用户名: 密码: 验证码:
宽带雷达目标距离像识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代雷达技术的兴起为雷达目标识别提供了强有力的技术支撑。通过宽带雷达获取的高分辨距离像反映了目标散射点沿雷达视线的径向距离分布细节,不仅提供了比低分辨雷达目标回波更多的特征信息,而且还避免了二维或三维成像过程中复杂的运动补偿和过多的成像耗时,具有易于获取和处理的独特优势。因此,近年来基于高分辨距离像的目标识别受到了雷达科技工作者的广泛关注。
     本文主要集中于特征提取和分类识别这两个环节,层层深入地展开对雷达多目标距离像识别理论及技术的相关研究。主要工作和创新概括如下:
     (1)针对经典核方法中大散布矩阵特征分解的运算压力问题,提出了两种基于扩展二分类辨别单元的核方法。这两种核方法均采用了“一对一”策略,通过拆分和重组,将大散布矩阵划分成若干小散布矩阵,并分别按串联和并联方式进行组合。实验结果表明,这两种核方法均能有效降低训练耗时,并能改善识别性能,非常适用于多目标识别。
     (2)针对多目标识别中辨别信息的质量和数量孰重孰轻问题,设计出三种辨别信息提取模型,即:被动识别和总体挑选类中绝对辨别信息(Passive recognitionand General selection for Among-class absolute discriminant information, PGA)模型、被动识别和个体挑选类间相对辨别信息(Passive recognition and Individual selectionfor Between-class relative discriminant information, PIB)模型以及主动识别和个体挑选类间相对辨别信息(Active recognition and Individual selection for Between-classdiscriminant information, AIB)模型。理论分析表明:PGA模型侧重于辨别信息的质量,而PIB和AIB模型侧重于辨别信息的数量。
     (3)将广义辨别分析(Generlized DiscriminantAnalysis, GDA)应用于PIB和AIB模型中,由此产生了两种针对辨别信息数量的核方法,即:基于PIB模型的GDA(PIB-based GDA, PIB-GDA)和基于AIB模型的GDA(AIB-based GDA,AIB-GDA)。与GDA比较,这两种核方法不仅能大幅降低训练耗时,还能提取更多辨别信息,具有良好的识别性能。
     (4)对多智能技术进行了归纳和总结,并设计出一种多智能体识别模型。将GDA用于模型实现,由此产生了一种PIB-GDA与GDA并联组合的新方法,即综合GDA(Synthetic-GDA, S-GDA)算法。实验结果表明,S-GDA能实现PIB-GDA与GDA在识别性能上的优势互补。
     (5)依据三种基本组合结构,本文提出了四种组合核方法。它们是,1.并联结构:基于核Fisher辨别(Kernel Fisher Discriminant, KFD)的多类综合辨别分析(KFD-based Multiclass Synthetical DiscriminantAnalysis, KFD-MSDA)和全局分布式KFD(Global Distributed KFD, G-DKFD);2.串联结构:基于多KFD的LDA(Multi KFD-based LDA, MKFD-LDA);3.混合结构:核混合辨别分析(KernelMixed Discriminant Analysis, KMDA)。实验结果表明,这四种组合核方法的识别性能从高到低依次为KFD-MSDA、G-DKFD、KMDA、MKFD-LDA,其中KMDA与GDA的识别性能相当。
The rise of modern radar technology provides a strong technical support for radartarget recognition. The high resolution range profile (HRRP) obtained by widebandradar shows the radial distance distribution details of target scattering centers along theradar line of sight, and contains more structure information than that of the target echoobtained by low resolution radar. Furthermore, the HRRP can be easily captured andprocessed, while potentially avoiding the complex motion compensation processing andtoo much imaging time-consuming, relative to the two or three dimensional imagery.Therefore, the target recognition based on HRRP has received extensive attention fromthe radar technology workers in recent years.
     Focused on the feature extraction and classification subprocesses, this dissertationprogressively deepens the research upon the theory and technology of radar multi-targetrecognition using HRRP. The main content and innovation are summarized as follows:
     (1) To reduce the eigen-decomposition operation burden of big scatter matrixes inclassical kernel methods, two new kernel-based methods are proposed by expanding thetwo-class discriminant units. By splitting and restructuring under the so called “oneagainst one” strategy, the two new methods both can divide a big scatter matrix into aseries of small ones, and then arrange the small ones by series or parallel. Theexperimental results show that the two new methods both can reduce the trainingtime-consuming effectively, improve the recognition performance, and are very suitablefor radar multi-target recognition.
     (2) In multi-target recognition, the quality and quantity of discriminant information(DI), which one is more important? Accompanied with this issue, three DI extractionmodels, i.e., passive recognition and general selection for among-class absolutediscriminant information (PGA) model, passive recognition and individual selection forbetween-class relative discriminant information (PIB) model, and active recognitionand individual selection for between-class discriminant information (AIB) model, aredesigned. Theoretical analyses indicate that the PGA model prefers to the DI qualitywhile the PIB and AIB models both prefer to the DI quantity.
     (3) Generlized discriminant analysis (GDA) is applied in the PIB and AIB models,and then two kernel-based methods, i.e., PIB-based GDA (PIB-GDA) and AIB-basedGDA (AIB-GDA), come forth for the DI quantity. Compared with GDA, PIB-GDA andAIB-GDA can not only reduce the training time-consuming greatly, but also improvethe recognition performance perfectly.
     (4) A summary and conclusion is given to the multi-agent technology, and then amulti-agent model is designed for radar HRRP target recognition. Also GDA is appliedfor model actualization, and then a new method, synthetic-GDA (S-GDA) algorithm,comes forth, which can be considered as the parallel combination of PIB-GDA andGDA. The experimental results indicate that S-GDA can realize the advantagecomplementary of PIB-GDA and GDA with respect to the recognition performance.
     (5) According to the three fundamental composite constructions, this dissertationproposes four composite kernel methods, i.e., parallel construction: kernel Fisherdiscriminant (KFD)-based multiclass synthetical discriminant analysis (KFD-MSDA)and gobal distributed KFD (G-DKFD), series construction: multi-KFD-based lineardiscriminant analysis (MKFD-LDA), mixed construction: kernel mixed discriminantanalysis (KMDA). The experimental results show that the recognition performance ofthe four composite kernel methods is labeled from high to low by KFD-MSDA、G-DKFD、KMDA and MKFD-LDA, among which the the recognition performance ofKMDA is very similar to that of GDA.
