用户名: 密码: 验证码:
深低温停循环脑损伤及脑保护的机制及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究总体思路:深低温停循环是主动脉手术及复杂先心病手术中常用的体外循环方式,通过降低温度同时停循环创造无血、安静的手术视野。但是深低温停循环后的脑损伤无法避免。本研究从深低温停循环的脑损伤的临床监测及预防、深低温停循环脑损伤的机制、深低温停循环脑损伤的有效标记物三个方面,总体而全面和探讨深低温停循环后的脑损伤和脑保护。为深低温停循环脑保护提供全面的策略,也为深低温停循环脑保护提供全新的心路和方向。
     本研究第一部分首先通过深低温停循环选择性脑灌注下NIRS和TCD监测,探讨深低温停循环条什下最合适的选择性脑灌注流量,通过对流量与脑氧饱和度的相关性分析,以脑氧饱和度变化为参考,为临床上选择合适的脑灌注流量,并最大限度的减少深低温循环对大脑血供及氧供的影响提供理论依据。通过第一部分的TCD和NIRS的研究发现,与深低温停循环前相比,大脑中动脉流速、脑氧饱和度和静脉氧饱和度都显著降低,提示在深低温停循环选择性脑灌注期间的确存在不同程度的脑部的缺血缺氧。在主动脉阻断后的大脑中动脉的血流频谱中,能清晰的看到微栓信号。进一步提示我们,在深低温停循环期间有微栓进入大脑,并对脑功能产生影响。提示我们进一步研究深低温停循环的病理生理机制,为深低温停循环后脑损伤的治疗提供有效的保障。
     本研究的第二部分,在第一部分对深低温停循环期间经颅多普勒和近红外光谱脑氧饱和度开展临床监测的基础上,确实发现深低温停循环中的脑血流减低的现象和深低温停循环期间脑栓子的出现;由于各种物理化学的损伤最终导致的脑内保护性蛋白和损伤性蛋白的表达失衡,而蛋白的转录后调控机制是蛋白表达的中心环节,且相关研究尚未有报道,因此研究者在第二部分中设计通过建立新生猪的深低温停循环模型,深入探讨深低温停循环后的重要蛋白转录后调控机制,即多物种中广泛存在的microRNA的调控机制,通过转录后水平的调控机制的研究,深入到分子和基因水平探讨深低温停循环的脑损伤机制,为临床上深低温停循环后病人的不同的脑损伤情况的,为揭示深低温停循环多因素作用的分子生物学本质,为深低温停循环的脑损伤机制的研究开辟新的思路。通过深低温停循环microRNA差异性表达的研究,我们发现了包括miR-194、miR-200c、miR-122、miR-10b等发现35个差异性表达的microRNAs,并通过生物信息学分析,发现这些microRNA参与多种脑损伤相关性疾病,及信号转导通路。
     本研究的第三部分,在前期研究的基础上,利用动物模型芯片检测的结果,对深低温停循环病人的血浆脑损伤相关的microRNA标记物进行qRT-PCR分析,通过对深低温停循环后不同时间点的脑功能评分,对miR-194、miR-200c、miR-122、miR-10h的差异性表达及CNS评分的相关性分析,发现miR-194与患者深低温停循环术后的脑功能状况具有良好的相关性。
     总之,对深低温停循环合适流量的选择、大脑功能的监测的改进,及对深低温停循环机制的探索,甚至是未来在深低温停循环脑组织microRNA研究的基础上,其他药物和非药物治疗干预的研发和应用,都将为经历深低温停循环下,复杂血管手术、复杂先心病血管手术病人带来福音。
     第一部分深低温停循环选择性脑灌注条件下联合应用TCD和NIRS监测大脑功能的研究
     背景与目的本研究的目的是联合应用经颅脑血流多普勒(transcranial cerebral Doppler, TCD)和近红外光谱脑氧饱和度监测仪(near-infrared spectroscopy cerebral oxygen saturation, NIRS)监测深低温停循环选择性脑灌注条件下,大脑中动脉血流流速(The middle cerebral artery mean veloci ty, VmMCA)和局部脑氧饱和度(regional cerebral oximetry, rSO2)的改变,为降低深低温停循环期间脑损伤的保护策略提供临床依据。
     方法择期行深低温停循环选择性I脑灌注下行主动脉弓重建术的12个病人,麻醉诱导后将经颅脑血流多勒的探头放置于颞窗,近红外光谱脑氧饱和度监测仪探头放置于病人的前额来收集术前、术中和术后的血流动力学参数和大脑中动脉血流流速及局部脑氧饱和度。术中深低温停循环联合顺行选择性脑灌(antegrade selective cerebral perfusion, ASCP)流率5-10ml·kg(-1)·min(-1)。应用线性回归模型对平均动脉压(MAP)、泵流量、大脑中动脉血流流速(VmMCA),和混合静脉氧饱和度(SVO2)进行相关性分析。
     结果术中监测发现平均动脉压(Mean arterial pressure, MAP)和脑氧饱和度(rSO2)之间没有显著的相关性。大脑中动脉平均血流流速和脑氧饱和度有显著相关性,并且主泵流速与脑氧饱和度之间也有显著相关性。于深低温停循环选择性脑灌注之前相比,大脑中动脉流速,脑氧饱和度和静脉氧饱和度都显著的降低。但大脑中动脉血流流速和脑氧饱和度在术后回到体外循环前的水平。在停机后,深低温停循环选择性脑灌注的流量与大脑中动脉流速和脑氧饱和度表现出明显的正相关。在深低温停循环期间,当选择性脑灌注流量低于10ml/kg/min时,TCD无法监测到大脑中动脉(Cerebral middle arterial,MCA)血流信号。当选择性脑灌注的流量高于10ml/kg/min时,大脑中动脉的血流流速维持在正常水平而脑氧饱和度大于45%。
     结论联合应用经颅脑血流多普勒和近红外光谱脑氧饱和度监测仪能够有效的监测深低温停循环选择性脑灌注条件下的大脑功能,并为降低深低温停循环选择性脑灌注条件下降低脑损伤提供指导。
     第二部分深低温停循环脑损伤条件下海马区差异性miRNAs表达变化及其机制探讨
     背景与目的深低温停循环(Deep hypothermic circulatory arrest,DHCA)是复杂先心病心外科手术期间应用的一项重要技术。先天性心脏病是最常见的出生缺陷,由于灌注技术、药物、围术期监护的改进,使得经历极为复杂的手术操作的患儿的死亡率下降,先心病外科校正术后的存活率的增加,使人们把目光聚焦到长期预后,特别是神经发育的进展和患儿生活质量的改善。对经历心外科手术的患儿的长期随访发现,这些患儿在神经发育功能不良具有特征性的表现,而深低温停循环后脑损伤是复杂心脏校正术后最重要的并发症。常见的并发症包括:惊厥、舞蹈症、认知功能损伤、执行功能缺陷、语言功能障碍、视觉空间和视觉运动技巧障碍、注意力异常、行动延迟、学习障碍。对于深低温停循环相关的脑损伤处理及损伤预后的干预关键是对于深低温停循环脑损伤神经病理过程及其机制的理解。然而深低温停循环后脑损伤的确切的分子机制目前尚不清楚。近期深低温停循环后脑损伤的基因及蛋白水平的研究日渐增多,但转录后水平的调控尚未有相关的报道。microRNAs是18~22nt的小分子RNA,在体内参与多种生理病理机制的调控,是一种高效低耗的调节方式,最近研究提示microRNAs涉及各种脑损伤的发生及进展。本研究利用miRNAs基因芯片技术检测深低温停循环小猪脑损伤模型中的miRNAs表达变化,探讨深低温停循环后脑损伤miRNAs转录后调节机制,为深低温停循环后的脑损伤的预防和治疗开辟一个新的思路。
     方法新生猪(体重2.0-2.5kg)构建深低温停循环模型,深低温停循环组3只,假手术组3只。取海马组织提取总RNA,进行Affimatrix miRNAs多物种芯片杂交,后行qRT-PCR验证,生物信息学分析来分析一系列差异性表达的miRNAs涉及的脑部疾病。预测特异性miRNAs的潜在靶点,后通过MAS分析系统对预测靶点进行G0功能分析及KEGG探讨涉及的信号通路分析,探讨在转录后水平差异性表达的microRNA可能参与的调节机制。
     结果深低温停循环组海马区有35个miRNAs与假手术组海马区比较有表达改变。13个miRNAs显著上调(包括miR-23a,miR-27a,miR-182等),22个miRNAs显著下调(包括miR-10b,miR-200c,miR-210,mIR-150,mi R-194,miR-122等)。对这些miRNAs靶点预测的生物信息学分析揭示多个靶点和生物功能涉及DHCA的病理生理过程,其中包括信号转导,转录调节,凋亡和炎症反应。
     结论DHCA后脑损伤涉及一系列miRNAs的表达改变,为深低温停循环脑损伤的机制研究提供了新的理论依据和研究思路。
     第三部分深低温停循环条件下血浆中脑特异性microRNA表达与脑损伤的相关性研究
     背景与目的深低温停循环后脑损伤神经功能损伤情况的诊断及后期神经功能恢复情况的判断是心外科术后心外科医师及体外循环灌注师共同面临的挑战。开发新的特异性的诊断标记物是改进诊断、改善预后的关键环节。脑损伤后血液学检测是一种能够相对容易的获得的生化测定来源。本研究在前期深低温停循环动物实验研究的基础上,测定血液中脑损伤相关特异性microRNA的表达改变,并同时对患者的神经系统损伤状态进行国际公认的神经计量评分,从而找出与脑损伤密切相关的特异性microRNA,为脑损伤的诊断和评定提供理论依据。
     方法在伦理委员会批准的前提下,临床上随机选择21例主动脉夹层患者,拟行深低温停循环顺行性选择性脑灌注条件下全弓置换术。按照加拿大神经量表(CANADIAN NEUROLOGICAL SCALE, CNS)对术后不同时间点病人的神经状况进行评分。保存深低温停循环前及术后不同时间点的患者血液,提取总RNA。设计miR-194、miR-200c、miR-122、miR-10b特异性的茎环引物。实时荧光定量PCR的方法检测不同时点血浆样本4种microRNA的表达差异。最后,对差异性表达的miRNAs与CNS评分进行相关性分析。
     结果深低温停循环后病人血浆中miR-194的表达在术后0h,术后12h,术后18h,术后24h,术后36h时间点与术前相比明显降低(P=0.000),深低温停循环术后12小时比术后18h时点的miR-194表达显著较低(P=0.012),深低温停循环术后12小时比术后18h时点的miR-194表达显著较低(P=0.000)。深低温停循环后,miR-194在停循环术后各个时点都显著性降低,术后12h,病人血浆中的miR-194水平达到最低。miR-194的表达2-△CT(×103)值术前1.2629±0.3622。miR-194的表达2-△CT(×103)值术后0.6699±0.3896。术前与术后有显著的统计学差异(P=0.005)。结果显示深低温停循环前及深低温停循环后各个时间点,血液中miR-194的表达改变与深低温停循环前后的加拿大神经量表评分成正相关(r=0.574,P=0.000),拟合优度检验R2=0.33。miR-200c、miR-10b、miR-122与CNS评分没有显著相关性。
     结论深低温停循环前及深低温停循环后各个时间点,血液中miR-194的表达改变与深低温停循环前后的神经功能评分成正相关,反应血液中miR-194的表达改变与深低温停循环脑神经功能异常相关,提示miR-194能够作为神经功能损伤的标记物。后续还需对miR-194参与的功能进行进一步研究。
General design of the study Deep hypothermic circulatory arrest commonly used in aortic surgery and complex congenital heart disease correction surgery. Deep hypothermic circulatory arrest can create no blood and quiet operative field by lowering the temperature at the same time stop the circulation.Brain injury after deep hypothermic circulatory arrest can not be avoided. In this study, we design three aspects to discuss deep hypothermic circulatory arrest brain damage and brain protection comprehensively. Provide a comprehensive strategy for deep hypothermic circulatory arrest and cerebral injury and a new direction and ideas for cerebral protection.
