用户名: 密码: 验证码:
交错双栅慢波结构的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢波结构是线性注微波真空电子器件实现微波信号的产生或放大的最核心部件。带状电子注器件相比于传统圆形电子注器件,因为可以明显提高输出功率而成为真空电子器件的一个新的发展方向。工作在微波及毫米波低频段的真空电子器件研究相对成熟,有不少管型已成功应用于国防和民用领域。在中小功率领域的应用中很多真空器件逐渐被不断发展的微波固态器件所替代,而在毫米波的高频部分特别是3mm及以上的频段,固态器件的应用还很少。真空电子器件可以轻松地工作到这些频段,但是对工作在这些频段的器件研究还相对薄弱。随着现代工业的发展,对器件的工作频段要求越来越高,希望得到的功率也越来越大,这也成为了我们对真空电子器件的一个追求目标。因此对工作在短毫米波的大功率微波真空电子器件的研究具有较高的价值和现实意义。
     本论文以交错双栅慢波结构为研究出发点,从理论、模拟计算和实验等方面深入地研究了基于带状电子注工作的W波段、140GHz频段大功率行波管和返波振荡器,研究了一种适用于圆形电子注工作的交错双栅行波管。提出了这类器件的高频系统部件,提出了适用于带状电子注器件的电子光学系统。提出将虚边界元法应用于行波管多级降压收集极的计算。论文的主要工作和创新点如下:
     一、深入研究了交错双栅结构的模式结构、场结构、空间谐波、色散特性和耦合阻抗,将该结构应用于行波管,提出了适用于该类行波管的慢波电路过渡结构、输入输出结构,解决了基于该慢波结构的行波管高频系统衰减和反射大等难题。提出了一种既能保持电路反射系数小,又能抑制行波管振荡的集中衰减器,保证了行波管的稳定工作。构建了工作在W波段和140GHz频段的带状电子注交错双栅行波管,计算结果显示这类行波管具比较大的输出功率和比较宽的工作频带,为将来研制宽带大功率短毫米波行波管奠定了基础。
     二、提出将交错双栅慢波结构应用于W波段和140GHz频段带状电子注返波振荡器。分析了将交错双栅结构作为返波振荡器电路最适合的工作模式和工作谐波,从理论上预测返波振荡器的工作频带及对应的调谐电压范围。提出了振荡器的慢波电路过渡结构和输出结构,构建了工作在两个频段的返波振荡器。计算结果显示,这两只返波振荡器均能在较宽频带内得到瓦级以上的稳定功率输出。该研究为大功率短毫米波辐射源提供了一种解决方案。
     三、提出了一种带状注电子枪,发明了一种带状注多级降压收集极,并设计了一种PCM磁聚焦系统,构成了一套带状注器件电子光学系统。模拟计算结果显示,电子枪能够提供满足需求的电子注,聚焦系统可以实现带状注的良好聚焦,多级降压收集极中电子在电极内壁的“着陆”较均匀,电子回流率小,收集效率高。该研究提供了一套完整的带状注器件电子光学系统解决方案,为高效率带状电子注器件的研制打下了基础。
     四、为了解决带状注行波管的聚焦困难,通过对常规交错双栅慢波结构变形,将其应用在了W波段圆形电子注行波管。计算结果显示该行波管在88-103GHz频带内可得到大于200W的峰值功率输出。这只圆形注行波管对聚焦要求不高,工程实现相对容易,适用于不需要大功率的应用场合。
     五、提出将虚边界元法这种数值计算方法应用于多级降压收集极的计算,论证了该方法用于计算轴对称收集极的理论基础。它可以解决计算开敞结构时普通方法计算不准确的问题,也解决了边界元法会遇到的奇异积分的问题,这种方法具有计算速度快,计算精度高的特点。编写了基于该方法的二维多级降压收集极计算机代码,并计算了轴对称多级降压收集极,得到了良好的计算结果。该方法对于指导高效率收集极的设计具有实用价值。
     六、提出了W波段带状电子注交错双栅行波管高频系统的加工方案,分别加工了慢波电路及其过渡结构、输入输出结构以及与用于将系统与测量仪器连接的阻抗变换器。测试了将这些部件连接成为行波管高频系统的传输特性。该实验验证了交错双栅行波管高频系统的传输特性,为实际制管做了准备。
Slow wave structure (SWS) is the core part of the linear beam vacuum electrondevices (VEDs) for generating or amplifying the microwave. The sheet beam electrondevices have become a new research direction in the vacuum devices communitybecause these devices were proved to be an effective way to provide much higher outputpower relative to traditional pencil beam counterparts. The VEDs with lower operationband in the microwave and millimeter wave spectra have been studying for a long timeand they are relatively more reliable and steady. A grate number of these devices havebeen put in the military and industrial applications. With the development of the solidstate devices (SSDs), some low power vacuum devices have been replaced by them.However, the SSDs operating in short millimeter wave band have not yet developed andmost of them are under studying. The VEDs can easily operate in the band and everhigher frequency bands, nevertheless most of these devices are still in developing. Withthe rapid advancement of modern microwave techniques, the demand for high operationband and high output power devices becomes more and more active, and it is the aimfor the researchers. In conclusion, it is the grate science value and practical significanceto study the high power short-millimeter wave vacuum electron devices.