引文
[1] M. I. Skolnik. Introduction to Radar Systems (Second Edition). New York: McGraw-Hill,1980,1-65
    [2] D. R. Wehner. High-Resolution Radar. Norwood. MA: Arthech House Inc.,1995,1-338
    [3]黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社,2005,1-278
    [4]郭桂蓉,庄钊文,陈曾平.电磁特征抽取与目标识别.长沙:国防科技大学出版社,1996,1-174
    [5] C. Castro. Automatic target recognition shows promise. Defense Electronics,1990,8:49-53
    [6] B. Bhanu. Automatic target recognition: state of the art survey. IEEE Trans. Aerosp. Electron.Syst.,1986,22(4):364-379
    [7] R. C. Smith, P. M. Goggans. Radar target identification. IEEE Antennas Propag. Mag.,1993,35(2):27-38
    [8]刘华林.高分辨距离像雷达目标识别研究:[博士学位论文].成都:电子科技大学,2008,1-111
    [9]刘宏伟,杜兰,袁莉,等.雷达高分辨距离像目标识别研究进展.电子与信息学报,2005,27(8):1328-1334
    [10] K. Fukunaga. Introduction to Statistical Pattern Recognition. Orlando, FL: Academic Press,1990,1-592
    [11]边肇祺,张学工.模式识别(第二版).北京:清华大学出版社,2000,9-303
    [12] S. Theodoridis, K. Koutroumbas (李晶皎,王爱侠,张广渊,译).模式识别(第三版).北京:电子工业出版社,2006,1-511
    [13]杜兰.雷达高分辨距离像目标识别方法研究:[博士学位论文].西安:西安电子科技大学,2007,1-124
    [14]孙文峰.雷达目标识别技术评述.雷达与对抗,2001,3:1-8
    [15]王晓丹,王积勤.雷达目标识别技术综述.现代雷达,2003,25(5):22-26
    [16]马林.雷达目标识别技术综述.现代雷达,2011,33(6):1-7
    [17]许小剑,黄培康.防空雷达中的目标识别技术.系统工程与电子技术,1996,5:48-62
    [18] M. N. Cohen. A survey of radar-based target recognition techniques. Proc. SPIE Int. Soc. Opt.Eng.,1991,1470:233-242
    [19] H.-J. Li, Y. D. Wang, L.-H. Wang. Matching score properties between range profiles ofhigh-resolution radar targets. IEEE Trans. Antennas Propag.,1996,44(4):444-452
    [20] H.-J. Li, S.-H. Yang. Using range profiles as feature vectors to identify aerospace objects.IEEE Trans. Antennas Propag.,1993,41(3):261-268
    [21] X. Liao, Z. Bao, M. Xing. On the sensitivity of high resolution range profiles and its reductionmethods. IEEE Nat. Radar Conf. Proc.,2000,310-315
    [22] Z. Guo, S. Li. One-dimensional frequency-domain features for aircraft recognition from radarrange profiles. IEEE Trans. Aerosp. Electron. Syst.,2010,46(4):1880-1892
    [23] S. H. Park, K. K. Park, J. H. Jung, et al. Construction of training database based on highfrequency RCS prediction methods for ATR. J. Electromagn. Waves Appl.,2008,22(5-6):693-703
    [24] H. Lim, N. H. Myung. High resolution range profilejet engine modulation analysis of aircraftmodels. J. Electromagn. Waves Appl.,2011,25(8-9):1092-1102
    [25] S. A. Gorshkov, S. P. Leschenko, V. M. Orlenko, et al. Radar Target Backscattering SimulationSoftware and User’s Manual. Boston: Artech House,2002
    [26] A. K. Shaw, V. Bhatnagar. Automatic target recognition using eigen-templates.Proc. SPIE Int.Soc. Opt. Eng.,1998,3370:448-459
    [27] X. Liao, P. Runkle, L. Carin. Identification of ground targets from sequential high-range-resolution radar signatures.IEEE Trans. Aerosp. Electron. Syst.,2002,38(4):1230-1242
    [28]周代英,杨万麟.雷达目标一维距离像识别中的最优因式分析子空间法.电子与信息学报,2007,29(10):2341-2345
    [29] T. Okata, S. Tomita. An optimal orthonormal system for discriminant analysis. PatternRecognition,1985,18(2):139-144
    [30] M. A. Turk, A. P. Pentland. Face recognition using eigenfaces. Proc.91IEEE Comput. Soc.Conf. Comput. Vision Pattern Recognit.,1991,586-591
    [31] A. J. Bell, T. J. Sejnowski. An information-maximization approach to blind separation andblind deconvolution. Nerual Computation,1995,7:1129-1159
    [32] D. Swets, J. Weng. Using discriminant eigenfeatures for image retrieval. IEEE Trans. PatternAnal. Mach. Intell.,1996,18(8):831-836
    [33] K. Liu, Y.-Q. Cheng, J.-Y. Yang, et al. An efficient algorithm for Foley-Sammon optimal set ofdiscriminant vectors by algebraic method. Int. J. Pattern Recognition&Artificial Intelligence,1992,6:817-829
    [34] S. Raudys, R. P. W. Duin. On expected classification error of the fisher linear classifier withpseudo-inverse convariance matrix. Pattern Recognition Letters,1998,19(5-6):385-392
    [35] H. Yu, J. Yang. A direct LDA algorithm for high-dimensional data with application to facerecognition. Pattern recognition,200l,34:2067-2070
    [36] L.-F. Chen, H.-Y. M. Liao, M.-T. Ko, et al. New LDA-based face recognition system whichcan solve the small sample size problem. Pattern Recognition,2000,33(10):1713-1720
    [37] R. Huang, Q. Liu, H. Lu, et a1. Solving the small sample size problem of LDA. Proc. Int.Conf. Pattern Recognit.,2002,3:29-32
    [38] Z. Jin, J.-Y. Yang, Z.-S. Hu, et al. Face recognition based on the uncorrelated discriminanttransformation. Pattern Recognition,2001,34(7):1405-1416
    [39]杨静宇,金忠,胡钟山.具有统计不相关性的最佳鉴别特征空间的维数定理.计算机学报,2003,26(1):110-115
    [40] G. Turhan-Sayan. Real time electromagnetic target classification using a novel featureextraction technique with PCA-based fusion. IEEE Trans. Antennas. Propag.,2005,53(2):766-776
    [41] K.-C. Lee, J.-S. Ou. Radar target recognition by using linear discriminant algorithm onangular-diversity RCS. J. Electromagn. Waves Appl.,2007,21(14):2033-2048