     The first part of the study is NIRS and TCD monitoring for deep hypothermic circulatory arrest.The purpose of this study is through the analysis of VmMCA flow and cerebral oxygen saturation to explore most suitable selective cerebral perfusion flow rate for DHCA and ASCP.Use cerebral oxygen saturation as a reference for clinical brain perfusion flow rate, to minimize the impact for deep hypothermic circulatory arrest on cerebral blood supply and oxygen to provide a theoretical basis. In this study we find thatthe middle cerebral artery flow velocity and cerebral oxygen saturation and venous oxygen saturation was significantly lower compared with that indes before deep hypothermic circulatory arrest.Flow spectrum of the middle cerebral artery after aortic cross-clamping can clearly see microthrombus signal.that may suggests that micro-bolt into the brain during deep hypothermic circulatory arrest and brain function maybe have some influence. That result prompted us to further study for study the pathophysiology of deep hypothermic circulatory arrest, finally to provide effective protection of the cerebral injury.
     The second part of this study, on the basis of preliminary studies,we establish piglet deep hypothermia circulatory arrest model to explore the post-transcriptional regulation mechanism of deep hypothermic circulatory arrest in-depth molecular and genetic level.By microarray technique, we explode dyregulatied23microRNAs, that including of miR-194, miR-200c. miR-122et al. And bioinformatic analysis found that those microRNAs involved in a variety of brain injury related diseases, and the signal transduction pathway.
     The third part of this study, on the basis of preliminary studies using animal models of DHCA, and basic on the microarray results, we collected patient's blood who undergoing DHCA, detect the different expression of these microRNA before and after DHCA at different time points. Meanwhile, the expression level of microRNA and CNS score correlation analysis reflected that miR-194in patients with deep hypothermic circulation and brain functional status has a good correlation.
     All in all, The choice of the appropriate flow rate and the monitoring of brain function improvement during deep hypothermic circulation arrest, and the exploration of deep hypothermic circulatory arrest mechanism, even on the basis of brain tissue microRNA research of deep hypothermic circulatory arrest, other drugs and non-drug application of therapeutic interventions will help the development cerebral protection of DHCA. All these delevlopment will bring the patient of the complexity of vascular disease and complex congenital heart disease patients the Gospel.
     Part I Real-Time Continuous Neuromonitoring Combines Transcranial Cerebral Doppler with Near-Infrared Spectroscopy cerebral oxygen saturation during deep hypothermic circulatory arrest
     Objective The purpose of this investigation was to use combined transcranial cerebral doppler (TCD) and near-infrared spectroscopy cerebral oxygen saturation (NIRS) during total aortic arch replacement (TAAR) to monitor middle cerebral artery blood flow velocity and regional cerebral oximetry (rSO2) changes to provide a clinical basis for protective measures that may decrease injury of the central nervous system.
     Methods Consecutive12adult patients underwent deep hypothermic circulatory arrest (DHCA) and antegrade selective cerebral perfusion (ASCP) during TAAR. A TCD probe was placed at the temporal windows after induction of anesthesia and the NIRS probe placed on the forehead of patients to collect preioperative. intraoperative. and postoperative hemodynamic parameters, and cerebral blood flow (CBF) and rSO2during cardiopulmonary bypass (CPB).
     Result In this retrospective case series, all patients survived, and there were no postoperative neurologic complications. There was no significant correlation between the mean arterial pressure and rSO2. The middle cerebral artery mean velocity (VmMCA) and rSO2were significantly correlated, and main pump flow significantly correlated with rSO2. After ASCP, VmMCA, rSO2, and venous oxygen saturation were significantly lower than before ASCP, but VmMCA and rSO2returned to pre-CPB levels postoperatively. After off pump, the flow of ASCP showed a significant positive correlation with VmMCA and rSO2. During DHCA when ASCP flow was lower than5ml/kg/min, TCD could not detect the MCA. Blood flow signal. When the flow of ASCP was above keeping around10ml/kg/min, MCA CBF velocity was maintained and rSO2>45%.
     Conclusion The combination of TCD and NIRS can be effective in monitoring brain function during DHCA with ASCP and may provide a guide for decreasing brain injury during the TAAR procedure.
     Part Ⅱ MicroRNAs Expression Profiling of Cerebral Injury in the Piglet Model of Cardiopulmonary Bypass Undergoing Deep Hypothermic Circulatory Arrest.
     Objective The cerebral injury after DHCA is serious problem and little is known about this molecular mechanism. In this study, we constructed DHCA piglet model to investigate expression profile of miRNAs associated with DHCA brain injury
     Materials and Methods DHCA model was conducted by six male piglets (2.0-2.5kg) including three from the DHCA group and three from the Sham group, hippocampus were harvested for miRNA microarray analysis. All microarray data were analyzed by Significance Analysis of Microarrays (SAM), and this result was further confirmed by qRT-PCR assay, biological information analysis to predict the target of the panels of miRNAs, then the GO analysis to find the function of the target by MAS.
     Results Thirty-five miRNAs were differentially expressed in hippocampus after DHCA procedure. Thirteen miRNAs (miR-23a, miR-27a. miR-182, et al) were significantly up-regulated and twenty-two miRNAs (miR-10b, miR-200c, miR-210, miR-150, et al) were down-regulated in DHCA hippocampus. Bioinformatic analysis of the predicted targets for this panel of miRNAs revealed multiple protein targets, biological processes and functions involved in pathphysiology of DHCA cerebral injury including signal transduction, transcriptional regulation, apoptosis, and inflammatory.
     Conclusion DHCA cerebral injury involves a set of miRNAs dysregulated. miR-10b, miR-200c, miR-210, miR-150, miR-23a, et al play important role in regulate cerebral injury.
     Part Ⅲ Expression profile of brain microRNAs in circulation is the sensitive biomarker of brain injury during deep hypothermic circulatory arrest
     Objective Diagnosis of the brain injury, detection of neuropsychological changes, and the judgment of neurological function are the common challenges of cardiac surgeon and perfusionists. The development of new specific biomarker is the key part to improve diagnosis and prognosis of deep hypothermic circulatory arrest brain injury. Hematology testing is a relatively easy access to biochemical measurement. In this study, basic on our previous microarray result about deep hypothermic circulatory arrest in piglet module. We choose significantly express microRNA to detect the expression change among the different time of DHCA. We purpose of this study is identify specific microRNA which is closely related to the brain injury and provide a theoretical basis for assessment of neurological injury.
     Materials and Methods Subject to the approval of the Ethics Committee, we selected21patients with aortic dissection randomly with proposed total arch replacement during deep hypothermic circulatory arrest and antegrade selective cerebral perfusion. Neurological conditions of patients with preoperative and postoperative different time points scored in accordance with the Canadian Neurological Scale (CANADIAN NEUROLOGICAL SCALE, CNS). We saved the blood of patients at different time points, extracted total RNA, designed miR-194, miR-200c, miR-122, miR-10b-specific stem-loop primers. Real-time quantitative PCR method to detect different point of blood samples of four kinds of microRNA expression differences. Finally, analysis correlation of differentially expressed miRNAs and CNS score.
     Results Deep hypothermic circulatory arrest, miR-194expression of the patient's blood at postoperative0h,12h,18h,24h, and36h time points compared with preoperative decreased significantly (P=0.000). MiR-194expression2-△CT (×103) value of preoperative is1.2629±.3622. MiR-194expression2-△CT (×103) value of postoperative is0.6699±3896. Before and after surgery have a statistically significant difference (P=0.005). After deep hypothermic circulatory arrest, miR-194level at postoperative12h is minimum. The results also showed that the Canadian Neurological Scale scores with miR-194's expression changes in blood with deep hypothermic circulatory arrest was positively related (r=0.574, P=0.000), to be co-goodness test R2=0.33. But miR-200c, miR-10b, miR-122and CNS score no significant correlation.