     Base on the staggered double vane SWS, the W-band and140GHz band sheet beamhigh power traveling-wave tubes (TWTs) and backward wave oscillators (BWOs) werestudied in the dissertation with theory analysis, computer simulations and experiments.Some RF components for these devices and an electron optical system for this kind ofsheet beam devices were proposed. A staggered double vane TWT operate with pencilbeam and the corresponding electron gun were presented. Finally, a numericalcalculation method-virtual boundary element method was theoretically studied and itwas applied in the calculation for a multistage depressed collector. The main contentsand keys of innovation are as follows:
     (1) The staggered double vane structure was intensively analyzed from its modestructure, field structure, spatial harmonic, dispersion characteristics and interactionimpedance, and it was proposed to apply on W-band and140GHz-band sheet beam TWTs. The corresponding transaction structures for circuit and the input and outputcouplers were proposed which keep a low attenuation and reflection parameters of theRF system for the tubes. A concentrated attenuator which can eliminate the oscillationbut maintain a low circuit reflection was proposed and such attenuator guarantee asteady operation. Particle-in-cell (PIC) simulation revealed that the W-band TWT canproduce very high power in a broad band. This study laid a solid foundation fordeveloping broad band high power short-millimeter wave amplifiers.
     (2) The application of staggered double vane to W-band and140GHz-band sheetbeam BWOs were proposed after analyzing the feature of BWO. The operation modeand spatial harmonic which are best fit for BWO were selected and the operation bandsand the corresponding tuning voltage scopes were predicted. The two sheet beamstaggered double vane BWO were constructed after presenting its circuit transitionstructure and output coupler. The simulation results show that the W-band and140GHz-band BWO can offer watt-class steady average power in a relative wide band.These studies offered a solution for large power short-millimeter wave radiationsources.
     (3) After the studying of the sheet beam devices, a sheet beam electron gun wasproposed, a sheet beam multi-stage depressed collector were invented and a periodicalcusped magnet focus stack was designed. Finally an electron-optical system wasestablished. Numerical calculation results demonstrated that the gun can produce therequired sheet beam, the focus stack can achieve a good-quality sheet beam focus, theelectrons can uniformly land on the electrodes of the collector and the collectorefficiency was high but with low backflow rate. Such study provides a completeelectron-optical system solution for sheet beam devices and laid a foundation fordeveloping high efficiency sheet beam vacuum devices.
     (4) The staggered double vane SWS was applied to W band pencil beam TWTthrough which can greatly alleviate the focus problem relative to sheet beam TWT.Calculation results show that it can produce over200W peak power in the band of88-103GHz providing a constant input power of0.1W. The beam focus was easy forsuch TWT therefore it is suitable for the application in the situation that the low ormiddle power is needed.
     (5) A computer numerical calculation method named virtual boundary element method was proposed for multistage depressed collector design. The theoreticalfoundation of such method for calculating the axial symmetry collector was discussed.This method can solve the problem of bigger error when calculation open structure withtraditional method and it also avoid the singular integral which the boundary elementmethod can not deal. It is fast and accurate in calculation. Accordingly, atwo-dimensional simulation code for collector calculation was written and anaxial-symmetric four-stage depressed collector was calculated and a good result wasobtained. Such method has a high practical value in designing high efficiency collector.