    [42] K.-C. Lee, C.-W. Huang, M.-C. Fang. Radar target recognition by projected features offrequency-diversity RCS. Prog. Electromagn. Res.,2008,81:121-133
    [43] C.-W. Huang, K.-C. Lee. Frequency-diversity RCS based target recognition with ICAprojection. J. Electromagn. Waves Appl.,2010,24(17-18):2547-2559
    [44] C.-W. Huang, K.-C. Lee. Application of ICA technique to PCA based radar target recognition.Prog. Electromagn. Res.,2010,105:157-170
    [45]廖阔,付建胜,杨万麟.改进的ReliefF算法用于雷达距离像目标识别.电子测量与仪器学报.2010,24(9):831-836
    [46] B. Liu, W. Yang. Radar target recognition using canonical transformation to extract features.Proc. SPIE Int. Soc. Opt. Eng.,1998,2545:368-371
    [47]刘本永,杨万麟.基于正则变换的雷达目标成像识别.系统工程与电子技术,1999,21(3):31-33
    [48]周代英.雷达目标一维距离像识别研究:[博士学位论文].成都::电子科技大学,2001,1-92
    [49]孟继成.雷达目标距离像识别研究:[博士学位论文],成都:电子科技大学,2005,1-103
    [50] B. Sch1kopf, A. Smola, K. R. Muller. Nonlinear component analysis as a kernel eigenvalueproblem.Neural Computation,1998,10(5):1299-1319
    [51] S. Mika, G. R tsch, J. Weston, et a1. Fisher discriminant analysis with kernels.Proc. IEEE Int.Workshop on Neural Networks for Signal Processing,1999:4l-48
    [52] V. Roth, V. Steindage. Nonlinear discriminant analysis using kernel functions. Advances inNeural Informafion Processing System,2000,12:568-574
    [53] G. Baudat, F. Anouar. Generalized disoriminant analysis using a kernel approach. NeuralComputation,2000,12(10):2385-2404
    [54] J. W. Lu, K. N. Plataniotis, A. N. Venetsanopouts. Face recognition using kernel directdiscriminant analysis algorithm. IEEE Trans. Neural Networks,2003,14(1):117-126
    [55] S.-T. John, C. Nello. Kernel methods for pattern analysis. Cambridge: Cambridge UniversityPress,2004,1-443
    [56]于春梅,潘泉,程咏梅, et al.正则化FDA的核化及与SVM的比较研究.计算机应用研究,2010,27(3):897-898
    [57] J. Fu, K. Liao, D. Zhou, W. Yang. Modeling recognizing behavior of radar high resolutionrange profile using multi-agent system. WSEAS Trans. Inf. Sci. Appl.,2010,7(5):629-640
    [58] J. Fu, K. Liao, W. Yang. Synthetical generalized discriminant analysis for radar HRRP targetrecognition. Int. Conf. Inf. Sci. Eng., ICISE-Proc.,2010,4106-4109
    [59] J. Fu, X. Deng, W. Yang. Radar HRRP recognition based on discriminant information analysis.WSEAS Trans. Inf. Sci. Appl.,2011,8(4):185-201
    [60] J. Fu, W. Yang. Distributed kernel Fisher discriminant analysis for radar image recognition. Int.Conf. Mech. Autom. Control Eng., MACE-Proc.,2011,1241-1244
    [61] J.-S. Fu, W.-L. Yang. KFD-based multiclass synthetical discriminant analysis for radar HRRPrecognition. J. Electromagn. Waves Appl.,2012,26(2-3):169-178
    [62] J.-S. Fu, K. Liao, W.-L. Yang. Radar HRRP recognition using multi-KFD-based LDAalgorithm. Progress in Electromagnetics Research C,2012,30:15-26
    [63]闫锦,黄培康.高距离分辨像雷达目标识别.航天电子对抗,2004,2:36-41
    [64]毛京红,许小剑.高分辨率雷达目标识别研究.系统工程与电子技术,1994,16(10):11-16
    [65]袁莉,刘宏伟,保铮.基于中心矩特征的雷达HRRP自动目标识别.电子学报,2004,32(12):2078-2081
    [66] P. E. Zwicke, I. Kiss Jr. A new implementation of the Mellin transform and its application toradar classification of ships. IEEE Trans. Pattern Anal. Mach. Intell.,1983,5(2):191-199
    [67]郭桂蓉,郁文贤,胡步法.一种有效的舰船目标识别,系统工程与电子技术,1990,6:1-6
    [68]肖顺平,郭桂蓉,庄钊文等.基于散射中心的目标建模与识别.系统工程与电子技术,1994,16(6):55-61
    [69]郁文贤,郭桂蓉. ATR的研究现状和发展趋势.系统工程与电子技术,1994,16(6):25-30
    [70] N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag,1995,1-188
    [71] S. Z. Li, J. W. Lu. Face recognition using the nearest feature line method. IEEE Trans. NeuralNetworks,1999,10(2):439-443
    [72] J. T. Chien, C. C. Wu. Discriminant waveletfaces and nearest feature classifiers for facerecognition. IEEE Trans. Pattern Anal. Mach. Intell.,2002,24(12):1644-1649
    [73] W. M. Zheng, L. Zhao, C. R. Zou. Locally nearest neighbor classifiers for pattern recognition.Pattern Recognition,2004,37(6):1307-1309
    [74] S. P. Jaeobs, J. A. O’sullivan. Automatic target recognition using sequences of high resolutionradar range-profiles. IEEE Trans. Aerosp. Electron. Syst.,2000,36(2):364-380
    [75] L. R. Rabiner. A tutorial on hidden Markov models and selected application in speechrecognition. Proceedings of the IEEE,1989,77(2):257-286
    [76] M. R. Dewitt. High Range Resolution Radar Target Identification Using the Prony Model andHidden Markov Models:[Ph. D. Thesis]. US: Air University,1992
    [77] P. Runkle, L. Carin, L. Nguyen. Multi-aspect target classification using hidden Markovmodels for data fusion. International Geoscience and Remote Sensing Symposium (IGARSS),2000,5:2123-2125
    [78] D. Zhou, G. Liu, J. Wang. Spatio-temporal target identification method of high-rangeresolution radar. Pattern Recognition,2000,33(1):1-4
    [79]陈江峰,裴炳南.一种基于HMM的雷达目标识别方法.郑州大学学报(理学版),2003,35(1):52-56
    [80] X. Liao, P. Runkle, L. Carin. Identification of ground target from sequential high-range-resolution radar signatures. IEEE Trans. Aerosp. Electron. Syst.,2002,38(4):1230-1242
