用户名: 密码: 验证码:
新型角向周期加载圆波导行波管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的不断发展,使得对毫米波大功率辐射源的探索成为了目前电真空器件的一个热点研究方向,同时也对微波器件的工作频带、输出功率和互作用增益等性能都提出了越来越高的要求。行波管具有宽频带、大功率、高可靠性等优点,是一类非常重要的大功率辐射源。本论文在深入分析毫米波行波管的发展方向、应用前景及研究现状的基础上,研究了如何提高毫米波行波管的输出功率、拓展互作用带宽,提出了三类结构简单、易于加工、适用于毫米波、短毫米波器件的新型慢波结构——角向周期加载金属柱圆波导、开敞型角向周期加载金属柱圆波导、角向周期加载螺旋线圆波导,为解决现有行波管在毫米波波段所遇到的输出功率下降和加工难题给出了新的解决方案。本论文从慢波结构的数值理论分析、计算机模拟和实验测量三个方面对所提出的新型结构进行了深入地研究,主要工作和创新点如下:
     一、在常规介质契伦科夫器件基础上,为了提高其耦合阻抗,改善此类行波管的增益特性,提出了角向周期加载金属柱圆波导慢波结构。从理论上分析了该结构的高频特性和小信号增益特性,得出了结构参数对其性能的影响规律。通过分析发现:相比于常规介质加载圆波导毫米波行波管,当结构的尺寸参数相同时,新结构的工作频率以及耦合阻抗都远高于原结构;当两种结构的色散特性相同时,新结构的耦合阻抗在研究频段内平均提高了4.3倍。此外,通过对Ka波段角向周期加载金属柱圆波导行波管的研究发现,金属柱的加载使行波管的输出功率得到明显地提高,在30GHz处,行波管的输出功率峰值超过1200W,比常规介质加载圆波导行波管的输出功率提高了44.8%。
     二、为了抑制过模器件中的模式竞争,提高互作用效率和工作的稳定性,提出了开敞型角向周期加载金属柱圆波导结构。建立了该慢波结构的高频特性理论和线性注-波互作用理论,并进一步利用CST PIC-Solver软件建立了带有耦合结构的开敞型角向周期加载金属柱圆波导行波管的三维注-波互作用物理模型,对其非线性互作用情况进行了模拟分析。研究结果表明:通过采用开敞结构,可以使除工作模式以外的其它竞争模式的传输系数S12均小于-12dB;并且有效地提高了行波管的输出功率和互作用增益。相比于封闭型角向周期加载金属柱圆波导结构,采用该开敞型慢波结构行波管的输出功率和增益分别提高了28.3%和3.7%。
     三、为了解决常规螺旋线行波管在短毫米波波段出现的输出功率低和聚焦难题,提出了角向周期加载螺旋线圆波导行波管,其特点是:角向周期排列的N个螺旋线共用轴线上的一个具有大电流值的电子注。通过计算机模拟的方法对螺旋线尺寸对其色散性能和耦合阻抗的影响进行了分析;同时,推导出了该结构慢波特性的理论计算模型,为后续的设计奠定了理论基础。利用PIC粒子模拟,对此类结构行波管的注-波互作用性能进行了研究,并提出了140GHz行波管的具体设计方案。所设计的行波管在电压3758V、电流0.25A、输入功率为50mW的工作条件下,在34GHz频带(120GHz-154GHz)内,其输出功率大于55W,最大增益值和最高电子互作用效率分别为25.98dB和8.43%。因此,在研制小型化宽带大功率毫米波、太赫兹行波管方面,角向周期加载螺旋线行波管具有发展潜力。
     四、为了验证本论文中所提出的高频特性理论的正确性和所采用的计算机模拟方法的可靠性,对角向周期加载螺旋线圆波导结构进行了实验研究。设计和加工了角向周期加载螺旋线圆波导的实验模型,并对该模型的色散特性进行了实验测量,实验结果显示,测试值与计算值吻合良好,验证了本论文理论分析和模拟过程的可靠性。
With the development of modern science technology, the investigation on highpower miniature radiation sources became an important research direction of electricvacuum device. The traveling-wave tube (TWT) is one of the most important electrondevices due to its outstanding combined performance in bandwidth, power capacity,reliability and so on. In this dissertation, how to improve the output power and expandthe bandwidth of the millimeter-wave TWT is studied, therefore, dielectric-linedazimuthally periodic circular waveguide (DLAP-CW), open-styled dielectric-linedazimuthally periodic circular waveguide (open-styled DLAP-CW) and helix-loadedazimuthally periodic circular waveguide (HLAP-CW) are proposed, which can operatein millimeter-wave and short millimeter-wave TWT with the characteristics of simplestructure and easy processing. In this dissertation, we have made numerical theoreticalanalysis, computer simulation and experimental study on new slow-wave structures.Several important and valuable results which bring forth some new ideas areaccomplished and listed as the followings:
     1. In order to improve the interaction efficiency and gain, a dielectric-linedazimuthally periodic circular waveguide is proposed which is a modified form of aconventional dielectric-lined circular waveguide. The slow-wave characteristics andthe linear theory of beam-wave interaction are studied by numerical method. The effectof the structure parameters on the dispersion characteristics is obtained. The results areshown that the interaction impedance and the operating frequency of the DLAP-CWare both much higher than those of the DL-CW when the DL-CW and the DLAP-CWhave the same dimensions; when the dispersion characteristics of the two structures aresame, the interaction impedance of the DLAP-CW has increased by a factor of4.3onaverage. The particle-in-cell simulation results for Ka-band DLAP-CW TWT show thatmore than1200W output power can be produced at the central frequency of30GHzbecause of the metal rods, which increases44.8%than the output power of DL-CWTWT.
     2. In order to suppress mode competition, improve the interaction efficiency and the stability, an open-styled dielectric-lined azimuthally periodic circular waveguide isput forward. Equations for the slow-wave characteristics including phase velocity andinteraction impedance are derived, and the linear gain characteristics of the open-styledDLAP-CW are obtained. Furthermore, the process of the nonlinear beam-waveinteraction in open-styled DLAP-CW TWT is simulated by CST PIC-Solver. Theinvestigation reveals that: the transmission coefficient of the competition modes are allless than-12dB except the operation mode in open-styled structure. And the outputpower and the interaction gain of the open-styled DLAP-CW TWT are effectivelyimproved. Compared with a DLAP-CW TWT, the saturated power and the interactiongain of the open-styled DLAP-CW TWT are improved28.3%and3.7%.
     3. In order to solve the problems of output power and focusing of theconventional helix TWT in short millimeter-wave, a helix-loaded azimuthally periodiccircular waveguide is proposed. In the novel structure, N-helixes interact with oneelectron beam having larger current. The effects of the SWS parameters on the RFcharacteristics are discussed using Ansoft HFSS. In addition, analytical solutions forthe dispersion characteristics and interaction impedance of the HLAP-CW are derived,which lays the theoretical basis for subsequent design. Furthermore, a140GHz theHLAP-CW TWT is designed, and the beam-wave interaction characteristics areobtained by Particle-in-cell simulation. When the operation voltage is3758V, thecurrent is0.25A, and the input power is50mW, the output power, the maximal gainand the electronic efficiency of this TWT is55W,25.98dB and8.43%, respectively.Therefore, it has potential for application in millimeter wave and even Terahertzdevices.
     4. In order to verify the accuracy of the theory of RF characteristics and thereliability of the progress of computer simulation in this dissertation, we design ahelix-loaded azimuthally periodic circular waveguide, and the slow-wave properties ofHLAP-CW are investigated by experimental method. The experimental results are ingood agreement with the simulation data, which prove the correctness of the theoryand the simulation.