     (6) The processing scheme of the RF system for the W-band sheet beam staggereddoubled vane TWT was designed. The SWS and transition structure, input/outputcoupler and an impedance converter were fabricated, respectively. These componentswere combined to a RF system with the complete signal path and its transmissionperformance was tested. This experiment examined the transmission characteristics ofthe W-band staggered double vane TWT RF system and it is useful for futureinvestigation.
引文
[1]王文祥.微波工程技术.北京:国防工业出版社,2009,1-6
    [2]薛良金.毫米波工程基础.哈尔滨:哈尔滨工业大学出版社,2004,1-14
    [3]石星.毫米波雷达的应用和发展.电讯技术,2006,1:1-9
    [4] R. H. Abrams, B. Levush, A. A. Mondelli, et al. Vacuum electronics for the21st century.IEEE Microwave Magazine,2001,2(3):61-72
    [5] J. X. Qiu, B. Levush, J. Pasour, et al. Vacuum tube amplifiers. IEEE Microwave Magazine,2009,10(7):38-51
    [6] C. K. Chong, W. L. Menninger. Latest advancements in high power millimeter-wave helixTWTs. IEEE Trans. Plasma Science,2010,38(6):1227-1238
    [7]王娟,吴刚,杨华明,等.大功率毫米波行波管发展现状.真空电子技术,2010,52(3):38-42
    [8]司朝良.MMIC单片微波集成电路的原理及应用.国外电子元器件,2002,2(7):48-49
    [9]李和委.W及以上波段MMIC放大器的研究进展.半导体技术,2009,34(7):626-630
    [10] H. Wang, L. Samoska, T. Gaier, et al. Power-amplifier modules covering70-113GHz usingMMICs. IEEE Trans. Microwave Theory and Techniques,2001,49(1):9-16
    [11] L3Communications Electron Devices.[Online]. Available:http://www.triquint.com/products/all-products.cfm
    [12] E. Brookner. Phased array radar-past, present and future. IEEE Radar Conference,2002,104-113
    [13] V. L. Granatstein, P. K. Parker, C. M. Armstrong. Vacuum electronics at the dawn of thetwenty-first century. Proceedings of the IEEE,1999,87(5):702-716
    [14] Triquint Semiconductor.[Online]. Available: http://www2.l-3com.com/edd/mpm/
    [15] D. R. Whaley, R. Duggal, C. M. Armstrong, et al.100watt operation of a cold cathode TWT.IEEE Trans. Electron Devices,2009,56(5):896-905
    [16] P. R. Schwoebel, C. A. Spindt, C. E. Holland. Spindt cathode tip processing to enhanceemission stability and high-current performance. J. Vacuum Science and Technology B,2003,21(1):433-435
    [17]郭开周.行波管研制技术.北京:电子工业出版社,2008,85-98
    [18] J. D. Wilson, P. Ramins, D. A. Force. A high-efficiency59-to64-GHz TWT for intersatellitecommunications. IEEE International Electron Devices meeting,1991,585-588.
    [19] R. Ives. Microfabrication of high-frequency vacuum electron devices. IEEE Trans. PlasmaScience,2004,32(3):1277-1291
    [20] Y.-M. Shin, L. R. Barnett, D. Gamzina, et al. Terahertz vacuum electronic circuits fabricatedby UV lithographic molding and deep reactive ion etching. Appl. Phys. Lett.,2009,95(18):181505(1)-(3)
    [21] Y.-M. Shin, J.-K. So, S.-T. Han, et al. Microfabrication of millimeter wave vacuum electrondevices by two-step deep-etch X-ray lithography. Appl. Phys. Lett.,2006,88(9):091916(1)-(3)
    [22] L. Earley, B. Carlsten, F. Krawczyk, et al. Wideband RF structure for millimeter wave TWTs.AIP7th Workshop High Energy Density High Power RF Conference,2006,807(1):335-341
    [23] A. Korolev, S. Zaitsev, I. Golenitskij, et al. Traditional and novel vacuum electron devices.IEEE Trans. Electron Devices,2001,48(12):2929-2937
    [24] Y.-M. Shin, L. Barnett, N. Luhmann. Phase-shifted traveling wave-tube circuit forultrawideband high-power submillimeter-wave generation. IEEE Trans. Electron Devices,2009,56(5):706-712