    [81] C. Stewart, Y.-C. Lu, V. Larson. A neural clustering approach for high resolution radar targetclassification. Pattern Recognition,1994,27(4):503-513
    [82] Q. Zhao, Z. Bao. Radar target recognition using a radial basis function neural network. NeuralNetworks,1996,9(4):709-720
    [83] E. C. Botha, E. Barnard, C. J. Barnard. Feature based classification of aerospace radar targetsusing neural networks. Neural Networks,1996,9(1):129-142
    [84]陈大庆,保铮.基于多层前向网络的雷达目标一维距离像识别.西安电子科技大学学报,1997,24(1):1-6
    [85]肖怀铁,付强,庄钊文,等.宽带毫米波雷达目标时延神经网络识别新方法.红外与毫米波学报,2001,20(6):459-463
    [86] V. N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag,1995,1-258
    [87] C. Cortes, V. Vapnik. Support-vector networks. Machine Learning,1995,20(3):273-297
    [88] B. Sch lkopf, A. J. Smola, R. C. Williamson, et al. New support vector algorithm. NerualComputation,2000,2:1207-1245
    [89] C.-W. Hsu, C.-J. Lin. A comparison of methods for multiclass support vector machines. IEEETrans. Neural Networks,2002,13(2):415-425
    [90] L. Zhang, W. Zhou, L. Jiao. Pre-extracting support vectors for support vector machine.Proceedings of the5th International Conference on Signal Procesing,2000,3:1432-1435
    [91]焦李成,张莉,周伟达.支撑矢量预选取的中心距离比值法.电子学报,2001,29(3):383-386
    [92] J. C. Platt, N. Cristianini, J. Shawe-Taylor. Large margin DAGs for multiclass classification.Proceedings of Neural Information Processing Systems, Cambridge,2000,547-553
    [93] B. Kijsirikul, N. Ussivakul. Multiclass support vector machines using adaptive directedacyclic graph. Proceedings of the International Joint Conference on Neural Networks,2002,1:980-985
    [94] T. Phetkaew, B. Kijsirikul, W. Rivepiboon. Reordering adaptive directed acyclic graphs: animproved algorithm for multiclass support vector machines. Proceedings of the InternationalJoint Conference on Neural Networks,2003,2:1605-1610
    [95] X. Tian, F. Deng. An improved multi-class SVM algorithm and its application to the creditscoring model. Proceedings of the World Congress on Intelligent Control and Automation(WCICA),2004,3:1940-1944
    [96]刘志刚,李德仁,秦前清,等.支持向量机载多类分类问题中的推广.计算机工程与应用,2004,7:10-13
    [97]黄勇,郑春颖,宋忠虎.多类支持向量机算法综述.计算技术与自动化,2005,24(4):61-63
    [98] K. Liao, J. Fu, W. Yang. A refuse-recognition method for radar HRRP target recognition basedon mahalanobis distance. International Conference on Computer Application and SystemModeling (ICCASM2010),Taiyuan:503-506
    [99] D. K. Barton. Sputnik II as observed by C band radar. IRE Nat. Conf. Rec.,1959,7(5):67-73
    [100] H. Hynes, R. E. Gardner. Doppler spectra of S band and X band signals. IEEE Trans. Aerosp.Elect. Syst.,1967,3(6):356-365
    [101] B. Borden. High-frequency statistical classification of complex target using severalaspect-limited data. IEEE Trans. Antennas. Propag.,1986,34(12):1455-1459
    [102] M. R. Bell, R A Grubbs. JEM modeling and measurement for radar target identification.IEEE Trans. Aerosp. Elect. Syst.,1993,29(1):73-87
    [103] C. E. Baum. On the singularity expansion method for the solution of electromagneticinteraction problems. Air Force Weapons Lab. Interaction Notes88,1971,1-25
    [104] M. J. Van Blaricum, R. Mittra. A technique for extracting the poles and residues of a systemdirectly from its transient response. IEEE Trans. Antennas. Propag.,1975,23(6):777-781
    [105] C. Chuang, D. L. Moffatt. Natural resonances of radar target via prony’s method and targetdiscrimination. IEEE Trans. Aerosp. Electron. Syst.,1976,12(5):583-589
    [106] V. K. Jain, T. K. Sarkar, D. D. Weiner. Rational modeling by pencil of function method. IEEETrans. Acoust. Speech Signal Process.,1983,31(3):564-573
    [107] B. Drachman, E. Rothwell. A continuation method for identification of the naturalfrequencies of an object using a measured response. IEEE Trans. Antennas. Propag.,1985,33(4):445-450
    [108] Y. B. Hua, T. K. Sarkar. Generalized pencil-of-function method for extracting poles of an EMsystem from transient response. IEEE Trans. Antennas. Propag.,1989,37(2):229-234
    [109] K.-M. Chen. Radar waveform synthesis methods--a new radar detection scheme. IEEETrans. Antennas. Propag.,1981,29(4):553-566
    [110] E. M. Kennaugh. The K-pulse concept. IEEE Trans. Antennas. Propag.,1981,29(2):327-331
    [111] E. J. Rothwell, D. P. Nyquist, K.-M. Chen, et al. Radar target discrimination using theextinction-pulse technique. IEEE Trans. Antennas. Propag.,1985,33(9):929-937
    [112] J.-S. Chen, E. K. Walton. Comparison of two target classification techniques. IEEE Trans.Aerosp. Electron. Syst.,1986,22(l):15-21
    [113] J.-P. R. Bayard, D. H. Schaubert. Target identification using optimization techniques. IEEETrans. Antennas. Propag.,1990,38(4):450-456
    [114] M. W. Roth. Survey of neural network technology for automatic target recognition. IEEETrans. Neural Networks,1990,1(1):28-43