     Conclusion pre-and post-Deep hypothermic circulatory arrest the expression changes of miR-194and CNS score a positive correlation, the reflected that expression changes of miR-194in the blood correlated with neurological dysfunction, suggesting that miR-194can be used as biomarkers of neurological deficit. Follow-up study will focus on the function of miR-194participate in future.
引文
[1]McCullough JN, Zhang N, Reich DL, et al:Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann Thorac Surg 67:1895-1899,1999.
    [2]Reich DL, Uysal S, Sliwinski M, et al:Neuropsychologic outcome after deep hypothermic circulatory arrest in adults. J Thorac Cardiovasc Surg 117:156-163, 1999.
    [3]Stier GR, Verde EW:The postoperative care of adult patients exposed to deep hypothermic circulatory arrest. Semin Cardiothorac Vase Anesth 11:77-85,2007.
    [4]Gaynor JW, Nicolson SC, Jarvik GP, Wernovsky G, Montenegro LM, Burnham NB, Hartman DM, Louie A, Spray TL. Clancy RR. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures. J Thorac Cardiovasc Surg.2005; 130:1278-86.
    [5]Roach GW, Kanchuger M, Mangano CM, Newman M, Nussmeier N. Wolman R, Aggarwal A, Marschall K, Graham SH, Ley C. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med.1996; 335:1857-63.
    [6]Habib RH, Zacharias A, Sehwann TA, et al. Adverse effects of low hematoerit during cardiopulmonary bypass in the adult:Should current practice be changed. J Thorac Cardiovase Surg,2003,125:1438.
    [7]Guarracino F. Cerebral monitoring during cardiovascular surgery. Curt Opin Anaesthesiol.2008,21:50-54.
    [8]Van dijk D, Spoor M, Hijman R, et al,Cognitive and cardiac outcomes 5 years after off-pump vs on-pump coronary artery bypass graft surgery. JAMA,2007,297:701-708.
    [9]Svensson L G,Crawford ES,Hess KR et al.Deep hypothermia with circulatory arrest: detorminants of stroke and early mortality In 656 patients. J Thorac.Cardiovasc Surg,1993,106:19-31.
    [10]Jobsis FF, Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J].Science.1977.198:1264-1267.
    [11]Marina Svyatets, Kishore Tolani,, Ming Zhang, Gene Tulman, and Jean Charchaflieh. Perioperative Management of Deep Hypothermic Circulatory Arrest. Journal of Cardiothoracic and Vascular Anesthesia, Vol 24, No 4 (August),2010:644-655.
    [12]McCormick PW, Stewart M, Goetting MG et al. Noninvasive cerebral optical spectroscopy for monitoring cerebral oxygen dehvcry and hemodynamics[J].Critical Care Medicine,1991,19:89-97.
    [13]McComfick PW, Stewart M, Goetting MG et al. Reginat cerebro-vascular oxygen saturation measured by optical spectroscopy in humans[J].Stroke,1991,22:596-602.
    [14]Jobsis FF. Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 1977; 198:1264-1267.
    [15]Nollert G, Shi□oka T, Jonas RA. Near infrared spectrophotometry in cardiac surgery. Thorac Cardiovasc Surg 1998; 46:167-175.
    [16]Cope M and Delpy DT. System for long-term measurement of cerebral, blood and tissue oxygenation on infants by near-infrared transillumination [J].Med. Biol. Eng. Comput,1988,26:289-294.
    [17]Nollert G, Jonas RA, Reichart B. Optimizing cerebral oxygenation during cardiac surgery:a review of experimental and clinical investigations with near infrared spectrophotometry. Thorac Cardiovasc Surg.2000 Aug;48(4):247-53.
    [18]Kirkpatriek PJ, Lam J,AI. Rawi P.et al. Definition thresholds for critical ischemia by using near-infrared spectroscopy in the adult brain.J Neurosurg.1998,89:389.394.
    [19]Gold JP, Charlson ME, Williams-Russo P, et al. Improvement of outcomes after coronary artery bypass. A randomized trial comparing intraoperative high versus low mean arterial pressure[see comments]. J Thorac Cardiovasc Surg,1995,110: 1302-1311.
    [20]Hirofumi O, Otone E, Hiroshi I, et al:The effectiveness of regional cerebral oxygen saturation monitoring using near-infrared spectroscopy in carotid endarterectomy. J Clin Neurosci 10:79-83,2003.
    [21]Orihashi Kazumas, Sneda T, Okada K, et al.Near-infrared pectroscopy for monitoring cerebral ischemia during elective cerebral perfusion. European Journal of ardiothoracic Surgery,2004,26:907-911.
    [22]Murkin JM:NIRS:A standard of care for CPB vs. an evolving standard for selective cerebral perfusion.J Extra Corpor Techno 141:P11-P14,2009.
    [23]Vets P, Broecke P, Adriaensen H, et al.Cerebral oximetry in patients undergoing carotid endarterectomy:preliminary results. Acta Anaesthesiol Belg,2004,55: 215-220.
    [24]Hou X, Ding H, Tang Y, et al.Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy. Physiol Meas.2007.28:1251-1265.
    [25]Daubeney PE, Smith DC, Pilkington SN,et al.Cerebral oxygenation during paediatric cardiac surgery:Identification of vunerable periods using near infrared spectroscopy. Eur J Cardiothorae Surg,1998,13:370-377.
    [26]Mc cormlek PW, Stemart M. Goetting MG, et al.Regional cerebwvaseular oxygen saturation measured by optical spectroscopy in humans. Stroke,1991.22:596-602.
    [27]Toet MC, Flinterman A, Laar I, Vries JW, Bennink GB, Uiterwaal CS, Bel F.Cerebral oxygen saturation and electrical brain activity before, during, and up to 36 hours after arterial switch procedure in neonates without pre-existing brain damage:its relationship to neurodevelopmental outcome. Exp Brain Res. 2005;165(3):343-50. Epub 2005 Jun 7.
    [28]Abdul-Khaliq H, Troitzsch D. Schubert S, Wehsack A, Bottcher W, Gutsch E,Hubler M, Hetzer R, Lange PE. Cerebral oxygen monitoring during neonatal cardiopulmonary bypass and deep hypothermic circulatory arrest. Thorac Cardiovasc Surg.2002 Apr;50(2):77-81.
    [29]Joshi B, Ono M, Brown C, Brady K, Easley RB, Yenokyan G, Gottesman RF, Hogue CW. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass. Anesth Analg.2012 Mar;114(3):503-10.
    [30]Brady K, Joshi B, Zweifel C, Smielewski P, Czosnyka M, Easley RB, Hogue CW Jr.Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke.2010 Sep;41(9):1951-6.
    [31]Aaslid R, MarkwaJder TM, Nomes H. Noninvasive transcranial Doppler ultrasound recording of now Velocity in basal cerebral arteries. J Neurosurg.1982,57(6): 769-774.
    [32]Babikian VL, Feldmann E, Wechsler LR, et al.Transcranial Doppler ultra-sonography:year 2000 update. J Neuroimaging.2000,10(2):101-15.
    [33]Polito A, Ricci Z, Di Chiara L, Giorni C, Iacoella C, Sanders SP, Picardo S.Cerebral blood flow during cardiopulmonary bypass in pediatric cardiac surgery:the role of transcranial Doppler--a systematic review of the literature.Cardiovasc Ultrasound. 2006 Dec 13;4:47. Review.
    [34]Roberts HC, Dillon W P, Smith W S, Dynamic CT perfusion to assess the effect of carotid revascularization in chronic cerebral ischemia. Am J Neuroradiol.2000, 21(2):421-425.
    [35]Jain R, Hoeffner EG, DeceikiS JP. et al.Carotid perfusion CT with balloon occlusion and acetazolamide challenge test feasibility. Radiology.2004,231(3): 906-913.
    [36]Lindegaard K-F, Lundar T, Wiberg J. Sjoberg D, Aaslid R, Nornes H:Variations in middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements.Stroke 1987,l18:1025-30.
    [37]Weyland A, Stephan H, Kazmaier S, Weyland W, Schorn B, Grune F, Sonntag H: Flow Velocity Measurements as an Index of Cerebral Blood Flow. Anesthesiology 1994.81:1401-10.
    [38]Bishop CCR, Powell S, Rutt D, Browse NL:Transcranial Doppler measurement of middle cerebral artery flow velocity:a validation study. Stroke 1986,17:913-5.
    [39]Rosemberg A, Narayan V, Jones D:Comparison of anterior cerebral artery blood flow velocity and cerebral blood flow during hypoxia. Pediatric Research 1985, 19:67-70.
    [40]Taylor R, Burrows F, Bissonnette B:Cerebral pressure-flow velocity relationship during hypothermic cardiopulmonary bypass in neonates and infants. Anesth Analg 1992,74:636-42.
    [41]Greeley W, Ungerlider R, Kern F, Brusino G, Smith R, Reves J:Effect of cardiopulmonary bypass on cerebral blood flow in neonates, infants and children. Circulation 1989,80(suppll):209-215.
    [42]Greeley WJ, Kern FH, Ungerleider RM, Boyd J, Quill T, Smith Rf, Baldwin B, Reves J:The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants and children. J Thorac Cardiovasc Surg 1991,101:783-94.
    [43]Kurth CD, Levy WJ, McCann J. Near-infrared spectroscopy cerebral oxygen saturation thresholds for hypoxia-ischemia in piglets. J Cereb Blood Flow Metab. 2002,22:335-341.
    [44]Dent CL, Spaeth JP, Jones BV, et al. Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J Thorac Cardiovasc Surg 2005; 130:1523-1530.
    [45]Al-Rawi PG, Kirkpatrick PJ. Spectroscopy Tissue Oxygen Index:Thresholds for Cerebral Ischemia Using Near-Infrared. Stroke.2006; 37; 2720-2725.