    [25] Y.-M. Shin, L. R. Barnett, N. C. Luhmann. Strongly confined plasmonic wave propagationthrough an ultrawideband staggered double grating waveguide. Appl. Phys. Lett.,2008,93(22):221504(1)-(3)
    [26] S. Bhattacharjee, J. H. Booske, C. L. Kory, et al. Folded waveguide traveling-wave tubesources for terahertz radiation. IEEE Trans. Plasma Science,2004,32(3):1002-1014
    [27] S.-T. Han, S.-G. Jeon, Y.-M. Shin, et al. Experimental investigations on miniaturized vacuumelectron devices. IEEE International Vacuum Electronics Conference,2004,404-405
    [28] C. L. Kory, L. Ives, M. Read, et al. Microfabricated W-band traveling wave tubes. Joint30thInternational Conference on Infrared and Millimeter Waves and13th InternationalConference on Terahertz Electronics,2005,1:85-86
    [29] J. Tucek, D. Gallagher, K. Kreischer, et al. A compact, high power,0.65THz source. IEEEInternational Vacuum Electronics Conference,2008,16-17
    [30] D. Whaley, R. Duggal, C. Armstrong, et al.100W operation of a cold cathode TWT. IEEETrans. Electron Devices,2009,56(5):896-905
    [31] A. J. Thesis, C. J. Meadows, R. Freeman, et al. High-average-power W-band TWTdevelopment. IEEE Trans. Plasma Science,2010,38(6):1239-1243
    [32] O. Buneman. Ribbon beams. J. Electronics and Control,1957,3(5):507-509
    [33]阮存军,王树忠,赵鼎,等.新型带状注毫米波器件的研究进展.真空电子技术,2010,(52)2:8-15
    [34] R. L. Kyhl, H. F. Webster. Breakup of hollow cylindrical electron beams. IRE Trans. ElectronDevices,1956,3(4):172-183
    [35] C. C. Cutler. Instability in hollow and strip electron beams. J. Appl. Phys.,1956,27(9):1028-1029
    [36] J. R. Pierce. Instability of hollow beams. IRE Trans. Electron Devices,1956,3(4):183-189
    [37] J. H. Booske, B. D. McVey, T. M. Antonsen, Jr. Stability and confinement of nonrelativisticsheet electron beams with periodic cusped magnetic focusing. J. Appl. Phys.,1993,73(9):4140-4155
    [38] J. H. Booske, A. H. Kumbasar, M. A. Basten. Periodic focusing and pondermotivestabilization of sheet electron beams. Phy. Review Lett.,1993,71(24):3979-3982
    [39] J. H. Booske, M. A. Basten. Demonstration via simulation of stable confinement of sheetelectron beams using periodic magnetic focusing. IEEE Trans. Plasma Science,1999,27(1):134-135
    [40] D. J. Radack, J. H. Booske, Y. Carmel, et al. Wiggler focused relativistic sheet beampropagation in a planar free-electron laser configuration. J. Appl. Phys.,1989,55(20):2069-2071
    [41] M. A. Basten, J. H. Booske. Two-plane focusing of high-space-charge sheet electron beamsusing periodically cusped magnetic fields. J. Appl. Phys.,1999,85(9):6313-6322
    [42]赵鼎.关于闭合及偏置PCM结构约束带状电子注可行性研究.物理学报,2010,59(3):1712-1720
    [43] K. T. Nguyen, J. A. Pasour, T. M. Antonsen, Jr., et al. Intense sheet electron beam transport ina uniform solenoidal magnetic field. IEEE Trans. Electron Devices,2009,55(5):744-752
    [44] B. E. Carlsten, S. J. Russell, L. M. Earley, et al. Technology development for a mm-wavesheet-beam traveling-wave tube. IEEE trans. Plasma Science,2005,33(1):85-93
    [45] B. E. Carlsten, L. M. Earley, F. L. Krawczyk, et al. Stable two-plane focusing for emittancedominated sheet-beam transport. Phy. Review Special Topics-Accelerators and Beams,2005,8(6):062002(1)-(17)
    [46] S. Humphrises Jr, S. J. Russel, B. E. Calsten, et al. Focusing of high-perveance planarelectron beams in miniature wiggler magnet array. IEEE Trans. Plasma Science,2005,33(2):882-891