引文
[1]王文祥.微波工程技术.北京:国防工业出版社,2009,1-553
    [2] J. H. Booske. Plasma physics and related challenges of millimeter wave to terahertz and highpower microwave generation. Phys. Plasmas,2008,15(5):1-16
    [3] G.. M. Borsuk, B. Levush. Vacuum electronics research perspective at the U.S. Naval ResearchLaboratory. Proc. Int. Vacuum Electronics Conf., California,2010,3-4
    [4] J. Tucek, M. Basten, D. Gallagher, et al. Sub-millimeter and THz power amplifier developmentat Northrop Grumman. Proc. Int. Vacuum Electronics Conf., California,2010,19-20
    [5] H. B. Wallace. Analysis of RF imaging applications at frequencies over100GHz. Appl. Opt.,2010,49(19): E38-E47
    [6] P. H. Siegel. Terahertz technology. IEEE Trans. on Microwave Theory Tech.,2002,50(3):910-928
    [7] J. X. Qiu, B. Levush, J. Pasour, A. Katz, et al. Vacuum tube amplifiers. IEEE Microwave Mag.,2009,10(7):38-51
    [8] P. N. Safier, V. Dronov, T. M. Antonsen, et al. From frequency-domain physics-based simulationto time-domain modeling of traveling-wave tube amplifiers for high data-rate communicationapplications. IEEE Trans. on Microwave Theory Tech.,2006,54(10):3605-3615
    [9] Yubin Gong, Zhigang Lu, Guanjun Wang, et al. Study on mm-wave rectanglar grating travelingwave tube with sheet-beam. J. Infrared Millim.Waves,2006,25(3):173-178
    [10] J. T. Donohue, J. Gardelle. Simulation of Smith-purcell radiation using a particle-in-cell code.Physics Review Specical Topics-Accelerators Beams,2005,8(6):060702(1)-(9)
    [11] B. D. McVey, M. A. Basten, J. H. Booske, et al. Analysis of rectangular waveguide-gratings foramplifier applications. IEEE Trans. on MTT,1994,42(4):995-1003
    [12]刘盛纲,林彩东.高功率微波.电子科大学报,1996,22:25-27
    [13] R. W. Grow, J. M. Baird, K. J. Bunch, et al. Backward-wave oscillators for the frequency rangefrom300GHz to1THz. Proc. Int. Vacuum Electronics Conf., CA,2000,26-27
    [14]冯进军,胡银富,蔡军,等. W波段行波管发展评述.真空电子技术,2010,2:27-32
    [15]阮望,王勇,丁耀根,等. W波段带状注速调管注波互作用系统的研究.微波学报,2010,459-463
    [16]丁耀根,刘濮鲲,张兆传,等.大功率速调管的技术现状和研究进展.真空电子技术,2010,1-9
    [17] T. P. Fleming, M. R. Lambrecht, K. L. Cartwright. Numerical Simulations of a RelativisticInverted Magnetron. IEEE Transactions on Plasma Science,2010,38(7):1563-1573
    [18] B. W. Hoff, M. Franzi, R. M. Gilgenbach, et al. Three-Dimensional Simulations of MagneticPriming of a Relativistic Magnetron. IEEE Transactions on Plasma Science,2010,38(6):1292-1301
    [19] K. Atsushi, K. Ken, T. Koji, et al. Steady state operation of high power Gyrotron for ITER.Proc. Int. Vacuum Electronics Conf., Japan,2007,1-4
    [20] R. Advani, J. P. Hogge, K. E. Kreischer, et al. Experimental investigation of140GHz coaxialoscillator. IEEE Transactions on Plasma Science,2001,29(6):943-950
    [21] E. M. Choi, M. A. Shapiro, J. R. Sinigiri, et al. Single-stage depressed collector experimentresults from a110GHz1.5MW Gyrotron at MIT. Joint31st Infrared and Millimeter Waves and14th International Conference on Terahertz Electronics, Shanghai,2006,22-23
    [22]邬显平.世纪之交的微波真空器件.真空电子技术,2003,(1):1-7
    [23]廖复疆.大功率微波管——21世纪军事电子装备的关键器件.中国电子学会真空电子学分会第十届年会论文集,北京,1995,1-7