    [115] K. M. Chen, D. P. Nyquist, E. J. Rothwell, et al. New progress on E/S pulse techniques fornoncooperative target recognition. IEEE Trans. Antennas. Propag.,1992,40(7):829-833
    [116] M.-C. Lin, Y.-W. Kiang, H.-J. Li. Experimental discrimination of wire stick targets usingmulti-frequency amplitude returns. IEEE Trans. Antennas. Propag.,1992,40(9):1036-1040
    [117] P. Ilavarasan. J. E. Ross, E. J. Rothwell, et al. Performance of an automated radar targetdiscrimination scheme using E pulses and S pulses. IEEE Trans. Antennas. Propag.,1993,41(5):582-588
    [118]戴润林,李永庆.基于波形综合法的雷达目标识别的探讨.系统工程与电子技术,1997,19(4):1-4
    [119]李春升,李景文,周荫清.星载SAR数字成像的实现方法.电子学报,1993,21(9):55-58
    [120] F. D. Garber, N. F. Chamberlain, Q. Snofrason. Time-domain and frequency-domain featureselection for reliable radar target identification. IEEE Radar Conf.,1988:79-84
    [121] N. F. Chamberlain, E. K. Walton, Garber F D. Radar target identification of aircraft usingpolarization-diverse features. IEEE Trans. Aerosp. Electron. Syst.,1991,27(1):58-66
    [122] W. M. Steedly, R. L. Moses. High resolution exponential modeling of fully polarized radarreturns. IEEE Trans. Aerosp. Electron. Syst.,1991,27(3):459-468
    [123]陈曾平.雷达目标结构特征识别的理论与应用:[博士学位论文].长沙:国防科技大学,1994,1-83
    [124] T. Tenoux, G. Y. Delisle, P. Fournet, et al. Analysis and interpretation of high resolutionpolarimetric SAR images. Proc. Int. Conf. Radar, Paris,1994,358-363
    [125]冯德军,王雪松,肖顺平,王国玉.全极化高分辨雷达距离像统计识别方法.电子与信息学报,2006,28(3):517-521
    [126] L. M. Novak, G. J. Owirka. Radar target identification using an eigen-image approach. IEEENat. Radar Conf., Atlanta,1994:129-131
    [127] L. E. Pierce, K. Sarabandi, F. T. Ulaby, et al. Knowledge-based classification of SAR images.International Geoscience and Remote Sensing Symposium (IGARSS),1993,4:1611-1613
    [128] N. S. Martin. SAR systems resolution reviewed for target classification in knowledge-basedenvironment. Proceedings of IEEE Electronic Technology Directions to the Year2000,1995,5:177-183
    [129] H. Osman, S. D. Blostein. SAR image processing using probabilistic winner-take-all learningand artificial neural networks. Proc. IEEE Int. Conf. on IP,1996,2:613-616
    [130] A. Maki. Automatic Ship Identification in ISAR Imagery: An On-line System using CMSM.IEEE Radar2002,206-211
    [131]秦敬喜.基于散射中心模型的高分辨雷达目标识别方法研究:[硕士学位论文].长沙:国防科技大学,2008,1-77
    [132] M. D. Xing, Z. Bao. The properties of range profile of aircraft. CIE International Conferenceon Radar Proceedings, Beijing,2001,1050-1054
    [133] C. R. Smith, P. M. Goggans. Radar target identification. IEEE Antennas and PropagationMagazine,1993,35(2):27-38
    [134] R. A. Mitchell, R. Dewall. Overview of high range resolution radar target identification. InProceedings of Automayic Target Recognition, Working Group, Monterey, CA,1994
    [135] J. S. Seybold, S. J. Bishop. Three-dimensional ISAR imaging using a conventionalhigh-range resolution radar. Proceedings of IEEE Nat. Radar Conf.,1996,309-314
    [136] M. L. Bryant, L. L. Gostin, M. Soumekh. Three-dimensional E-CSAR imaging of a T-72tank and synthesis of its spotlight, stripmap and interferometric SAR reconstructions.Proceedings of IEEE Int. Conf. on IP,2001,3:628-631
    [137] R. H. Yang, Q. Pan, Y. M. Cheng. A new method for identify3D aircraft targets. ComputerSimulation,2006,23(6):82-84
    [138] S.-J. Wei, X.-L. Zhang, J. Shi. Linear array SAR imaging via compressed sensing. Prog.Electromagn. Res.,2011,117:299-319
    [139]姜文利,唐白玉,徐可斌,等.高频区雷达目标散射模型及其参数估计.电子学报,1998,26(3):70-74
    [140] S. Hudson, D. Psaltis. Correlation filters for aircraft identification from radar range profile.IEEE Trans. Aerosp. Electron. Syst.,1993,29(3):741-746
    [141] L. C. Potter, D.-M. Chiang, R. Carriere, et al. GTD-based parametric model for radarscattering. IEEE Trans. Antennas. Propag.,1995,43(10):1058-1067
    [142] X. Liao, Z. Bao. Circularly integrated bispectra: novel shift invariant feature forhigh-resolution radar target recognition. Electron. Lett.,1998,34(I9):1879-1880
    [143] X.-D. Zhang, Y. Shi, Z. Bao. A new feature vector using selected bispectra for signalclassification with application in radar target recognition. IEEE Trans. Signal Process.,2001,49(9): l875-l885
    [144] Y. Shi, X. Zhang. A Gabor atom network for signal classification with application in radartarget recognition. IEEE Trans. Signal Process.,2001,49(12):2994-3004
    [145] E. J. Rothwell, K. M. Chen, D. P. Nyquist, et al. A radar target discrimination scheme usingthe discrete wavelet transform for reduced data storage. IEEE Trans. Antennas. Propag.,1994,42(7):1033-1037
    [146] L. Du, H. Liu,Z. Bao, et al. Radar HRRP target recognition based on higher order spectra.IEEE Trans. Signal Process.,2005,53(7):2359-2368
    [147] A. Zyweck, R. E. Bogner. Radar target classification of commercial aircraft. IEEE Trans.Aerosp. Electron. Syst.,1996,32(2):598-606