    [47] J. H. Booske, D. J. Radack, T. M. Antonsen. Design of high average power near millimeterfree electron laser oscillators using short period wigglers and sheet electron beams. IEEETrans. Plasma Science,1990,18(3):399-415
    [48] M. A. Basten. Formation and transport of high-perveance electron beams for high-power, highfrequency microwave devices:[Ph.D. Dissertation]. Madison: University of Wisconsin atMadison,1996
    [49]王战亮.带状电子注的形成,传输与应用研究:[博士学位论文].成都:电子科技大学,2010
    [50] Z. G. Lu, Y. B. Gong, Y. Y. Wei, et al. Dielectric effect on the radio frequency characteristicsof a rectangular waveguide grating traveling wave tube. Inter. J. Infrared and MillimeterWaves,2006,27(8):1095-1108
    [51]路志刚.矩形栅波导行波放大器的研究:[博士学位论文].成都:电子科技大学,2008
    [52]刘盛纲,李宏福,王文祥,等.微波电子学导论.北京:国防工业出版社,1985,252-269
    [53] Y.-M. Shin, L. R. Barnett. Intense wideband terahertz amplification using phase shiftedperiodic electron-plasmon coupling. Appl. Phys. Lett.,2008,92(9):091501(1)-(3)
    [54] Y.-M. Shin, L. R. Barnett. Phase-shifted double vane circuit (Barnett-Shin TWT) forultra-wideband millimeter and submillimeter wave generation, IEEE International VacuumElectronics Conference,2008,20-21
    [55] Y.-M. Shin, A. Baig, L. R. Barnett, et al. System design analysis of a0.22-THz Sheet beamtraveling-wave tube amplifier. IEEE Trans. Electron Devices,2012,59(1):234-240
    [56] Y.-M. Shin, L. R. Barnett, N. C. Luhmann,Jr. Strongly confined plasmonic wave propagationthrough an ultrawideband staggered double grating waveguide. Appl. Phys. Lett.,2008,93(22):221504(1)-(3)
    [57]刘青伦,王自成,刘濮鲲,等.短毫米波双排矩形梳状慢波结构的模拟研究.全国微波毫米波会议,2011,1521-1524
    [58]刘青伦,王自成,刘濮鲲,等. W波段双排矩形梳状慢波结构的研究.中国电子学会真空电子学分会第十八届学术年会,2011,154-156
    [59] C. D. Joye, M. A. Shapiro, J. R. Sirigiri, et al. Demonstration of a140-GHz1-kW confocalgyro-traveling-wave amplifier. IEEE Trans. Electron Devices,2009,56(5):818-827
    [60]王光强,王建国,李小泽,等.0.14THz高功率太赫兹脉冲的频率测量.物理学报,2010,59(12):8459-8464
    [61] Ansoft Corp., Ansoft HFSS user’s reference.[Online]. Available: http://www.ansoft.com.cn/
    [62]陆德坚,王自成,刘濮鲲.准周期边界条件在耦合腔结构高频特性研究中的应用.电子与信息学报,2008,30(11):2780-2783
    [63]何俊,黄明光,郝保良,等.一种提高耦合腔结构仿真效率的模型研究.中国电子学会真空电子学分会第18届学术年会,2011,315-318.
    [64] CST Corp., CST MWS Tutorials.[Online]. Available:http://www.cst-china.cn/CST2009/proudct/mws/
    [65] C. L. Kory, M. E. Read, R. L. Ives, et al. Design of overmoded interaction circuit for1-kW95-GHz TWT. IEEE Trans. Electron Devices,2009,56(5):713-720
    [66] Y. B. Gong, H. R Yin, L. N. Yue, et al. A140-GHz two-beam overmoded folded-waveguidetraveling-wave tube. IEEE Trans. Plasma Science,2011,39(3):847-851
    [67] C. L. Kory, J. A. Dayton Jr., G T. Mearini, et al.95GHz helical TWT design. IEEEInternational Vacuum Electronics Conference,2009,125-126
    [68] M. K. Alaria, A. Bera, R. K. Sharma, et al. Design and development of helix slow-wavestructure for Ku-band TWT. IEEE Trans. Plasmas Science,2011,39(1):550-554
    [69] J. He, Y. Y. Wei, Y. B. Gong, et al. Linear analysis of a W band groove-loaded foldedwaveguide traveling wave tube. Phys. Plasmas,2010,17(11):113305(1)-(7)
    [70] A. Grede1, H. Henke, R. K. Sharma. RF-structure design for the W-Band folded waveguideTWT project of CEERI. IEEE International Vacuum Electronics Conference,2011,213-214
    [71] M. Sumathy, K. J. Vinoy, S. K. Datta. Analysis of ridge-loaded folded-waveguide slow-wavestructures for broadband traveling-wave tubes. IEEE Trans. Electron Devices.2010,57(6):1140-1146