    [46]Molinari F, Liboni W, Grippi G, et al. Relationship between oxygen supply and cerebral blood flow assessed by transcranial Doppler and near-infrared spectroscopy in healthy subjects during breath-holding. Journal of NeuroEngineering and Rehabilitation.2006.3:16.
    [47]Vernieri F, Tibuzzi F, Pasqualetti P, et al. Transcranial doppler and near-infrared spectroscopy can evaluate the hemodynamic effect of carotid artery occlusion. Stroke 2004,35:64-70.
    [48]Abdul-Khaliq H, Schubert S, Troitzsch D, Huebler M, Boettcher W, Baur MO,Lange PE. Dynamic changes in cerebral oxygenation related to deep hypothermia and circulatory arrest evaluated by near-infrared spectroscopy. Acta Anaesthesiol Scand. 2001 Jul;45(6):696-701.
    [49]Brady K, Joshi B, Zweifel C, et al. Real-time continuous monitoring of cerebral blood flow autoregulation using Near-Infrared Spectroscopy in patients undergoing cardiopulmonary bypass. Stroke,2010; published online Jul 22.
    [50]Yu QJ, Sun LZ, Chang Q, et al. Monitoring of antegrade selective cerebral perfusion for aortic arch surgery with transcranial doppler ultrasonography and near-infrared spectroscopy. Chinese Medical Journal,2001,114 (3):257-261.
    [51]Steiner L, Pfister D, Strebel S, et al. Near-infrared spectroscopy can monitor dynamic cerebral autoregulation in adults. Neurocrit Care.2009; 10:122-128.
    [52]Wagerle L, Russo P, Dahdah N, et al. Endothelial dysfunction in cerebral microcirculation during hypothermic cardiopulmonary bypass in newborn lambs. J Thorac Cardiovasc Surg.1998; 115:1047-1054.
    [53]Di Bartolomeo R, Pacini D, Di Eusanio M, et al. Antegrade selective cerebral perfusion during operations on the thoracic aorta:our experience. Ann Thorac Surg 2000; 70:10-16.
    [54]Jonsson O, Morell A, Zemgulis V, Lundstr m E, Tovedal T, Einarsson GM, Thelin S, Ahlstrim H, Bjirnerud A, Lennmyr F. Minimal safe arterial blood flow during selective antegrade cerebral perfusion at 20°centigrade. Ann Thorac Surg.2011 Apr;91(4):1198-205. Epub 2011 Feb 25.
    [55]Usui A, Oohara K, Murakami F, Ooshima H, Kawamura M, Murase M. Body temperature influences regional tissue blood flow during retrograde cerebral perfusion. J Thorac Cardiovasc Surg.1997 Sep;114(3):440-7.
    [56]Kawata M, Sekino M, Takamoto S, Ueno S, Yamaguchi S, Kitahori K, Tsukihara H, Suematsu Y, Ono M, Motomura N, Morota T, Murakami A. Retrograde cerebral perfusion with intermittent pressure augmentation provides adequate neuroprotection: diffusion-and perfusion-weighted magnetic resonance imaging study in an experimental canine model. J Thorac Cardiovasc Surg.2006 Oct;132(4):933-40.
    [57]Numata S, Thomson DS, Seah P, Singh T. Simplified cerebral protection using unilateral antegrade cerebral perfusion and moderate hypothermic circulatory arrest. Heart Lung Circ.2009 Oct;18(5):334-6. Epub 2009 Aug 13.
    [58]Haldenwang PL, Bechtel M, Moustafine V, Buchwald D, Wippermann J, Wahlers T, Strauch JT. State of the art in neuroprotection during acute type A aortic dissection repair. Perfusion.2012 Mar;27(2):119-26. Epub 2011 Nov 2.
    [59]Huang FJ, Wu Q, Ren CW, Lai YQ, Yang S, Rui QJ, Xu SD. Cannulation of the innominate artery with a side graft in arch surgery. Ann Thorac Surg.2010 Mar;89(3):800-3.
    [60]Senanayake E, Komber M, Nassef A, Massey N, Cooper G. Effective cerebral protection using near-infrared spectroscopy monitoring with antegrade cerebral perfusion during aortic surgery. J Card Surg.2012 Mar;27(2):211-6.
    [61]Djaiani G, Fedorko L, Borger M, et al.Mild to moderate atheromatous disease of the thoracic aorta and new ischemic brain lesions after conventional coronary artery bypass graft surgery.Stroke.2004,35:E356.
    [62]Abu-Omar Y. Balacumaraswami L, Pigott DW, et al. Solid and gaseous cerebral microembolization during off-pump, on-pump, and open cardiac surgery procedures.J Thorac Cardiovasc Surg.2004,127:1759-1765.
    [63]Stump DA. Embohe factors associated with cardiac surgery. Semin Cardiotherac Vase Anesth.2005.9:151-152.
    [64]Brooker RF, Brown WR, Moody DM, et al. Cardiotomy suction:a major reduce of brain lipid emboli during cardiopulmonary bypass.Ann Thorac Surg,1998,65:1651-1655.
    [65]Shreiner RS,Rider AR,Myers JW,et al.Mieroemboli detection and classification by innovative ultrasound technology during simulated neonatal cardiopulmonary bypass at different flow rates,perfusion modes.and perfusate temperatures.ASMO J,2008,54:316-324.
    [66]Brucher R,Russell D.Automatic online embohs detection and artifact rejection with the first multifrequency transcranial Doppler.Stroke,2002,33:1969-1974.
    [1]McCullough JN, Zhang N, Reich DL, et al:Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann Thorac Surg 67:1895-1899,1999.
    [2]Reich DL, Uysal S, Sliwinski M, et al:Neuropsychologic outcome after deep hypothermic circulatory arrest in adults. J Thorac Cardiovasc Surg 117:156-163, 1999.
    [3]SamuelA, Tisherman. Hypothermia and injury. Curt Opin Crit Care,2004,10: 512-519.
    [4]Bigelow WG, CallaghaIl JC, Hoops VA. General hypothermia for experimental intracardiac surgery: the use of artificial pacemaker for cardial standstill and cardiac rewarming in general hypothemia. Ann Surg,1950,132:531-543.
    [5]Drew CE, Anderson IM. Profound hypothermia in cardiac surgery:report of three cases. Lancet,1959,1:748-750.
    [6]Svensson LG, Nadolny EM, Penney DL, Jacobson J, Kimmel WA, Entrup MH,D'Agostino RS. Prospective randomized neurocognitive and S-100 study of hypothermic circulatory arrest, retrograde brain perfusion, and antegrade brain perfusion for aortic arch operations. Ann Thorac Surg.2001 Jun;71(6):1905-12.
    [7]OconnorJV, Wilding T, FarIner P, et al. The protective effect of profound hypothermia on the canine central nervous system during one hour of circulatory arrest[J]. Ann Thorac Surg,1986, Mar; 41(3):255-259. Su XW, Undar A. Brain protection during pediatric cardiopulmonary bypass.Artif Organs.2010 Apr;34(4):E91-102.
    [8]Ditsworth D, Priestley MA, Loepke AW, Ramamoorthy C, McCann J, Staple L, Kurth CD. Apoptotic neuronal death following deep hypothermic circulatory arrest in piglets. Anesthesiology.2003 May;98(5):1119-27.
    [9]Clancy RR, McGaurn SA, Wernovsky G, Gaynor JW, Spray TL, Norwood WI, Jacobs ML, Goin JE. Risk of seizures in survivors of newborn heart surgery using deep hypothermic circulatory arrest. Pediatrics.2003; 111:592-601.
    [10]Allen JG, Weiss ES, Wilson MA, Arnaoutakis GJ, Blue ME, Talbot CC Jr, Jie C, Lange MS, Troncoso JC, Johnston MV, Baumgartner WA. Hawley H. Seiler Resident Award. Transcriptional profile of brain injury in hypothermic circulatory arrest and cardiopulmonary bypass. Ann Thorac Surg.2010; 89:1965-71.
    [11]Sheikh AM, Barrett C, Villamizar N, Alzate O, Miller S, Shelburne J, Lodge A, Lawson J, Jaggers J. Proteomics of cerebral injury in a neonatal model of cardiopulmonary bypass with deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg.2006; 132:820-8.
    [12]Ioshikhes I, Roy S, Sen CK. Algorithms for mapping of mRNA targets for microRNA. DNA Cell Biol 26:265-272,2007.
    [13]Sen CK. MicroRNAs as new maestro conducting the expanding symphony orchestra of regenerative and reparative medicine. Physiol Genomics 43:517-520.2011.
    [14]Sen CK, Roy S. miRNA:licensed to kill the messenger. DNA Cell Biol 26: 193-194,2007.
    [15]Numakawa T, Richards M. Adachi N. Kishi S, Kunugi H, Hashido K. MicroRNA function and neurotrophin BDNF. Neurochem Int.2011; 59:551-8.
    [16]Cho JA, Park H, Lim EH, Lee KW. MicroRNA expression profiling in neurogenesis of adipose tissue-derived stem cells. J Genet.2011; 90:81-93.
    [17]Truettner JS, Alonso OF, Bramlett HM. Dietrich WD. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats.J Cereb Blood Flow Metab.2011;31:1897-907.
    [18]Fiedler J, Thum T. MicroRNAs Looping Around Angiogenesis. Arterioscler Thromb Vasc Biol.2011; 31:2367-8.
    [19]Saugstad JA. MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection. and neurodegeneration. J Cereb Blood Flow Metab.2010; 30:1564-76.
    [20]Madathil SK, Nelson PT, Saatman KE, Wilfred BR. MicroRNAs in CNS injury: potential roles and therapeutic implications. Bioessays.2011; 33:21-6.
    [21]Weng H, Shen C, Hirokawa G, Ji X, Takahashi R, Shimada K, Kishimoto C, Iwai N. Plasma miR-124 as a biomarker for cerebral infarction. Biomed Res.2011; 32: 135-41.