    [148] Q. Li, E. J. Rothwell, K. M. Chen, et al. Radar target discrmination shcemes usingtime-domain and frequency-domain methods for reduced data storage. IEEE Trans. Antennas.Propag.,1997,45(6):995-1000
    [149]袁莉,刘宏伟,保铮.基于中心矩特征的雷达HRRP自动目标识别.电子学报,2004,32(12):2078-2081
    [150]袁莉,刘宏伟,保铮.雷达高分辨距离像分类器的参数自适应学习算法.电子与信息学报,2008,30(1):198-202
    [151] L. Du, H. Liu, Z. Bao. Radar HRRP statistical recognition: parametric model and modelselection. IEEE Trans. Signal Process.,2008,56(5):1934-1944
    [152] B. Chen, H. Liu, L. Yuan, et al. Adaptive segmenting angular sectors for radar HRRP ATR.EURASIP Journal on Advances in Signal Processing,2008, Article ID:6417
    [153] I. Jouny, F. D. Garber, R. L. Moses. Radar target identification using the bispectrum: acomparatives study. IEEE Trans. Aerosp. Electron. Syst.,1995,31(l):69-77
    [154] J. Spoelstra, E. C. Botha. New rotation-invariant features for radar target re cognition. SignalProcessing,1996,55(3):351-367
    [155]汪敏,李兴国,王一丁.双谱用于毫米波目标特征提取的研究.电子科学学刊,1998,20(5):363-368
    [156]姬红兵,高新波,谢维信.雷达目标双谱特征分析与分类方法研究.西安电子科技大学学报,1999,26(6):691-699
    [157]李会方,俞卞章,梁志恒.基于HOS的雷达目标分类新算法.西北工业大学学报,2001,19(2):270-273
    [158]周代英,沈晓峰,杨万麟.基于三阶累计量奇异值分解的雷达目标一维距离像识别.系统工程与电子技术,2002,24(3):26-27
    [159] V. Chandran, S. L. Elgar. Pattern recognition using invariants defined from higher orderspectra one-dimensional inputs. IEEE Trans. Signal Process.,1993,41(1):205-212
    [160] J. K. Tugnait. Detection of non-Gaussian signals using integrated polyspectrum. IEEE Trans.Signal Process.,1994,42(11):3137-3149
    [161] M. P. Hurst, R. Mittra. Scattering center analysis via Prony’s method. IEEE Trans. Antennas.Propag.,1987,35:986-988
    [162] R. Carriere, R. L. Moses. High resolution radar target modeling using a modified Pronyestimator. IEEE Trans. Antennas. Propag.,1992,40(1):13-18
    [163] J. Li, P. Stoica. Efficient mixed-spectrum estimation with application to target featureextraction. IEEE Trans. Signal Process.,1996,44(2):281-295
    [164]廖学军.基于高分辨距离像的雷达目标识别:[博士学位论文].西安:西安电子科技大学,1999
    [165] A. Quinquis, E. Radoi.Accurate estimation of the time delay in radar target range profilereconstruction using time-frequency and superresolution algorithms.Proc. ICECS,1999,3:1449-1452
    [166]姜卫东,陈曾平,庄钊文.雷达目标高分辨距离像的特征提取及识别方法.国防科技大学学报,1999,21(3):55-58
    [167]姜卫东,陈曾平,庄钊文.复杂目标的时频特征提取及识别方法研究.电子科学学刊,2000,22(3):353-358
    [168]田野,雷英杰,李军.基于小波变换的雷达信号特征提取方法.空军工程大学学报.2006,7(5):22-24
    [169]马建华,刘宏伟,保铮.基于小波变换的雷达高分辨距离像识别.西安电子科技大学学报,2005,32(6):895-900
    [170]李建平,严中洪,张万萍.基于小波分析的模式识别的几个问题.计算机科学,2001,28(5):110-112
    [171] S. Ghosh. Distributed Systems-An Algorithmic Approach. Chapman&Hall/CRC,2007
    [172] C. E. Shannon. A Mathematical Theory of Communication. The Bell System TechnicalJournal,1948,27:379-423;623-656
    [173] T. M. Cover, J. A. Thomas. Elements of Information Theory (Second Edition), Wiley,2006,1-102
    [174]李立萍,徐政五,汪利辉.信息论导引.成都:电子科技大学出版社,2008,1-211
    [175] Z. Nenadic. Information discriminant analysis: feature extraction with an information–theoretic objective. IEEE Trans. Pattern Anal. Mach. Intell.,2007,29(8):1394-1407
    [176] J. Gudnason, J. Cui, M. Brookes. HRR automatic target recognition from superresolutionscattering center features. IEEE Trans. Aerosp. Electron. Syst.,2009,45(4):1512-1524
    [177] L. Du, H. Liu, Z. Bao. Radar HRRP statistical recognition: parametric model and modelselection. IEEE Trans. Signal Process.,2008,56(5):1931-1944
    [178] S. Petridis, S. J. Perantonis. On the relation between discriminant analysis and mutualinformation for supervised linear feature extraction. Pattern Recogn.,2004,37(5):857-874
    [179] M. Gurban, J.-P. Thiran. Information theoretic feature extraction for audio-visual speechrecognition. IEEE Trans. Signal Process.,2009,57(12):4765-4776
    [180]郭桂蓉,郁文贤.雷达舰船目标的模糊智能识别.模糊系统与数学,1992,6(2): l0-19
    [181] L. M. Novak, G. J. Owirka. Radar target identification using an eigen-image approach. IEEENat. Radar Conf., Atlanta,1994,129-131
    [182] S. H. He, W. F. Zhang, G. R. Guo. High range resolution MMW radar target recognitionapproaches with application. Proc. IEEE Nat. AE Conf.,1996, l:192-195
    [183] N. C. Parmar, M. Codex, M. M. Kokar. Target detection in fused X-band radar and IR imagesusing the functional minimization approach to data association. Proc. IEEE Int. Symp. Intell.Control,1994:51-56
    [184] H.-J. Li, R.-Y. Lane. Utilization of multiple polarization data for aerospace targetidentification. IEEE Trans. Antennas. Propag.,1995,43(12):1436-1440
    [185]何松华,郭桂蓉,庄钊文.雷达目标高分辨率距离——极化结构成像方法研究.电子学报,1994,22(7):1-8
    [186]王毛路,李少洪,毛士艺.神经网络与D–S理论结合的HRR识别研究.北京航空航天大学学报,2002,28(4):443–446
    [187]向国梁.多传感器数据融合非合作目标识别技术研究.火控雷达技术,2003,3(32):25-30
    [188] D. Ramachandran, P. Reagan, K. Goolsbey. First-orderized researchcyc: expressivity andefficiency in a common-sense ontology. AAAI Workshop Tech. Rep.,2005, WS-05-01:33-40