    [24] R. K. Parker, R. H. Abrams, Jr., B. G. Danly, et al. Vacuum electronics. IEEE Trans. on MTT,2002,50(3):835-215
    [25] R. H. Abrams, B. Levush, A. A. Mondelli, et al. Vacuum electronics for the21st centuryelectronics. IEEE Microw. Mag.,2001,2(3):61–72
    [26]廖复疆.大功率微波电子束器件及其发展.真空电子技术,1999,(4):1-14
    [27]何俊.毫米波新型曲折波导行波管的研究:[博士学位论文].成都:电子科技大学,2010,42-57
    [28]赵正平.固态微波器件与电路的新进展.中国电子科学研究院学报,2007,2(4):329-335
    [29]冯进军.集成真空电子学.真空电子技术,2010,2:1-7
    [30] A. J. Theiss, D. B. Lyon. High-power Ka-band TWTs for airborne radars. IEEE Aerosp.Electron. Syst. Mag.,1995,10(11):33-36
    [31] D. S. Komm, R. T. Benton, H. C. Limburg, et al. Advances in space TWT efficiencies. IEEETrans. on Electron Devices,2001,48(1):174–176
    [32] Huaining Liang, Yulong Liu, Jing Feng. A study on internal calibration technology ofspaceborne SAR. Chinese Journal of Electronics,2011,20(1):179-182
    [33] Guojun Lai, Yunfeng Jia, Pukun Liu. Study of a stable high power W-band gyrotron travelingwave tube amplifier. Chinese Journal of Electronics,2005,14(4):717-720
    [34] J. H. Booske, D. R. Whaley, W. L. Menninger, et al. Traveling-wave tubes. Modern Microwaveand Millimeter-Wave Power Electronics,2005, ch.4:171–245
    [35] R. N. Simons, E. G. Wintucky, J. D.Wilson, et al. Ultra-high power and efficiency spacetraveling-wave tube amplifier power combiner with reduced size and mass for NASA missions.IEEE Trans. Microwave Theory Tech.,2009,57(3):582-588
    [36] G. K. Kornfeld, E. Bosch,W. Gerum, et al.60-GHz space TWT to address future market. IEEETrans. on Electron Devices,2001,48(1):68-71
    [37]甘体国.毫米波技术及应用进展.电讯技术.1993,33(5):42-48
    [38]甘体国.毫米波工程.成都:电子科技大学出版社,2006:1-98
    [39] C. W. James. History of Millimeter and Submillimeter Waves. IEEE Trans. on MTT,1984,30(9):1118-1127
    [40]林为干,时振栋,薛良金.毫米波技术的回顾,现状与展望展.电子科技大学学报,1986,(4):12
    [41] S. Kharkovsky, J. T. Case, R. Zoughi, et al. Millimeter-wave detection of localized anomaliesin the space shuttle external fuel tank insulating foam. IEEE Transactions on Instrumentationand Measurement,2006,55(4):1250-1257
    [42]邬显平.毫米波技术应用及其进展.电子科技导报,1999,(12):7-15
    [43] J. H. Wehling. Multifunction millimeter-wave systems for armored vehicle application. IEEETransactions on MTT,2005,53(3):1021-1025
    [44]梁德文.世纪之交的军民两用毫米波技术,电讯技术,1999,(6):93-97
    [45]张伦.毫米波技术发展评述.真空电子技术,1989,(1):1-9
    [46] N. Gopalsami, A. C. Raptis. Millimeter-wave radar sensing of airborne chemicals. IEEETransactions on MTT,2001,49(4):646-653
    [47]廖复疆.真空电子技术—信息装备的心脏.北京:国防工业出版社,1999,10-98
    [48]吴鸿适.微波电子学原理.北京:科学出版所,1987,58-91
    [49]杨祥林,张兆锉,张祖舜.微波器件原理.北京:电子工业出版社,1994,143-198
    [50]王文祥,余国芬,宫玉彬,等.行波管慢波系统的新进展一全金属慢波结构.真空电子技术,1995,5:30-37
    [51]王文祥,宫玉彬,魏彦玉,等.大功率行波管新型慢波线技术的进展.真空电子技术,2002,6:13-18
    [52] C. Kory, M. Read, J. Booske, et al.650GHz traveling wave tube Amplifier.33rd InternationalConference on Infrared, Millimeter and Terahertz Waves, CA,2008,1-2
    [53] Hughes Aircraft Co., Hughes TWT/TWTA Handbook Torrance, CA, USA,1992
    [54]郭开周.行波管研制技术.北京:电子工业出版社,2008:150-152
    [55] C. K. Chong, J. A. Davis, R. H. Le Borgne, et al. Development of high power Ka-band andQ-band helix-TWTs. Proc. Int. Vacuum Electronics Conf., CA,2004,16-17