    [22]Tan JR, Koo YX, Kaur P, Liu F, Armugam A, Wong PT, Jeyaseelan K. microRNAs in stroke pathogenesis. Curr Mol Med.2011; 11:76-92.
    [23]Madathil SK, Nelson PT, Saatman KE, Wilfred BR. MicroRNAs in CNS injury: potential roles and therapeutic implications. Bioessays.2011; 33:21-6.
    [24]Zhao R, Cui Q, Yu SQ, et al. Antegrade cerebral perfusion during deep hypothermia circulatory arrest attenuates the apoptosis of neurons in porcine hippocampus. Heart Surg Forum.2009; 12(4):E219-24.
    [25]Talebizadeh Z. Butler MG, Theodoro MF. Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res.2008; 1: 240-50.
    [26]Sarachana T, Zhou R, Chen G, Manji HK, Hu VW. Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med.2010; 2:23.
    [27]Siegel C, Li J, Liu F, Benashski SE, McCullough LD. miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci U S A.2011; 108:11662-7.
    [28]Smalheiser NR, Lugli G, Rizavi HS, Zhang H, Torvik Ⅵ, Pandey GN, Davis JM, Dwivedi Y. MicroRNA expression in rat brain exposed to repeated inescapableshock:differential alterations in learned helplessness vs. non-learned helplessness. Int JNeuropsychopharmacol.2011; 14:1315-25.
    [29]Vasilescu C, Rossi S. Shimizu M, Tudor S, Veronese A, Ferracin M, Nicoloso MS, Barbarotto E, Popa M, Stanciulea O, Fernandez MH, Tulbure D, Bueso-Ramos CE, Negrini M, Calin GA. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS One.2009; 4:e7405.
    [30]Foley NH,Bray I, Watters KM, Das S, Bryan K, Bernas T, Prehn JH, Stallings RL. MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ.2011; 18: 1089-98.
    [31]Chai G, Liu N, Ma J, Li H, Oblinger JL, Prahalad AK, Gong M, Chang LS, Wallace M, Muir D, Guha A, Phipps RJ, Hock JM, Yu X. MicroRNA-10b regulates tumorigenesis in neurofibromatosis type 1. Cancer Sci.2010; 101:1997-2004.
    [32]Bourguignon LY, Wong G, Earle C, Krueger K, Spevak CC. Hyaluronan-CD44 interaction promotes c-Src-mediated twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to Rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. J Biol Chem.2010; 285:36721-35.
    [33]Godwin JG. Ge X, Stephan K, Jurisch A, Tullius SG, Iacomini J. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci U S A. 2010; 107:14339-44.
    [34]Lee ST, Chu K, Jung KH, Yoon HJ, Jeon D, Kang KM, Park KH, Bae EK, Kim M, Lee SK, Roh JK. MicroRNAs induced during ischemic preconditioning. Stroke. 2010; 41:1646-51.
    [35]Xiong M. Jiang L, Zhou Y, Qiu W, Fang L, Tan R, Wen P, Yang J. MiR-200 family regulates TGF-{beta}1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol.2011 Oct 19.
    [36]Magenta A, Cencioni C, Fasanaro P, Zaccagnini G, Greco S, Sarra-Ferraris G,Antonini A, Martelli F, Capogrossi MC. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ.2011; 18:1628-39.
    [37]Borze I, Scheinin I, Siitonen S, Elonen E, Juvonen E, Knuutila S. miRNA expression profiles in myelodysplastic syndromes reveal Epstein-Barr virus miR-BART13 dysregulation. Leuk Lymphoma.2011; 52:1567-73.
    [38]Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, Turner RJ, Jickling G. Sharp FR. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Melab.2010; 30:92-101.
    [39]Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y, Zheng C, Cheng Q, Chen S, Yang GY. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci (Elite Ed).2011; 3:1265-72.
    [40]Pulkkinen K, Malm T, Turunen M, Koistinaho J, Yla-Herttuala S. Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett.2008; 582:2397-401.
    [41]Amir G, Ramamoorthy C, Riemer RK, Reddy VM, Hanley FL. Neonatal brain protection and deep hypothermic circulatory arrest:pathophysiology of ischemic neuronal injury and protective strategies. Ann Thorac Surg.2005; 80:1955-64.
    [42]Gaynor JW, Nicolson SC, Jarvik GP, Wernovsky G, Montenegro LM, Burnham NB, Hartman DM, Louie A, Spray TL, Clancy RR. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures. J Thorac Cardiovasc Surg.2005; 130:1278-86.
    [43]Roach GW, Kanchuger M, Mangano CM, Newman M, Nussmeier N, Wolman R, Aggarwal A, Marschall K, Graham SH, Ley C. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med.1996; 335:1857-63.
    [44]Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH. Mark DB, Reves JG, Blumenthal JA; Neurological Outcome Research Group and the Cardiothoracic Anesthesiology Research Endeavors Investigators. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med.2001; 344:395-402.
    [45]Stier GR, Verde EW:The postoperative care of adult patients exposed to deep hypothermic circulatory arrest. Semin Cardiothorac Vasc Anesth 11:77-85,2007
    [46]Ergin MA, Uysal S, Reich DL, et al:Temporary neurological dysfunction after deep hypothermic circulatory arrest:A clinical marker of long-term functional deficit. Ann Thorac Surg 67:1887-1890,1999.
    [47]Ceriana P, Barzaghi N, Locatelli A, et al:Aortic arch surgery:Retrospective analysis of outcome and neuroprotective strategies.J Cardiovasc Surg (Torino) 39:337-342, 1998.
    [48]Svensson LG, Crawford ES, Hess KR, et al:Deep hypothermia with circulatory arrest. Determinants of stroke and early mortality in 656 patients. J Thorac Cardiovasc Surg 106:19-31,1993.
    [49]Chong SY, Chow MY, Kang DS, et al:Deep hypothermic circulatory arrest in adults undergoing aortic surgery:Local experience. Ann Acad Med Singapore 33:289-293, 2004.
    [50]Gandhi S, Pigula F:Strategies for aortic arch reconstruction without circulatory arrest in Franco KK, Verrier ED (eds):Advanced Therapy in Cardiac Surgery. Hamilton, London, BC Decker Inc,2003,pp 334-346.
    [51]Newburger JW, Jonas RA,Wernovsky G, et al:A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery.N Engl J Med 329:1057-1064,1993.
    [52]Amir G; Ramamoorthy C; Riemer RK, et al. Neonatal brain protection and deep hypothermic circulatory arrest:pathophysiology of ischemic neuronal injury and protective strategies [J]. Ann Thorac Surg,2005,80:1955-64.
    [53]Gaynor JW; Nicolson SC; Jarvik GP, et al. Increasing duration of deep hypothermic circulatory arrest is associated with an increased incidence of postoperative electroencephalographic seizures [J]. J Thorac Cardiovasc Surg,2005,130:1278-86.
    [54]Roach GW; Kanchuger M; Mangano CM, et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators [J]. N Engl J Med.1996,335:1857-63.
    [55]Newman MF; Kirchner JL; Phillips-Bute B. et al; Neurological Outcome Research Group and the Cardiothoracic Anesthesiology Research Endeavors Investigators. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery[J]. N Engl J Med.2001,344:395-402.
    [56]Clancy RR; McGaurn SA; Wernovsky G, et al. Risk of seizures in survivors of newborn heart surgery using deep hypothermic circulatory arrest [J]. Pediatrics.2003, 111:592-601.
    [57]Allen JG, Weiss ES, Wilson MA, et al. Hawley H. Seiler Resident Award. Transcriptional profile of brain injury in hypothermic circulatory arrest and cardiopulmonary bypass [J]. Ann Thorac Surg.2010,89:1965-71.
    [58]Dawson VL, Dawson TM. London ED, et al. Nitric oxide mediates glutamate neumtoxicity in primary cortical cultures[J]. Proc Natl Acad Sci USA.1991,88(14):6368-6371.
    [59]Alessandri B. Bullock R. Glutamate and its receptors in the pathophysiology ofbrain and spinal cord injuries[J]. Prog Brain Res,1998,116(14):303-330.
    [60]Butchel"SP. Bullock R. Graham DI, et al. Correlation between amino acid release and neuropathologic outcome in rat brain following middle cerebral artery occlusion[J]. Stroke,1990,21 (12):1727-1733.
    [61]Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury[J]. J Neurotrauma, 2000,17(10):871-890.
    [62]Murakami K Kondo T, Yang G, et al.Cold injury in mice:a model to study mechanisms of brain edema and neuronal apoptosis. Prog Neurobiol,1999,57(3):289-99.
    [63]Zheng Z, Zhao H Steinberg GK, et al.Cellular and molecular events underling ischemia-nduced neuronal apoptosis[J].Drag News Perspect,2003,16(12):497.503.
    [64]Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders [J].N Eng J Med,1994,330:613-622.
    [65]Liang BT.Protein kinase C-mediated preconditioning of cardiac myocytes:role of adenosine receptor and KATP channel[J].Am J Physiol,1997,273(2 Pt2):H847-853.
    [66]Lipton SA, Rosenberg PA, Excitatory amino acids as a final commonpathway for neurologic disorders[J]. N Eng J Med,1994,330:613-622.
    [67]O'Neill LA, Kaltschm idt C. NF-Kappa B:a crucial transcription factor for glial and neuronal cell function. T rends N Euro sci,1997,20(6):252-258.
    [68]Silverstein FS, Barks JD, Hagan P, et al. Cytokines and perinatal brain injury. Neurochem Int,1997,30(425):375-383.
    [69]Knoblach SM, Faden Al. Interleukin-10 improve outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury.Exp Nrurol,1998,153(1):143-151.
    [70]Kim JS.Cytokines and adhesion molecules in stroke and related diseases. J Neurol Sci,1996,137(2):67-78.