    [189] M. Minsky. The Society of Mind. New York: Simon&Schuster,1986,1-272
    [190] Y. Shoham. Agent-oriented programming. Artificial Intelligence,1993,60:5l-92
    [191]史忠植.智能主体及其应用.北京:科技出版社,2000,1-237
    [192]何炎祥,陈莘萌. Agent和多Agent系统的设计与应用.武汉:武汉大学出版社,2001,1-273
    [193] J. S. Shamma. Cooperative Control of Distributed Multi-Agent Systems. Chichester: JohnWiley&Sons Ltd.,2007,1-432
    [194] Y. Shoham, K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, andLogical Foundations. New York: Cambridge University Press,2009,1-420
    [195]付建胜.多代理技术在电力市场中的应用研究:[硕士毕业论文].武汉:华中科技大学,2003,20-103
    [196] D. C. Smith, A. Cyper, J. Spohrer. KidSim: programming agents without a programminglanguage. Communications of the ACM,1994,37(7):54-67
    [197] B. Hayes-Roth. Agents on stage: advancing the state of the art in AI. Proceedings of the14thInternational Joint Conference on Artificial Intelligence (IJCAI’95),1995,967-971
    [198] M. Wooldridge, N. R. Jennings. Intelligent agent: theory and practice. Knowl. Eng. Rev.,1995,10(2):115-152
    [199] P. D. O’Brien, R. C. Nicol. FIPA-towards a standard for software agents. BT Technol. J.,1998,16(3):51-59
    [200] N. Jennings, M. Wooldridge. Software agents. IEE Rev.,1996,42(1):17-20
    [201] M. Bratman. Intentions, Plans, and Practical Reason. Cambridge: Harvard University Press,1987
    [202] P. R. Cohen, H. J. Levesque. Intention is choice with commitment. Artificial Intelligence,1990,42(2):213-261
    [203] A. S. Rao, M. P. Georgeff. Modeling rational agents within a BDI-architecture. In: P. Fikes, E.Sandewall, editors, Proceedings of the Second International Conference on Principles ofKnowledge Representation and Reasoning, San Mateo: Morgan Kaufmann Publishers,1991,473-484
    [204] K. Konolige, M. E. Pollack. A respresentationalist theory of intention. Proceedings of the13th International Joint Conference on Artificial Intelligence (IJCAI’93),1993,1:390-395
    [205]康小强,石纯一.一种理性Agent的BDI模型.软件学报,1999,10(12):1268-1274
    [206]胡山立,石纯一. Agent的意图模型.软件学报,2000,11(7):965-970
    [207]李牧南,彭宏,李相育,等.一种新型Agent结构模型研究.自动化学报,2007,33(1):15-20
    [208] M. P. Georgeff, A. L. Lansky. Reactive reasoning and planning. Proc.6th Natl. Conf. Artif.Intell.(AAAI’87),1987,677-682
    [209] M. E. Bratman, D. J. Israel, M. E. Pollack. Plans and resource-bounded practical reasoning.Computational Intelligence,1988,4:349-355.
    [210] B. Burmeister, K. Sundermeyer. Cooperative problem solving guided by intentions andperception. In: E. Werner, Y. Demazeau, editors, Proc. Eur. Workshop Modell. Auton. AgentsMulti Agent World (MAAMAW’91), Amsterdam: Elsevier Science Publishers,1992,77-92
    [211] N. R. Jennings. Specification and implementation of a belief desire joint-intentionarchitecture for collaborative problem solving. Journal of Intelligent and CooperativeInformation Systems,1993,2(3):289-318
    [212] M. Wooldridge, N. R. Jennings. Intelligent agents: theory and practice. KnowledgeEngineering Review,1995,10(2):115-152
    [213] E. H. Durfee, V. R. Lesser, D. D. Corkill. Trends in cooperative distributed problem solving.IEEE Trans. Knowl. Data Eng.,1989,1(1):63-83
    [214]王立春,陈世福.多Agent多问题协商模型.软件学报,2002,13(8):1637-1643
    [215] Y. Labrou, T. Finin, Y. Peng. Agent communication language: the current landscape. IEEEIntelligent Systems,1999,14(2):45-52
    [216] R. Davis, R. G. Smitll. Negotiation as a metaphor for distributed problem solving. ArtificialIntelligence,1983,20:63-109
    [217] H. V. D. Parunak. Manufacturing experience with the contract net. In: M. N. Huhns, edtor,Distributed Artifical Intelligence, Research Notes in Artificial Intelligence,1987,285-310
    [218]张海俊,史忠植.动态合同网协议.计算机工程,2004,30(21):44-56,57
    [219] J. S. Rosenschein. Rational Interaction: Cooperation among Intelligent Agents:[Ph D Thesis].Stanford: Stanford University,1986
    [220] J. S. Rosenschein, M. R. Genesereth. Communication and cooperation among logic-basedagents. Conf. Proc. Annu. Phoenix Conf.,1987,594-600
    [221] J. S. Rosenschein. The role of knowledge in logic-based rational interactions. Conf. Proc.Annu. Phoenix Conf.,1988,497-504
    [222] K. Matsubashi, M. Tokoro. A collaboration mechanism on positive interactions inmulti-agent environment. Proceedings of the13th International Joint Conference on ArtificialIntelligence (IJCAI’93),1993,1:346-351
    [223] E. I. Osawa. A scheme for agent collaboration in open multi-agent environments.Proceedings of the13th International Joint Conference on Artificial Intelligence (IJCAI’93),1993,1:352-359
    [224] S. Kraus. Agents contracting task in non-collaborative environments. Proc.11th Natl. Conf.Artif. Intell.(AAAI’93),1993,243-248
    [225] G. Zlotkin, J. S. Rosenschein. Cooperative and conflict resolution via negotiation amongautonomous agents in noncooperative domains. IEEE Trans. Syst. Man Cybern.,1991,21(6):1317-1324