    [72] B. E. Carlsten, S. J. Russell, L. M. Earley, et al. Technology development for a mm-wavesheet-beam traveling-wave tube. IEEE trans. Plasma Science,2005,33(1):85-93
    [73] Y.-M. Shin, L. R. Barnett, A. Baig, et al.0.22THz sheet beam TWT amplifier: system designand analysis. IEEE International Vacuum Electronics Conference,2011,61-62
    [74]赖剑强,宫玉彬,许雄,等.一种适用于矩形交错双栅慢波结构的能量耦合器件.中国专利, ZL201020666916.8,2010-12-19
    [75]魏彦玉,许雄,赖剑强,等.一种宽带相移行波管的输入输出结构.中国专利, ZL201120106737.3,2011-8-10
    [76] CST Corp., CST PS Tutorials,[Online]. Available:http://www.cst-china.cn/CST2009/product/ps/
    [77] A. S. Gilmour, Jr., Principles of traveling-wave tubes. Boston, MA: Artech House,1994,57-103
    [78] B. Mikijelj, D. K. Abe, R. Hutcheon. AlN-based lossy ceramics for high average powermicrowave devices: performance-property correlation. J. European Ceramic Society,2003,23(14):2705-2709
    [79] J. P. Calame, M. Garven, D. Lobas, et al. Broadband microwave and W-band characterizationof BeO-SiC and AIN-based lossy dielectric composites for vacuum electronics. IEEEInterational Vacuum Electronics Conference Jointly with Vacuum Electronics Sources.2006,37-38.
    [80] J. Cai, J. J. Feng, Y. F. Hu, et al. Attenuator for W-band folded waveguide TWT. IEEEInternational Vacuum Electronics Conference,2008,20-21
    [81] C. Jun, J. J. Feng, X. P. Wu, et al. Analysis and test presentation of attenuator for W-bandfolded waveguide TWT. IEEE International Vacuum Electronics Conference,2007,1-2
    [82] S. T. Todd, X. T. Huang, J. E. Bowers, et al. A novel micromachining process using DRIE,thermal oxidation, electroplating, and planarization to create high aspect ratio coplanarwaveguides. J. Microelectromechanical. Systems,2010,19(1):55-63
    [83] Y.-M. Shin, A. Baig, D. Gamzina, et al. MEMS fabrication of0.22THz sheet beam TWTcircuit. IEEE International Vacuum Electronics Conference,2010,185-186
    [84] C. D. Joye, J. P. Calame, K. T. Nguyen, et al. Microfabrication of wideband distributed beamamplifiers at220GHz. IEEE International Vacuum Electronics Conference,2011,343-344
    [85] H. Y. Li, J. J. Feng, G. D. Bai. Microfabrication of W-band folded waveguide slow wavestructure using DRIE and UV-LIGA technology. IEEE International Vacuum ElectronicsConference,2011,379-380
    [86] J. H. Booske. Plasma physics and related challenges of millimeter-wave-to-terahertz and highpower microwave generation. Phys. Plasmas,2008,15(5):055502(1)-(16)
    [87]冯进军.从真空微电子学到真空纳电子学.电子器件,2005,28(4):958-962
    [88]丁耀根,刘濮鲲,张兆传,等.大功率微波真空电子器件的应用.强激光与粒子束,2011,23(8):1989-1995
    [89] R. Kompfner, N. T. Williams. Backward-wave tube. Proceedings of the IRE,1953,41(11):1602-1611
    [90] H. R. Johnson. Backward-wave oscillators. Proceedings of the IRE,1955,43(3):684-697
    [91] J. R. Pierce. History of the microwave-tube art. Proceedings of the IRE,1962,50(5):978-984
    [92] S. Wei, Y. J. Ding. Continuously tunable and coherent terahertz radiation by means of phasematched difference frequency generation in zinc germanium phosphide. Appl. Phys. Lett.,2003,83(5):848-850
    [93]冯进军.集成真空电子学.真空电子技术,2010,(52)1:1-7
    [94]殷勇.360GHz返波管的研究.真空电子技术,2010,(52)5:1-3
    [95] Istok BWO products.[Online]. Available: www.istok.com.cn/news.asp?id=8
    [96] Microtech product catalog.[Online]. Available: www.mtinstruments.com
    [97] J. H. Booske, M. A. Basten, A. H. Kumbasar, et al. Periodic magnetic focusing of sheetelectron beams. Phys. Plasmas,1994,1(5):1714-1720