    [71]Holm in S, Math iesen T. Intracerebral ad ministration of interleuk-in-beta and induction of inflammation, apoptosis, and vasogenic edema. J Neuro surg, 2000,92(1):108-120.
    [72]Gourin CG, Shackford SR. Influence of percussion trauma on expression of intercellular adhesion molecule-1(ICAM-1) by human cerebral micro vascular endothelium. J Trauma,1996,41 (1):129-135.
    [73]Yang GY, Mao Y, Zhou LF. Expression of ICAM-1 is reduced in permanent focal cerebral ischemic mouse brain using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist. MolBrain Res,1999,65(2):143-150.
    [74]Tominaga T, Kure S, Narisawa K, et al. Evidence of apoptois cell death after focal cerebral ischemia.Brain Res,1993,624(1):32.
    [75]Xiong Y, Lin H, Chen BD, et al. Appearance of shortened Bcl-2 and Bax proteins and lack of evidence for apoptosis in rat fore-brain after severe experimental traumatic brain injury. Biochem Biophys Res,2001,286(2):401-405.
    [76]Gillardon F, Wickert H, Zinmmermann M. Up-regulation of bax and down-regulation of bcl-2 is associated with kainite-induced apoptosis in mouse brain. Neurosci Lett,1995,192(2):85-88.
    [77]Janicke RU, Sprengart ML, Wati MR, et al. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem, 1998,273(16):9357-9360.
    [78]Cheng Y, Deshmukh M, Costa A, et al. Caspase inhibitor afrords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest,1998,101(9):1992-1999.
    [79]Chopp M, Li Y, Zhang ZG. P53 expression in brain after middle cerebral artery occlusion in the rat. Biochem Biphys Res Commun,1992,182(3):1201-1207.
    [80]Nancy A, Nussmeier MD. Management of temperature during and after cardiac surgery. Tex Heart Inst J,2005,32:472-476.
    [81]Rees K, Beranek-Stanley M, Burke M, et al. (Cochrane Review). Chichester, UK:John Wiley & Sons; 2004. Hypothermia to reduce neurological damage following coronary artery bypass surgery. Vol Issue 2.
    [82]Grigore AM, Grocott HP, Mathew JP, et al. The rewarming rate and increased peak temperature alter neurocognitive outcome after cardiac surgery. Anesth Analg.2002, 94:4-10.
    [83]Menxies SA, Betx AL, Hoff BT, et al. Contribution of ions and al bumin to the formation and resolation of ishemia brain edema[J].J Neurosurg,l 993,78:257.
    [84]Weiss SJ.Tissue destruction by neutrophils[J],N Eng J Med,1989,320:365.
    [85]Gega A, Rizzo JA, Johnson MH, et al. Straight deep hypothermic arrest:experience in 394 patients supports its effectiveness as a sole means of brain preservation. Ann Thorac Surg.2007; 84:759-66.
    [86]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell.1993;75:843-54.
    [87]Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE. Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature.2000 Feb 24;403(6772):901-6.
    [88]Mendell JT, Olson EN. MicroRNAs in Stress Signaling and Human Disease. Cell.2012 Mar 16;148(6):1172-87.
    [89]Harfe BD. MicroRNAs in vertebrate development. Curr Opin Genet Dev. 2005:15:410-5.
    [90]Bartel DP.MicroRNAs:genomics. biogenesis, mechanism, and function. Cell. 2004;116:281-97.
    [91]Tan Gana NH, Victoriano AF, Okamoto T. Evaluation of online miRNA resources for biomedical applications. Genes Cells.2012 Jan; 17(1):11-27.
    [92]Montgomery RL, van Rooij E. Therapeutic advances in MicroRNA targeting. J Cardiovasc Pharmacol.2011 Jan;57(1):1-7.
    [93]Hurley J, Roberts D, Bond A, Keys D, Chen C. Stem-loop RT-qPCR for microRNA expression profiling. Methods Mol Biol.2012;822:33-52.
    [94]Galasso M, Elena Sana M. Volinia S. Non-coding RNAs:a key to future personalized molecular therapy? Genome Med.2010 Feb 18;2(2):12.
    [95]Sheikh AM; Barrett C; Villamizar N, et al. Proteomics of cerebral injury in a neonatal model of cardiopulmonary bypass with deep hypothermic circulatory arrest[J]. J Thorac Cardiovasc Surg.2006,132:820-8.
    [96]Numakawa T; Richards M; Adachi N, et al. MicroRNA function and neurotrophin BDNF [J]. Neurochem Int.2011,59:551-8.
    [97]Sheikh AM; Barrett C; Villamizar N, et al. Proteomics of cerebral injury in a neonatal model of cardiopulmonary bypass with deep hypothermic circulatory arrest[J]. J Thorac Cardiovasc Surg.2006.132:820-8.
    [98]Truettner JS; Alonso OF; Bramlett HM; Dietrich WD. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats [J]. J Cereb Blood Flow Metab.2011,31:1897-907.
    [99]Huang X, Le QT, Giaccia AJ. MiR-210 -micromanager of the hypoxia pathway.Trends Mol Med 16:230-237,2010.
    [100]Chan YC, Banerjee J. Choi SY, Sen CK.miR-210:The Master Hypoxamir.Microcirculation 19:215-223,2012.
    [101]Hu S. Huang M, Li Z. et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation.2010; 122:S124-31.
    [102]Fasanaro P, Greco S, Lorenzi M, et al. An integrated approach for experimental target identification of hypoxia-induced miR-210. J Biol Chem.2009; 284:35 134-43.
    [103]Fasanaro P, D'Alessandra Y, Di Stefano V, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem.2008; 283:15878-83.
    [104]Doebele C, Bonauer A. Fischer A, et al. Members of the micro RNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood.2010; 115:4944-50.
    [105]Valadi H, Ekstrom K, Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007; 9:654-9.
    [106]Sahoo S, Klychko E, Thorne T, et al. Exosomes From Human CD34+ Stem Cells Mediate Their Proangiogenic Paracrine Activity. Circ Res.2011; 109:724-8.
    [107]Alaiti MA, Ishikawa M, Masuda H, Simon DI, Jain MK, Asahara T, Costa MA.Up-Regulation of miR-210 by Vascular Endothelial Growth Factor in Ex Vivo Expanded CD34+Cells Enhances Cell-Mediated Angiogenesis.J Cell Mol Med. 2012 Feb 23.
    [108]Truettner JS; Alonso OF; Bramlett HM; Dietrich WD. Therapeutic hypothermia alters micro RNA responses to traumatic brain injury in rats [J]. J Cereb Blood Flow Metab.2011,31:1897-907.
    [109]Pulkkinen K; Malm T; Turunen M, et al. Hypoxia induces micro RNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210[J]. FEBS Lett.2008,582:2397-401.
    [110]Zeng L; Liu J; Wang Y, et al. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia [J]. Front Biosci (Elite Ed).2011,3:1265-72.
    [111]Jeyaseelan, K., Lim, K. Y., and Armugam, A. (2008) Micro RN A expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion.Stroke 39,959-966.
    [112]Chai G; Liu N; Ma J, et al. MicroRNA-10b regulates tumorigenesis in neurofibromatosis type 1[J]. Cancer Sci.2010,101:1997-2004.
    [113]Pulkkinen K, Malm T, Turunen M, Koistinaho J, Yla-Herttuala S. Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett.2008 Jul 9;582(16):2397-401.
    [114]Bourguignon LY; Wong G; Earle C, et al. Hyaluronan-CD44 interaction promotes c-Src-mediated twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to Rho-kinase-associated cytoskeleton activation and breast tumor cell invasion[J]. J Biol Chem.2010,285:36721-35.
    [115]Foley NH; Bray I; Watters KM, et al. MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2[J]. Cell Death Differ.2011,18:1089-98.
    [116]Lee ST; Chu K; Jung KH, et al. MicroRNAs induced during ischemic preconditioning [J]. Stroke.2010,41:1646-51.
    [117]Xiong M; Jiang L; Zhou Y, et al. MiR-200 family regulates TGF-{beta}1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression [J]. Am J Physiol Renal Physiol. 2012,302(3):F369-79.
    [118]Magenta A; Cencioni C; Fasanaro P, et al. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition [J]. Cell Death Differ.2011,18:1628-39.
    [119]Vasilescu C; Rossi S; Shimizu M, et al. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis [J]. PLoS One.2009,4:e7405.
    [120]Zhang B; Pan X. RDX induces aberrant expression of microRNAs in mouse brain and liver [J]. Environ Health Perspect.2009,117:231-40.
    [121]Buisson A, Lesne S, Docagne F, Ali C, Nicole O, MacKenzie ET, Vivien D.Transforming growth factor-beta and ischemic brain injury. Cell Mol Neurobiol.2003 Oct;23(4-5):539-50. Review.
    [122]Gomes FC, Sousa Vde O, Romao L. Emerging roles for TGF-beta1 in nervous system development. Int J Dev Neurosci.2005 Aug;23(5):413-24.Review.
    [123]Truettner JS, Suzuki T, Dietrich WD. The effect of therapeutic hypothermia on the expression of inflammatory response genes following moderate traumatic brain injury in the rat. Brain Res Mol Brain Res.2005 Aug 18; 138(2):124-34.
    [124]Arachchige Don AS, Tsang CK, Kazdoba TM, D'Arcangelo G, Young W, Steven Zheng XF. Targeting mTOR as a novel therapeutic strategy for traumatic CNS injuries.Drug Discov Today.2012 Apr 27.
    [125]Zhang W, Khatibi NH, Yamaguchi-Okada M, Yan J. Chen C, Hu Q, Meng H, Han H,Liu S, Zhou C. Mammalian target of rapamycin (mTOR) inhibition reduces cerebral vasospasm following a subarachnoid hemorrhage injury in canines. Exp Neurol.2012 Feb;233(2):799-806.