    [226] E. Ephrati, J. S. Rosenschein. Constrained intelligent action: planning under the influence ofa master agent. Proc.10th Natl. Conf. Artif. Intell.(AAAI’92),1992,263-268
    [227] E. Ephrati, J. S. Rosenschein. Multi-agent planning as a dynamic search for social consensus.Proceedings of the13th International Joint Conference on Artificial Intelligence (IJCAI’93),1993,1:423-429
    [228] T. Finin, R. Fritzson, D. Mckay, et al. KQML as an agent communication language. Int. Conf.Inf. Knowledge Manage.,1994,456-463
    [229] M. D. Sadek. A study in the logic of intention. Proceedings of the Third IntemationalConference on Principles of Knowledge Representation and Reasoning,1992,462-473
    [230] Y. Labrou, T. Finin. Semantics for an agent communication language. In: M. Singh, A. Rao,M. Wooldridge, editors, Intelligent Agents IV, Lect. Notes Artif. Intell.(LNAI), Berlin:Springer-Verlag,1998,1365
    [231] P. R. Cohen, H. J. Levesque. Communicative actions for artificial agents. Proceedings of theFirst International Conference on Multiagent Systems (AAAI’95), San Francisco,1995,65-72
    [232] M. P. Singh. Agent communication languages: rethinking the principle. Computer,1998,31(12):40-47
    [233] S. Sen, G. Weiss, Learning in Multiagent Systems. In: G. Weiss, editor, Multiagent systems,Cambridge: MIT Press,1999,259-298
    [234] G. Weiss. Adaptation and learning in multi-agent systems: some remarks and a bibliography.Lect. Notes Artif. Intell.,1996,1024:1-21
    [235]刘大有,杨鲲,陈建中. Agent研究现状与发展趋势.软件学报,2000,11(3):315-321
    [236]丁士拥,常天庆,高波.多Agent系统规划协作过程研究.计算机工程与设计,2007,28(9):2158-2160,2223
    [237] H. J. Levesque, P. R. Cohen, J. H. T. Nunes. On acting together. Proc.8th Natl. Conf. Artif.Intell.(AAAI’90),1990,94-99
    [238] P. R. Cohen, H. J. Levesque. Teamwork. Nous,1991,25(4):487-512.
    [239] A. Haddadi. Reasoning about Cooperation in Agent Systems: A Pragmatic Theory:[Ph. D.Thesis]. Manchester: University of Mnchester Institute of Science and Technology,1995
    [240] N. R. Jennings. Controlling cooperative problem solving in industrial multi-agent systemsusing joint intention. Artificial Intelligence,1995,75(2):195-240
    [241] A. S. Rao, M. P. Georgeff, E. A. Sonenberg. Social plans: a preliminary report. In: E. Werner,Y. Demazeau, editors, Proc. Eur. Workshop Modell. Auton. Agents Multi Agent World(MAAMAW’91), Amsterdam: Elsevier Science Publishers,1992,57-76
    [242] K. Yanai. An image understanding system for various images based on multi-agentarchitecture. Proc.3rd Int. Conf. Computational Intelligence and Multimedia Applications,1999,186-190
    [243] U. Biiker, Cooperative agents for object recognition. Proc.15th Int. Conf. Pattern Recog.,2000,4:157-160
    [244] J. Liu, Y. Y. Tang, Y. C. Cao. Evolutionary autonomous agents approach to image featureextraction. IEEE Trans. Evol. Comput.,1997,1(2):141-158
    [245] A. Filippidis, L. C. Jain, N. Martin. Fusion of intelligent agents for the detection of aircraft inSAR images. IEEE Trans. Pattern Anal. Mach. Intell.,2000,22(4):378-384
    [246] Q. Du, J. Liu. A new neural fusion recognition method with multi-agent. Proc.-Int. Conf.Intell. Inf. Hiding Multimedia Signal Process.(IIHMSP’07),2007,1:127-130
    [247] H. S. Miu, K. S. Leung, Y. Leung. An evolutionary multi-agent system for object recognitionin satellite images. Proc. Evolutionary Computation,2003,1:520-527
    [248] A. Choksuriwong, C. Rosenberger, W. W. Smari. Multi-agents system for imageunderstanding. Int. Conf. Integr. Knowledge Intensive Multi-Agent Syst. Model. Explor. Eng.(KIMAS'05),2005,149-154
    [249] M. Simon, S. O'Hara, P. Petrov. Statistical fusion of unmanned aerial vehicle observations foraided target recognition. Int. Conf. Integr. Knowledge Intensive Multi-Agent Syst.(KIMAS’07),2007,180-185
    [250] P. Dasgupta, A multiagent swarming system for distributed automatic target recognitionusing unmanned aerial vehicles. IEEE Trans. Systems, Man, and Cybernetics, Part A:Systems and Humans,2008,38(3):549-563
    [251]于万波,于红志.汽车自动识别中的Agent构造研究.大连大学学报,2001,22(4):18-20
    [252]谷学静,石志国,王志良.基于BDI agent技术的情感机器人语音识别技术研究.计算机应用研究,2003,20(4):24-26
    [253] L. Huette, A. Nosary, T. Paquet. A multiple agent architecture for handwritten textrecognition. Pattern Recognition,2004,37(4):665-674
    [254]程显毅.基于多Agent的模式识别框架APRF的研究:[博士学位论文].南京:南京理工大学,2006,1-135
    [255] C. Hewitt. Viewing control structures as patterns of passing messages. Artificial Intelligence,1977,8(3):323-364
    [256] H. Simon. Administrative Behavior (Third Edition). New York: The Free Press,1976
    [257] M. J. Osborne, A. Rubinstein. A Course in Game Theory. Cambridge: MIT Press,1994
    [258] R. A. Brooks. A robust layered control system for a mobile robot. IEEE J. Rob. Autom.,1986,2(1):14-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700