    [56] Thales Group, Thales’reference.[Online]. Available: http://www.thalesgroup.com/
    [57]王娟,吴刚,杨明华,等.大功率毫米波行波管发展现状.真空电子技术,2010,3:38-42
    [58] T. Machida, T. Kanamoto, K. Tomikawa, et al. Development of Ka-band500W peak powerhelix TWT. Proc. Int. Vacuum Electronics Conf., Japan,2007,25-26
    [59] E. Bosch, R. Christ, M. Lefvre, et al. New500W Ka-band TWT. Proc. Int. Vacuum ElectronicsConf., Italy,2009,70-71
    [60] C. K. Chong, D. Layman, R. H. Le Borgne, et al. Development of high power Ka/Q dual-bandand communications/radar dual-function helix TWT. Proc. Int. Vacuum Electronics Conf.,California,2008,189-190
    [61] C. K. Chong, J. A. Davis, R. H. Le Borgne, et al. Development of Ka-band helix-TWT’s forcommunications, Radar and ECM applications. Proc. Int. Vacuum Electronics Conf., Japan,2007,27-28
    [62]李实,张世杰,宋磊,等. S波段大功率脉冲空间行波管研制.第十七届学术年会军用微波管研讨会,宜昌,2009,1-4
    [63]陈波,赵青平.毫米波螺旋线行波管研究.第十七届学术年会军用微波管研讨会,宜昌,2009,28-29
    [64]刘鲁伟,魏彦玉,段兆云,等. S波段宽带大功率连续波行波管的研究.中国电子学会真空电子学分会第十八届学术年会军用微波管研讨会,张家界,2011,43-46
    [65] J. A. Dayton, C. L. Kory, G. T. Mearini, et al. Applying microfabrication to helical vacuumelectron devices for THz applications. Proc. Int. Vacuum Electronics Conf., Italy,2009,41–44
    [66] C. L. Kory, J. A. Dayton, Jr., G. T. Mearini. et al.95GHz helical TWT design. Proc. Int.Vacuum Electronics Conf., Italy,2009,125–126
    [67] L. Sadwick, R. J. Hwu, G. Scheitrum. Microfabrication of vacuum compatible millimeter wavesources. Proc. Int. Vacuum Electronics Conf., Korea,2003,360-361
    [68] R. L. Ives. Microfabrication of high-frequency vacuum electron devices. IEEE Trans. onPlasma Science,2004,32(3):1277-1291
    [69] C. Chua, S. Aditya, J. M. Tsai, et al. Microfabricated planar helical slow-wave structures basedon straight-edge connections for THz vacuum electron devices. Terahertz Science andTechnology,2011,4(4):208-229
    [70] J. A. Dayton, Jr., C. L. Kory, G. T. Mearini, et al. A650GHz helical BWO. Proc. Int. VacuumElectronics Conf., California,2008,396–397
    [71] C. L. Kory, J. A. Dayton, Jr.. Design of650GHz helical BWO using CST Studio Suite. Proc.Int. Vacuum Electronics Conf., California,2008,392–393
    [72]刘盛纲,李宏福,王文祥.微波电子学导论.北京:国防工业出版社,1995:106-107
    [73] C. Kory, L. Ives, J. Booske, et al. Novel TWT interaction circuits for high frequencyapplication. Proc. Int. Vacuum Electronics Conf., CA,2004,51-52
    [74]李宏福,喻胜.导波场论.成都:电子科技大学出版社,2006,99-106
    [75] J. Walsh, J. Murphy. Tunable Cerenkov laser. IEEE Journal of Quantum Electronics,1982,18(8):1259-1264
    [76] W. B. Case, R. D. Kaplan, J. E. Golub. Space-charge-Cerenkov and cyclotron-Cerenkovinstabilities in an electron-beam dielectric system. J. Appl. Phys,1984,55:2651-2658
    [77] H. Kosai, E. P. Garate, et al. X-band dielectric Cerenkov maser amplifier experiment. IEEETrans. on Plasma Science,1992,20(3):288-292
    [78] J. Benford. Space applications of high power microwave. IEEE Trans. on Plasma Science,2008,36(3):569-581
    [79] J. E. Walsh,T. C. Marshall, S. P. Sehlesinger. Generation of coherent Cerenkov with an intenserelativistic electron beam. Physics of Fluids,1977,20(4):706-710