    [98] M. A. Basten, J. H. Booske, J. R. Anderson. Formation and transport of sheet-electron beamsand multibeam configerations for high-power microwave devices. International Society forOptical Engineering,1995,2557:262-269
    [99] M. E. Read, V. Jabotinski, G. Miram, et al. Design of a gridded gun and PPM-focusingstructure for a high-power sheet electron beam. IEEE Trans. Plasmas Sciences,2005,33(2):647-653
    [100] J. X. Wang, L. R. Barnett, N. C. Luhmann, et al. Electron beam transport analysis of W-bandsheet beam klystron. Phys. Plasmas,2010,17(4):043111(1)-(11)
    [101] J. Pasour, K. Nguyen, E. Wright, et al. Demonstration of a100-kW solenoidally focused sheetelectron beam for millimeter-wave amplifier. IEEE Trans. Electron Devices,2011,58(6):1792-1797
    [102] P. C. Panda, V. Srivastava, A. Vohra. Stable transport of intense elliptical sheet electron beamthrough elliptical tunnel under uniform magnetic field. IEEE International VacuumElectronics Conference,2011,299-300
    [103] A. Baig, J. X. Wang, L. R. Barnett, et al. Beam transport modeling of PPM focused THz sheetbeam TWT circuit. IEEE International Vacuum Electronics Conference,2011,351-352
    [104] Z. L. Wang, Y. B. Gong, Y. Y. Wei, et al. Focusing high-current sheet electron beam withelliptical solenoid. International Conference on Microwave and Millimeter wave Technology,2010,1933-1936
    [105]韩莹,赵鼎,阮存军,等.带状电子注在PCM磁场系统中聚焦与传输的研究.中国电子学会真空电子学分会第十七届学术年会,2009,415-419
    [106]杜广星,钱宝良.周期会切磁场聚焦强流相对论带状电子束的理论分析和粒子模拟.强激光与粒子束,2010,22(10):2425-2431
    [107]王战亮,宫玉彬,魏彦玉,等.周期凸起磁场聚焦带状电子注的3维粒子模拟.强激光与粒子束,2007,19(12):2074-2078
    [108] M. E. Read,A. J. Dudas,J. J. Petillo, et al. Design and testing of an electron gun producing asegmented sheet beam for a quasi-optical gyrotron. IEEE Trans. Electron Devices,1992,39(3):720-726
    [109] S. J. Russell, K. A. Bishofberger, R. W. Brown, et al. Sheet Beam Development for mm-wavemicrowave tubes at Los Alamos National Laboratory. IEEE International Vacuum ElectronicsJointly With Vacuum Electron Sources,2006,143-144
    [110] D. Zhao, C. J. Ruan, Y. Wang, et al. Numerical Simulation and experimental test of a sheetbeam electron gun, IEEE International Vacuum Electronics Conference,2010,101-102
    [111] J. F. Zhao, D. Gamzina, N. Li, et al. Scandate dispenser cathode fabrication for a highaspect-ratio high-current-density sheet beam electron gun, IEEE Trans. Electron Devices,2012, early access articles (in press)
    [112]赵国骏,凌宝京,薛坤兴.电子离子光学.北京:国防工业出版社,1994,216-232
    [113] S. E. Tsimring. Electron Beams and Microwave Vacuum Electronics. Hoboken: John Wileyand Sons,2007,143-179
    [114]陆钟祚.行波管.上海:上海科学技术出版社,1962,13-56
    [115]郭先奎.片状电子注电子枪理论研究:[硕士学位论文].成都:电子科技大学,2008
    [116]郭方.片状电子注电子枪的理论研究:[硕士学位论文].成都:电子科技大学,2010
    [117] T. K. Ghosh, R. G. Carter. Optimization of multistage depressed collector. IEEE Trans.Electron Devices,2007,54(8):2031-2039
    [118] H. G. Kosmahl. Modern multistage depressed collector-a review. Proceedings of the IEEE,1982,70(11):1325-1334
    [119] W. B. Herrmannsfeldt, EGUN-An electron optics and gun design program. Presented at theStanford Linear Accelerate Center-331, Stanford,1988
    [120] L. Kumar, P. Spadtke, R. G. Carter, et al. Three-dimensional simulation of multistagedepressed collector on micro-computers. IEEE Trans. Electron Devices,1995,42(9):1663-1673
    [121] S. Coco, F. Emma, A. Laudani, et al. COCA: A novel3-D FE simulator for the design ofTWT’s multistage collectors. IEEE Trans. Electron Devices,2001,48(1):24-31