    [126]Shi GD, OuYang YP, Shi JG, Liu Y, Yuan W, Jia LS. PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway. Biochem Biophys Res Commun.2011 Jan 28;404(4):941-5. Epub 2010 Dec 23.
    [127]Koh PO. Melatonin prevents ischemic brain injury through activation of the mTOR/p70S6 kinase signaling pathway. Neurosci Lett.2008 Oct 17;444(1):74-8.
    [128]Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis. 2007Apr;26(1):86-93.
    [129]Niu LJ, Xu RX, Zhang P, Du MX, Jiang XD. Suppression of Frizzled-2-mediated Wnt/Ca(2+) signaling significantly attenuates intracellular calcium accumulation in vitro and in a rat model of traumatic brain injury. Neuroscience.2012 Apr 19.
    [130]Weber JT. Altered calcium signaling following traumatic brain injury. Front Pharmacol.2012;3:60. Epub 2012 Apr 12.
    [1]Seines OA, Goldsborough MA, Borowicz LM, et al. Neurobehavioural sequelae of cardiopulmonary bypass. Lancet.1999;353:1601-1606.
    [2]Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly:ISPOCD1 study. Lancet.1998;351:857-861.
    [3]Brown WR, Moody DM, Challa VR, et al. Longer duration of cardiopulmonary bypass is associated with greater numbers of cerebral microemboli. Stroke. 2000;31:707-713.
    [4]Challa VR, Moody DM, Troost BT. Brain embolic phenomena associated with cardiopulmonary bypass. J Neurol Sci.1993; 117:224-231.
    [5]Roach GW, Kanchuger M, Mangano C, et al. Adverse cerebral outcomes after coronary bypass surgery. N Engl J Med.1996;335:1857-1863.
    [6]Nelson PT, Wang WX, Rajeev BW (2008) MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18(1):130-8.
    [7]Redell JB, Liu Y, Dash PK (2009) Traumatic brain injury alters expression of hippocampal microRNAs:potential regulators of multiple pathophysiological processes. J Neurosci Res 87(6):1435-48.
    [8]Chen X, Ba Y, Ma L, Cai X, Yin Y, et al. (2008) Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997-1006.
    [9]Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, Jeyaseelan K. Expression profile of MicroRNAs in young stroke patients. PLoS One. 2009 Nov 2;4(11):e7689.
    [10]Galasso, M., Elena Sana, M.,& Volinia, S. (2010). Non-coding RNAs:A key to future personalized molecular therapy? Genome Med 2,12-14.
    [11]Cortez,M. A.,& Calin, G. A. (2009).MicroRNA identification in plasma and serum: A new tool to diagnose and monitor diseases. Expert Opin Biol Ther 9,703-711.
    [12]Avnit-Sagi, T., Kantorovich, L., Kredo-Russo, S., Hornstein, E., and Walker, M.D. (2009). The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS ONE 4, e5033.
    [13]Cordes, K.R., and Srivastava, D. (2009). MicroRNA regulation of cardiovascular development. Circ. Res.104,724-732.
    [14]Rogelj, B., and Giese, K.P. (2004). Expression and function of brain specific small RNAs. Rev. Neurosci.15,185-198.
    [15]Cogswell,J.P.,Ward J.,Taylor,I.A.,Waters,M.,Shi,Y.,Cannon,B., Kelnar, K., Kemppainen, J., Brown, D., Chen, C., Prinjha, R.K., Richardson, J.C., Saunders, A.M., Roses, A.D., and Richards, C.A. (2008). Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimers Dis.14,27-41.
    [16]Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M. Profiling of circulating micro RNAs:from single biomarkers to re-wired networks. Cardiovasc Res.2012 Mar 15;93(4):555-62.
    [17]Hunter,M. P.. Ismail, N., Zhang, X., Aguda, B. D., Lee, E. J., Yu, L.,et al. (2008). Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE 3, e3694.
    [18]Ason B, Darnell DK. Wittbrodt B, Berezikov E, Kloosterman WP, Wittbrodt J, et al. Differences in vertebrate microRNA expression. Proc Natl Acad Sci U S A 2006;103:14385-9.
    [19]Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W. Tuschl T. Identification of tissue-specific micro RNAs from mouse. Curr Biol 2002; 12:735-9.
    [20]Hung, E. C., Chiu, R.W.,& Lo, Y. M. (2009). Detection of circulating fetal nucleic acids:A review of methods and applications. J Clin Pathol 62,308-313.
    [21]Liu CJ, Lin SC, Yang CC, Cheng HW, Chang KW. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck.2012 Feb;34(2):219-24.
    [22]Nagler RM. Saliva as a tool for oral cancer diagnosis and prognosis. Oral Oncol 2009;45:1006-1010.
    [23]Park NJ, Yu T, Nabili V, et al. RNAprotect saliva:an optimal room-temperature stabilization reagent for the salivary transcriptome. Clin Chem 2006;52:2303-2304.
    [24]Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18:997-1006.
    [25]Mitchell, P.S., Parkin, R. K., Kroh, E. M., Fritz, B. R.,Wyman, S. K. Pogosova-Agadjanyan,E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105, 10513-10518.
    [26]Gilad S, Meiri E, Yogev Y, et al. Serum microRNAs are promising novel biomarkers. PLoS ONE 2008;3:e3148.
    [27]Zubakov D, Boersma AW, Choi Y, van Kuijk PF. Weimer EA, Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med 2010; 124:217-226.
    [28]Ng, E.K., Chong, W.W., Jin, H., Lam, E.K., Shin, V.Y., Yu, J., Poon, T.C., Ng, S.S., and Sung, J.J. (2009). Differential expression of microRNAs in plasma of patients with colorectalcancer:a potential marker for colorectal cancer screening. Gut 58, 1375-1381.
    [29]Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9:654-659.
    [30]Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Koppel T, Jahantigh MN, Lutgens E. Wang S, Olson EN, Schober A, Weber C: Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2009;2:ra81.
    [31]Tanaka, M., Oikawa, K., Takanashi, M., Kudo. M., Ohyashiki, J., Ohyashiki, K., and Kuroda, M. (2009). Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS ONE 4, e5532.
    [32]Miyachi, M., Tsuchiya, K., Yoshida, H., Yagyu, S., Kikuchi. K., Misawa, A., et al. (2010).Circulating muscle-specific microRNA, miR-206, as a potential diagnostic marker for rhabdomyosarcoma. Biochem Biophys Res Commun 400,89-93.
    [33]Wang K, Zhang S, Marzolf B, Troisch P, Brightman A, Hu Z, et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury.Proc Natl Acad Sci U S A 2009; 106:4402-7.
    [34]Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK,Johnson JM, Sina JF, Fare TL, Sistare FD, Glaab WE. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem.2009 Nov;55(11):1977-83.
    [35]Rothermundt M, Peters M, Prehn JH, Arolt V. S100B in brain damage and neurodegeneration Microsc Res Tech 2003;60:614-32.
    [36]Vaage J, Anderson R. Biochemical markers of neurologic injury in cardiac surgery: the rise and fall of S100beta. J Thorac Cardiovasc Surg 2001; 122:853-5.
    [37]Persson L, Hardemark HG,Gustafsson J, Rundstrom G, Mendel-Hartvig I, Esscher T, Pahlman S. S-100 protein and neuron-specific enolase in cerebrospinal fluid and serum:markers of cell damage in human central nervous system. Stroke,1987;18:911-8.
    [38]Anand N. Stead LG. Neuron-specific enolase as a marker for acute ischemic stroke:a systematic.review. Cerebrovasc Dis 2005;20:213-9.
    [39]Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ. Release of glial tissue-specific proteins after acute stroke:a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke 2000;31:2670-7.
    [40]Pelsers MM, Glatz JF. Detection of brain injury by fatty acid-binding proteins. Clin Chem Lab Med.2005;43:802-9.
    [41]Jauch EC, Lindsell C, Broderick J, Fagan SC, Tilley BC, Levine SR. Association of serial biochemical markers with acute ischemic stroke:the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke 2006;37:2508-13.
    [42]Laterza OF, Modur VR, Crimmins DL, Olander JV.Landt Y, Lee JM, Ladenson JH. Identification of novel brain biomarkers. Clin Chem 2006;52:1713-21.
    [43]Chen X, Ba Y, Ma L, Cai X, Yin Y, et al. (2008) Characterization of microRNAs in serum:a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997-1006.
    [44]Bushnell CD. Johnston DC, Goldstein LB. Retrospective assessment of initial stroke severity:comparison of the NIH Stroke Scale and the Canadian Neurological Scale. Stroke.2001 Mar;32(3):656-60.
    [45]Stavem K, Lossius M, Ronning OM. Reliability and validity of the Canadian Neurological Scale in retrospective assessment of initial stroke severity.Cerebrovasc Dis.2003;16(3):286-91.
    [46]Goldstein LB, Chilukuri V. Retrospective assessment of initial stroke severity with the Canadian Neurological Scale. Stroke.1997.Jun;28(6):1181-4.
    [47]Fiorelli M, Alperovitch A, Argentino C, Sacchetti ML, Toni D, Sette G,Cavalletti C, Gori MC, Fieschi C. Prediction of long-term outcome in the early hours following acute ischemic stroke. Italian Acute Stroke Study Group. Arch Neurol.1995 Mar;52(3):250-5.
    [48]Cote R, Battista RN, Wolfson C, Boucher J, Adam J, Hachinski V. The Canadian Neurological Scale:validation and reliability assessment. Neurology.1989 May;39(5):638-43.
    [49]Nilanont Y, Komoltri C, Saposnik G, Cote R. Di Legge S. Jin Y, Prayoonwiwat N, Poungvarin N. Hachinski V. The Canadian Neurological Scale and the NIHSS:development and validation of a simple conversion model. Cerebrovasc Dis.2010;30(2):120-6.
    [50]MacKay M, Legg K, Nearing S. Neurological assessment of the stroke patient:the Canadian Neurological Scale. Axone.2007;28(4):9-10.