    [80]舒挺,刘永贵.多波切伦柯夫振荡器的粒子模拟.微波学报,1999,15(1):1-8
    [81] E. M. Totmeninov, S. A. Kitsanov, P. V. Vykhodtsev. Repetitively pulsed relativistic Cherenkovmicrowave oscillator without a guiding magnetic field. IEEE Trans. on Plasma Science,2011,39(4):1150-1153
    [82] M. William, C. Randall, G. Eusebio. High-power dielectric Cherenkov maser oscillatorexperiments. IEEE Trans. on Plasma Science,1990,18(3):507-512
    [83] M. William, C. Randall.200MW S-band dielectric Cherenkov maser oscillator. Appl. Phys.Lett.,1989,55(15):1498-1500
    [84] E. Garate, H. Kosai, K. Evans, et al. Operation of an X-band dielectric Cherenkov maseramplifer. Appl. Phys. Lett.,1990,56(12):1092-1094
    [85] E. P. Garate, S. Moustaizis, J. M. Buzzi, et al. Cerenkov maser operation at1-2mmwavelengths. Appl. Phys. Lett.,1986,48(20):1326-1328
    [86]吴坚强,熊彩东,刘盛纲.介质切伦科夫脉塞的研究.应用科学学报,1996,14(3):345-362
    [87]吴坚强.高功率微波的发展和应用.电子科技大学学报,1996,25(7):129-139
    [88]杨震华.我国自由电子激光研究的现状.百科知识,1995,6:34-35
    [89]王清源,寻培珏,刘盛纲.双介质片平面波导契伦科夫自由电子激光.强激光与粒子束,1991,3(2):185-190
    [90]张军,钟辉煌,杨建华,等.具有谐振腔的多波切伦科夫振荡器的粒子模拟.强激光与粒子束,2003,15(1):85-88
    [91]舒挺,刘永贵,王勇,等.多波契伦科夫振荡器的实验研究.强激光与粒子束,1999,11(5):619-622
    [92] Yubin Gong, Yanyu Wei, Minzhi Huang, et al. Research activities on millimeter wave TWT inUESTC. Global Symposium on Millimeter Waves, Nanjing,2008,337-339
    [93]魏彦玉,刘漾,宫玉彬,等.一种角向加载螺旋线的圆波导慢波结构.中国发明专利,CN102074439A,2011-05-25
    [94]魏彦玉,刘漾,宫玉彬,等.一种角向加载螺旋线的圆波导慢波结构.中国实用新型专利,ZL201020666835.8,2011-06-22
    [95] Yang Liu, Yanyu Wei, Yubin Gong, et al. Investigation of the slow-wave properties of adielectric-lined azimuthally periodic circular waveguide for TWT. IEEE Trans. on ElectronDevices,2010,57(8):2019-2026
    [96] Yang Liu, Yanyu Wei, Yubin Gong, et al. Linear analysis of dielectric-lined azimuthallyperiodic circular waveguide for TWT. IEEE Trans. on Plasma Science,2011,39(8):1673-1679
    [97] Yang Liu, Yanyu Wei, Yubin Gong, et al. The Research of an Open-Styled Dielectric-LinedAzimuthally Periodic Circular Waveguide for TWT.8th International Vacuum Electron SourcesConference and NANOcarbon, Nanjing,2010,328-330
    [98]刘漾,魏彦玉,宫玉彬,等.介质加载角向周期圆波导的慢波特性研究.四川省电子学会真空电子学专业委员会年学术年会,成都,2010,259-263
    [99]刘漾,魏彦玉,宫玉彬,等. V波段角向周期加载金属柱慢波结构的研究.第二届全国脉冲功率会议,西安,2011,165-167
    [100]刘漾,魏彦玉,宫玉彬,等.角向周期加载螺旋线新型慢波结构的研究.中国电子学会真空电子学分会第十八届学术年会军用微波管研讨会,张家界,2011,285-289
    [101] K. C. Leou, D. B. McDermott, N. C. Luhmann. Dielectric-loaded wideband Gyro-TWT. IEEETrans. on Plasma Science,1992,20(3):188-196
    [102] E. P. Garate, H. Kosai, K. Evans, et al. Operation of an X-band dielectric Cherenkov maseramplifier. Appl. Phys. Lett.,1990,56(12):1092-1094
    [103] K. L. Felch, K. O. Busby, R. W. Layman, et al. Cherenkov radiation in dielectric-linedwaveguides. Appl. Phys. Lett.,1981,38(8):601-603
    [104] V. F. Kravchenko, A. A. Kuraev, A. B. Zakalyukin. Relativistic travelling-wave-tube-O(TWT-O) with an irregular moderating system. Third International Kharkov SymposiumPhysics and Engineering of Millimeter and Submillimeter Waves, Ukraine,1998,1:402-404
    [105]张克潜,李德杰.微波与光电子学中的电磁理论.北京:电子工业出版社,2001,392-394
    [106]任大鹏,冯进军. W波段斜注管高频结构的设计和注波互作用模拟.真空电子技术,2011,6:21-25