    [122] J. J. Petillo, E. M. Nelson, J. F. Deford, et al. Recent developments to the MICHELLE2-D/3D electron gun and collector modeling code. IEEE Trans. Electron Devices,2005,52(5):742-748
    [123] A. N. Curren, T. A. Fox. Traveling-wave tube efficiency improvement with textured pyrolyticgraphite multistage depressed collector electrodes. IEEE Electron Device Letters,1981,2(10):252-254
    [124] P. Ramins, B. T. Ebihara. Improvements in MDC and overall efficiency through theapplication of carbon electrode surfaces. IEEE Trans. Electron Devices,1986,33(11):1915-1924
    [125]赖剑强,宫玉彬,魏彦玉,等.一种带状电子注行波管多级降压收集极.中国专利, ZL201120106737.3,2011-4-13
    [126] O. Ozgun, M. Kuzuoglu. Iterative leap-field domain decomposition method: a domaindecomposition finite element algorithm for3D electromagnetic boundary value problems. IETMicrowave Antennas and Propagation.2010,4(4):543-552
    [127] O. Meneghini, S. Shiraiwa, R. Parker. Full wave simulation of lower hybrid waves inMaxwellian plasma based on the finite element method. Phys. Plasmas,2009,16(9):090701(1)-(4)
    [128] S. Shiraiwa, O. Meneghini, R. Parker, et al. Plasma wave simulation based on a versatile finiteelement method solver. Phys. Plasmas,2010,17(5),056119(1)-(10)
    [129] B. V. de Wiele, A. Manzin, L. Dupre, et al. Comparison of finite-difference and finite-elementschemes for magnetization process in3-D particles, IEEE Trans. Magnetics,2009,45(3):1614-1617
    [130] U. Adriano, O. Bottauscio, M. Zucca. Boundary element approach for the analysis and designof grounding systems in presence of non-homogeneousness. IEE Generation, Transmssionand Distribution,2003,150(3):360-366
    [131] T. Sawada, K. Yoneda. Improvement of the accuracy of3-D electron trajectory calculationsusing both the finite element method and the boundary element method. IEEE Trans.Magnetics,1997,33(2):1730-1735
    [132] O. Ducasse, L. Papageorghiou, O. Eichwald. Critical analysis on two-dimensionalpoint-to-plane streamer simulations using the finite element and finite volume methods. IEEETrans. Plasma Science,2007,35(5):1287-1300
    [133] C. A. Brebbia. The Boundary Element Method for Engineers. London: Pentech press,1978,1-53
    [134]孙焕纯,李性厚,张立洲.弹性力学的虚边界元-配点法.计算力学学报,1991,8(1):15-23
    [135]殷海荣,宫玉彬,魏彦玉,等.虚边界元法与强流电子枪的电子轨迹模拟.计算物理,2006,23(6):647-654
    [136]张明耀,孙焕纯,杨家新.虚边界元法的理论分析.计算力学学报,2000,17(1):56-62
    [137] J. R. M. Vaughan. A new formula for secondary emission yield. IEEE Trans. Electron Devices,1989,36(9):1963-1967
    [138] J. R. M. Vaughan. Secondary emission formulas. IEEE Trans. Electron Devices,1993,40(4):830
    [139] A. Valfells, A. Singh, M. J. Kolander, et al. Advancements in codes for computer aided designof depressed collectors and tracing of backscattered electrons-Part II: improvements inmodeling of the physics of secondary electron emission and backscattering. IEEE Trans.Plasma Science.2002,30(3):1271-1276
    [140] A. Valfells, A. Singh, M. J. Kolander, et al. Corrections to ‘advancements in codes forcomputer aided design of depressed collectors and tracing of backscattered electrons—Part II:improvements in modeling of the physics of secondary electron emission and backscattering.IEEE Trans. Plasma Science.2003,31(5):1103
    [141] D. C. Joy. A database of electron-solid interactions.[Online]. Available:http://web.utk.edu/~srcutk/htm/interact.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700