    [51]Senanayake U, Das S, Vesely P, Alzoughbi W, Frohlich LF, Chowdhury P,Leuschner I, Hoefler G, Guert1 B. miR-192, miR-194, miR-215, miR-200c and miR-141 are downregulated and their common target ACVR2B is strongly expressed in renalchildhood neoplasms. Carcinogenesis.2012 May;33 (5):1014-21.
    [52]Xu J, Kang Y, Liao WM, Yu L. MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5. PLoS One.2012;7(3):e31861.
    [53]Zhang Q, He XJ, Ma LP, Li N, Yang J, Cheng YX, Cui H. [Expression and significance of microRNAs in the p53 pathway in ovarian cancer cells and serous ovarian cancer tissues]. Zhonghua Zhong Liu Za Zhi.2011 Dec;33(12):885-90.
    [54]Sundaram P, Hultine S, Smith LM, Dews M, Fox JL, Biyashev D, Schelter JM,Huang Q, Cleary MA, Volpert OV, Thomas-Tikhonenko A. p53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers. Cancer Res.2011 Dec 15;71(24):7490-501.
    [55]Kruzfeldt J, Rosch N, Hausser J, Manoharan M, Zavolan M, Stoffel M.MicroRNA-194 is a target of transcription factor 1 (Tcfl, HNF1α) in adult liver and controls expression of frizzled-6. Hepatology.2012 Jan; 55(1):98-107.
    [56]Dong P, Kaneuchi M, Watari H, Hamada J, Sudo S, Ju J, Sakuragi N. MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Mol Cancer.2011 Aug 18;10:99.
    [57]Meng Z, Fu X, Chen X, Zeng S, Tian Y, Jove R, Xu R, Huang W. miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology.2010 Dec;52(6):2148-57.
    [58]Hino K, Tsuchiya K, Fukao T, Kiga K, Okamoto R, Kanai T, Watanabe M. Inducible expression of microRN A-194 is regulated by HNF-1 alpha during intestinal epithelial cell differentiation. RNA.2008 Jul;14(7):1433-42.
    [59]Hino K, Fukao T, Watanabe M. Regulatory interaction of HNF1-alpha to microRNA-194 gene during intestinal epithelial cell differentiation. Nucleic Acids Symp Ser (Oxf).2007;(51):415-6.
    [60]Song Y, Zhao F, Wang Z, Liu Z, Chiang Y, Xu Y, Gao P, Xu H. Inverse Association between miR-194 Expression and Tumor Invasion in Gastric Cancer. Ann SurgOncol. 2011 Aug 16.
    [1]Amir G, Ramamoorthy C, Riemer RK, et al. Neonatal brain protection and deep hypothermic circulatory arrest:pathophysiology of ischemic neuronal injury and protective strategies [J]. Ann Thorac Surg,2005,80(5):1955-64.
    [2]Florio P, Abella R, Marinoni E, et al. Adrenomedullin Blood Concentrations in Infants Subjected to Cardiopulmonary Bypass:Correlation with Monitoring Parameters and Prediction of Poor Neurological Outcome [J]. Clinical Chemistry, 2008,54(1):202-206.
    [3]Joshi B. Brady K, Lee J, et al. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke[J]. Anesth Analg,2010,110(2):321-8.
    [4]Khaliq-Abdul H, Troitzsch D, Schubert S, et al. Cerebral oxygen monitoring during neonatal cardiopulmonary bypass and deep hypothermic circulatory arrest[J]. Thorac Cardiov Surg,2002,50:77-81.
    [5]Liu N, Sun LZ, Chang Q, et al. Clinical application of cerebral oxygenation monitoring during aortic aneurysm operation [J]. Zhong Hua Yi Xue Za Zhi,2007, 87(15):1030-3.
    [6]Andropoulos DB, Mizrahi EM, Hrachovy RA, et al. Electroencephalographic seizures after neonatal cardiac surgery with high-flow cardiopulmonary bypass [J]. Anesth Analg,2010,110(6):1680-5.
    [7]Maurer MH, Haux D, Unterberg AW, et al. Proteomics of human cerebral microdialysate:From detection of biomarkers to clinical application[J]. Proteomics Clin Appl,2008,2(3):437-43.
    [8]Salazar JD, Coleman RD, Griffith S, et al. Selective cerebral perfusion:real-time evidence of brain oxygen and energy metabolism preservation[J]. Ann Thorac Surg, 2009,88(1):162-9.
    [9]Schubert S, Gerlach F, Stoltenburg-Didinger G, et al. Cerebral expression of neuroglobin and cytoglobin after deep hypothermic circulatory arrest in neonatal piglets[J]. Brain Res,2010,1356:1-10.
    [10]Siman R, Roberts VL, McNeil E, et al. Biomarker evidence for mild central nervous system injury after surgically-induced circulation arrest [J]. Brain Res,2008,1213: 1-11.
    [11]Zhao R. Cui Q, Yu SQ, et al. Antegrade cerebral perfusion during deep hypothermia circulatory arrest attenuates the apoptosis of neurons in porcine hippocampus [J]. Heart Surg Forum,2009,12(4):E219-24.
    [12]Kellermann K. Gordan ML, Nollert G. et al. Long-term assessment of NF-kappaB expression in the brain and neurologic outcome following deep hypothermic circulatory arrest in rats[J]. Perfusion,2009,24(6):429-36.
    [13]Allen JG, Weiss ES, Wilson MA, et al. Transcriptional profile of brain injury in hypothermic circulatory arrest and cardiopulmonary bypass[J]. Ann Thorac Surg, 2010,89:1965-71.
    [14]Percy A, Widman S, Rizzo JA, et al. Deep hypothermic circulatory arrest in patients with high cognitive needs:full preservation of cognitive abilities[J]. Ann Thorac Surg,2009,87:117-23.
    [15]Leshnower BG. Myung RJ, Kilgo PD, et al. Moderate hypothermia and unilateral selective antegrade cerebral perfusion:a contemporary cerebral protection strategy for aortic arch surgery [J]. Ann Thorac Surg.2010.90(2):547-54.
    [16]Gega A, Rizzo JA, Johnson MH, et al. Straight deep hypothermic arrest:experience in 394 patients supports its effectiveness as a sole means of brain preservation [J]. Ann Thorac Surg,2007,84(3):759-66.
    [17]Estrera AL. Miller CM, Madisetty J, et al. Ascending and transverse aortic arch repair:The impact of retrograde cerebral perfusion[J].Circulation,2008,118: S160-6.
    [18]Li ZJ, Ye J, Michael J, et al. Effect of the perfusion pressure during retrograde cerebral perfusion on pig's brain protection[J]. Chin J Thorac Cardiovasc Surg,2003, 19(5):293-6.
    [19]Khaladj N, Shrestha M, Meck S, et al. Hypothermic circulatory arrest with selective antegrade cerebral perfusion in ascending aortic and aortic arch surgery:a risk factor analysis for adverse outcome in 501 patients[J]. J Thorac Cardiovasc Surg, 2008,135:908-14.
    [20]Katircioglu SF, Saritas Z, Kucuker S, et al. Comparison of metabolic response to deep hypothermic total circulatory arrest and retrograde cerebral perfusion in an experimental model[J]. Cardiovasc Surg,2002,10(6):608-14.
    [21]Soeda M. Antegrade selective cerebral perfusion combined with deep hypothermic circulatory arrest on cerebral circulation:comparison between pulsatile and nonpulsatile blood flows[J]. Ann Thorac Cardiovas Surg,2007,13(2):93-102.
    [22]Kawata M, Takamoto S, Kitahori K, et al. Intermittent pressure augmentation during retrograde cerebral perfusion under moderate hypothermia provides adequate neuroprotection:an experimental study[J]. J Thorac Cardiovasc Surg,2006,132: 80-8.
    [23]Khaladi N. Peterss S, Oetjen P, et al. Hypothermic circulatory arrest with moderate, deep or profound hypothermic selective antegrade cerebral perfusion which temperature provide best brain protection[J]? Eur J Cardiothorac Surg,2006,30: 492-8.
    [24]Halkos ME, Kerendi F, Myung R. et al. Selective antegrade cerebral perfusion via right axillary artery cannulation reduces morbidity and mortality after proximal aortic surgery[J]. J Thorac Cardiovasc Surg,2009,138:1081-9.
    [25]Ogino H. Sasaki H, Minatoya K, et al. Evolving arch surgery using integrated antegrade selective cerebral perfusion:impact of axillary artery perfusion [J]. J Thorac Cardiovasc Surg,2008.136:641-8.
    [26]Griepp RB. Cerebral protection during aortic surgery [J]. J Thorac Cardiovasc Surg, 2003,125:36-8.
    [27]Yannopoulos FS. Makela T, Niemela E. et al. Improved cerebral recovery from hypothermic circulatory arrest after remote ischemic preconditioning[J]. Ann Thorac Surg,2010,90(1):182-8.
    [28]Pastuszko P. Pirzadeh A, Reade E, et al. The effect of hypothermia on neuronal viability following cardiopulmonary bypass and circulatory arrest in newborn piglets[J]. Eur J Cardiothorac Surg,2009,35(4):577-81.
    [29]Demir T, Demir H, Tansel T, et al. Influence of methylprednisolone on levels of neuron-specific enolase in cardiac surgery:A corticosteroid derivative to decrease possible neuronal damage[J]. J Card Surg,2009,24:397-403.
    [30]Givehchian M, Beschorner R, Ehmann C,et al. Neuroprotective effects of erythropoietin during deep hypothermic circulatory arrest [J]. Eur J Cardiothorac Surg,2010,37(3):662-8.
    [31]Augoustides JG, Pochettino A, Ochroch EA,et al. Clinical predictors for prolonged intensive care unit stay in adults undergoing thoracic aortic surgery requiring deep hypothermic circulatory arrest [J]. J Cardiothorac Vase Anesth,2006,20(1):8-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700