    [107] Ansoft Corp.,Ansoft HFSS user’s reference.[Online].Available: http://www.ansoft.com.cn/
    [108] CST Corp., CST MWS Tutorials. http://www.cstchina.cn/
    [109]陈蓓冉.同轴型准光腔短毫米波辐射源的研究:[博士学位论文].成都:电子科技大学,2010,42-48
    [110]杨样林,张兆堂,张机舜.微波器件原理.北京:电子工业出版社,1994,170-180
    [111] J. R. Pierce. Field L M. Traveling Wave Tubes. Proc. I. R. E.,1947,35(2):108-111
    [112] L. J. Chu, J. D. Jackson. Field theory of traveling wave tubes. Proc. I. R. E.,1948,36(12):853-863
    [113] O. E. H. Rydbeck, Theory of traveling wave tube. Ericsson Technics,1948,46(23):3-18
    [114] H. P. Freund, M. A. Kodis, N. R. Vanderplaat,―Self-Consistent Field Theory of a HelixTraveling Wave Tube Amplifier,‖IEEE Trans. Electron Devices, vol.20, no.5, pp.543-553,Oct.1992
    [115] V. K. Neil, W. Heckrotte. Relation between dichotron and negative mass instabilities. J. Appl.Phys.,1963,36:2761-2766
    [116]黄宇.开放式梳形槽波导慢波系统研究:[硕士学位论文].成都:电子科技大学,2007,16-36
    [117]蔡军. W波段折叠波导慢波结构的研究:[博士学位论文].济南:山东大学,2006,8-63
    [118] CST Corp., CST PS Tutorials.[Online]. Available: http://www.cst-china.cn/
    [119] Mathworks. Inc., Matlab user’s reference.[Online].Available: http://www.mathworks.com/
    [120]刘漾,巩华荣,魏彦玉,等.有效抑制光子晶体加载矩形谐振腔中模式竞争的方法有效抑制光子晶体加载矩形谐振腔中模式竞争的方法.物理学报,2009,58(11):7845-7851
    [121] J. H. Booske, R. J. Dobbs, C. D. Joye, et al. Vacuum electronic high power Terahertzsources,‖IEEE Trans. on Terahertz Science and Technology,2011,1(1):54-75
    [122]瞿波,冯进军.高效率毫米波行波管.真空电子技术,2010,2:16-21
    [123] B. K. Vancil. Vacuum electronics-100years. Proc. Int. Vacuum Electronics Conf., CA,2004,23-25
    [124] R. K. Parker, R. H. Abrams, B. G. Danly, et al. Vacuum electronics. IEEE Trans. on Microw.Theory Tech.,2002,50(3):835-845
    [125] R. H. Abrams, B. Levush, A. A. Mondelli, R. K. Parker. Vacuum electronics for the21stcentury. IEEE Microwave Magazine,2001,2(3):61-72
    [126] Wenxiang Wang, Yanyu Wei, Yubin Gong, et al. Review of the novel slow-wave structures forhigh-power traveling-wave tube. Int. J. Infrared Millim. Waves,2003,24(9):1469–1484
    [127] R. E. Collin. Field Theory of Guided Waves. New York: McGraw-Hill,1960, ch.4:64-69
    [128] Z. C. Ioannidis, O. Dumbrajs, I. G. Tigelis, et al. Eigenvalues and ohmic losses in coaxialgyrotron cavity. IEEE Trans. on Plasma Science,2004,32(3):861-866
    [129] Yubin Gong, Hairong Yin, Jinjun Feng, et al. A140-GHz two-beam overmodedfolded-waveguide traveling wave tube. IEEE Trans. on Plasma Science,2010,39(3):847-851
    [130] J. H. Booske, R. J. Dobbs, C. D. Joye, et al. Vacuum electronic high power Terahertz sources.IEEE Trans. Terahertz Science and Techno.,2011,1(1):54-75
    [131] J. H. Booske, M. C. Converse, C. L. Kory, et al. Accurate parametric modeling of foldedwaveguide circuits for millimeter-wave traveling wave tubes. IEEE Trans. on ElectronDevices,2005,52(5):685-694
    [132]张大勇,冯进军,廖复疆,等.微带型曲折线慢波结构冷测特性的计算机仿真.电子器件,2006,24(9):1223-1226
    [133]朱兆君,贾宝富,罗正祥.螺旋慢波系统高频特性的计算机仿真.电子器件,2005,28(1):110-113
    [134]付成芳.带状束矩形螺旋线行波管的研究:[博士学位论文].成都:电子科技大学,2009,92-95
    [135]张兆镗.微波管高频系统的测量.北京:国防工业出版社,1982,161-169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700