluca, Vincent Marinelli, Marc Ressler. Unexploded Ordnance DetectionExperiments Using Ultra-Wideband Synthetic Aperture Radar. SPIE,1998, Vol.392:668~667
    [28] Yunqiang yang, A. E. Fathy. See-through-wall imaging using ultra wideband short-pulse radarsystem. IEEE Antennas and Propagation Society International Symposium,2005,vol.3:334-337
    [29] A. S. Bugaev, et al. Through wall sensing of human breathing and heart beating bymonochromatic radar. IEEE Proceedings of the Tenth International Conference on GPR,2004,291-294
    [30] Dehone Liu, Gang Kang, Ling Li, et al. Electromagnetic time-reversal imaging of a target in acluttered environment. IEEE Trans. on Antennas and Propagation,2005, vol.53:3058-3066
    [31] C. Prada, F. Wu, M. Fink. The iterative time reversal process: A solution to self-focusing in thepulse echo mode. Journal Acoust. Soc. Am,1991, vol.90:1119-1129
    [32] T. Akal, W. S. Hodgkiss, K. Seongil, W. A. Kuperman, Hee Chun Song. An initialdemonstration of underwater acoustic communication using time reversal. IEEE Journal ofOceanic Engineering,2002, vol.27(3):602-609
    [33] M. Fink. Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror:application to transskull therapy. IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control,1996, vol.43(6):1122-1129
    [34] A. Parvulescu, C. Clay. Reproducibility of signal transmissions in the ocean. Radio andElectronic Engineer,1965, vol.29(4):223-228
    [35] Mathias Fink, C. Prada, F. Wu, D. Cassereau. Self focusing in inhomogeneous media with“time reversal” acoustic mirrors. Proc. IEEE Ultrasonics, Symposium,1989, vol.2:681-686
    [36] O. Ikeda. An image reconstruction algorithm using phase conjugation for diffraction-limitedimaging in an inhomogeneous medium. Journal of the Acoustical Society of America,1989, vol.85(4):1602-1606
    [37] G. Lerosey, J. de Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink. Time reversal ofelectromagnetic waves. Physical Review Letters,2004, vol.92(19):193904(1-3)
    [38] Dehong Liu, S. Vasudevan, J. Krolik, et al. Electromagnetic Time-Reversal SourceLocalization in Changing Media: Experiment and Analysis. IEEE Trans. on Antennas andPropagation,2007, vol.55(2):344-354
    [39] Mehmet E. Yavuz, Fernando L. Teixeira. On the Sensitivity of Time-Reversal ImagingTechniques to Model Perturbations. IEEE Trans. on Antennas and Propagation,2008, vol.56(3):834-843
    [40] D. L. Moffatt, R. J. Puskar. A Subsurface Electromagnetic Pulse Radar. Geophysics,1976,vol.41(3):505-518
    [41] David J. Daniels. Surface-penetrating Radar. Electronics&communication EngineeringJournal,1996, vol.8(4):165-182
    [42] David J. Daniels. Ground Penetrating Radar. Encyclopedia of RF and Microwave Engineering,2005
    [43]邹卫霞,赵传华,周正.UWB脉冲的特性分析.无线电工程,2001,35(9):36-40
    [44]于东海.采用雪崩晶体管产生窄脉冲.无线电工程,1996,26(2):39-41
    [45] I.A.D.勒威斯, F.H.威尔斯著.毫微秒脉冲技术.北京:科学出版社,1965
    [46] B.B.吉塞夫.脉冲的形成.北京:国防工业出版社,1962
    [47] Γ.A.米夏兹.大功率毫微秒脉冲的产生.北京:原子能出版社,1982
    [48]方伟乔等.脉冲参数与时域测量技术.北京:中国计量出版社,1989
    [49]谢处方,邱文杰.天线原理与设计.西安:西北电讯工程学院出版社,1987
    [50]王元坤,李玉权.线天线的宽频带技术.西安:西安电子科技大学出版社,1995
    [51]林昌禄、聂在平等.天线工程手册.北京:电子工业出版社,2002
    [52] P. J. Gibson. The Vivaldi aerial.9th European Microwave Conference,1979,101-105
    [53] E. Gazit. Improved Design of the Vivaldi Antenna. Microwaves, Antennas and Propagation,IEE Proceedings,1988, vol.135(2):89-92
    [54] Langley, J.D.S. Balanced antipodal Vivaldi antenna for wide bandwidth phased arrays.Antennas and Propagation, IEE Proceedings,1996, vol.143(2):97-102
    [55] Zhou You, Jin Pan, and Zai-ping Nie. Engineering Design of the Transient Back-Cavity BowtieAntenna. Journal of University of Electronic Science and Technology of China,2005, Vol.34(1):1-3
    [56] T. T. Wu, R. W. King. The Cylindrical Antenna with Nonreflecting Resistive Loading. IEEETransaction on AP,1965, Vol.13(3):369-373
    [57] Chen, C. Kenneth, K. W. Larry. A Uniformly Valid Loaded Antenna Theory. IEEE Transactionon Antennas and Propagation,1992, Vol.40(11):1313-1323
    [58] Pan Jin, Zai-Ping Nie. The Loading Formula for V-type Traveling wave Antenna. ChineseJournal of Radio Science,1996, Vol.11(2):81-85
    [59] D. Yang, J. Pan, Z. Zhao, Z. Nie. Design of Trapezoidal Cavity-Backed Resistance LoadedBow Tie Antenna With Ultra wideband and High Directivity, Journal of Electromagnetic Wavesand Applications,2010, vol.24:1685-1695
    [60]刘康和.探地雷达及其应用.水利水电工程设计,1998,4:38-39
    [61]王定华,赵家升.电磁兼容原理与设计.成都:电子科技大学出版社,1995
    [62]孙强,周虚.光纤通信系统及其应用.北京:清华大学出版社,2004
    [63] M. Fink. Time reversal of ultrasonic fields I: Basic Principles. IEEE Transactions onUltrasonics, Ferroelectrics and Frequency Control,1992, vol.39:555-566
    [64] Dehong Liu, Member, IEEE, Jeffrey Krolik, Member, IEEE, and Lawrence Carin, Fellow,IEEE. Electromagnetic Target Detection inUncertain Media: Time-Reversal andMinimum-Variance Algorithms. IEEE Transactions on Geoscience and Remote Sensing,2007,vol.45(4):934-944

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700