用户名: 密码: 验证码:
不同水肥对日光温室番茄品质和抗氧化系统及土壤环境的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱胁迫是全球范围内影响植物生存、生长和分布的最重要环境因子。黄土丘陵区是典型的半干旱地区,由于生态环境的脆弱性和长期人类活动的干扰以及过度利用,导致水土流失加剧。由于经济、技术落后等原因,蔬菜生产上存在过量施肥、浇水等现象,因此深入研究黄土丘陵区设施蔬菜对水肥环境的响应机制和生理生态适应,提高蔬菜品质和产量具有非常重要的理论和实践意义。
     本文以黄土丘陵区广泛种植的温室蔬菜番茄(Lycopersicon esculentum)为研究对象,采用人工控制试验方法,系统研究了番茄对不同水肥条件的响应,探讨了番茄的抗旱能力。试验设计三个水分水平(高水:土壤相对含水量95%±5%、中水:土壤相对含水量:75%±5%、低水:土壤相对含水量:55%±5%)和两个肥料水平(中肥:600Kg·hm~(-2)N+420Kg·hm~(-2)P_2O_5+718Kg·hm~(-2)K_2O、低肥:420Kg·hm~(-2)N+294Kg·hm~(-2)P_2O_5+504Kg·hm~(-2)K_2O)共6个处理对番茄的生理、品质和抗氧化酶系统进行了研究。2009年和2010年连续两年田间试验研究了不同蔬菜适应性,不同水肥对日光温室水热环境和番茄植株生长发育,果实产量品质及抗氧化酶系统的影响,主要结果如下:
     (1)杨凌地区温度条件能够满足黄瓜、番茄等果类蔬菜正常生长发育的需要,延安、榆林地区在12月和1月份需加强保温才能满足黄瓜、番茄等果类蔬菜正常生长发育的需要,叶菜类蔬菜对温度和积温要求低,适应性强,在日光温室保温等条件相对较差的地区,可以在冬季发展叶菜类蔬菜生产。
     (2)温室番茄土壤含水量主要受灌水量的影响,与施氮量关系较小;表层土壤含水量变化幅度较大,随着土层加深,含水量变化幅度减少。温室番茄在相同肥料条件下,土壤呼吸速率随土壤灌水量增加而增加。在相同灌水量条件下,随施氮量的减少,土壤微生物活性及土壤呼吸强度均受到抑制。不同水肥对土壤pH影响与对EC影响相似,pH和EC在垂直方向上影响较小,在水平方向上影响较大,增施肥料可以显著增加土壤电导率。在施肥量相同的情况下,随着灌水量的增加,土壤电导率降低。温室番茄在不同水肥处理条件下,土壤温度变化与气温变化有极显著正相关关系。土壤含水量与土壤温度存在显著负相关关系,随土层深度增加,土壤温度滞后效应增大。在高水条件下,土壤温度滞后效应随施肥量增加而增大;在亏缺灌溉条件下,土壤温度滞后效应随施肥量增加而减少。
     (3)不同水肥处理对番茄产量的影响效果不同。番茄产量随着灌水量的增加而增加,但果实品质下降,水分利用效率下降。番茄产量随着肥料施用量的增加而提高。果实品质与番茄受干旱程度有显著关系,亏缺灌溉提高了果实品质,但灌水量过多,果实中Vc含量反而下降。在相同肥料条件下,随灌水量减少番茄果实中Vc含量增加,在相同水分条件下,随肥料量的增加,可溶性糖,有机酸减少。
     (4)温室番茄在水分亏缺下番茄植物体内SOD、POD、CAT和APX的酶活性会升高。CAT活性和SOD酶活性在干旱条件下较高,而POD和APX酶活性在适度干旱条件下较高,适量的肥料可提高功能叶片抗氧化酶活性,肥料水平对叶片中POD,APX酶活性没有显著影响,对叶片中SOD, CAT酶活性产生显著影响;肥料对果实中SOD, POD,CAT,APX酶活性都产生显著影响。温室番茄果实中APX保持着较高水平,保护果实免受氧化伤害中起着重要作用,而SOD, POD,CAT活性较低。叶片中4种保护酶活性对土壤水分条件反应敏感,保持较高活性。叶片中SOD,CAT,APX3种酶的活性约为果实中酶活性的2.5-4倍,叶片中POD酶活性为果实中酶活性的35-55倍。果实品质与抗氧化酶活性有显著正相关性。亏缺灌溉提高了果实品质,但同时也增加了自由氧的含量。
     因此,不同肥水对番茄植株品质和抗氧化系统及土壤环境产生显著影响。在高水条件下,土壤温度滞后效应随施肥量增加而增大;在亏缺灌溉条件下,土壤温度滞后效应随施肥量增加而减少。pH和EC在垂直方向上变化较小,在水平方向上变化较大。在干旱胁迫条件下,植株通过降低果实水分含量,增加可溶性糖,有机酸,可溶性蛋白含量提高渗透调节能力,增加Vc含量与提高抗氧化酶活性一起共同抵御干旱胁迫。番茄果实通过增加这些非酶抗氧化剂和酶抗氧化剂含量来共同保护番茄果实免受干旱胁迫。因此从增加番茄产量和品质,降低自由氧离子含量,提高水分利用效率角度考虑,处理WmFm即75%田间持水量与600Kg·hm~(-2)N+420Kg·hm~(-2)P2O5+718Kg·hm~(-2)K_2O施肥量为较优组合。
Drought is the most important factor limiting plant establishment, growth anddistribution in many regions of the world. The loess hilly region is a typical semi-arid andarid region in northwest of China. The harsh environments and long-term anthropogenicdisturbance had resulted in severe soil erosion and water loss, vegetation degradation andfragile ecosystems. Due to economic and technique problems, fertilizer and soil water areapplied excessively in vegetable field. Therefore, The research on responses of vegetable ingreenhouse to water and fertilizer deficit conditions and their eco-physiological adaptationstrategies to drought environment in the loess hilly regions could provide insights into theimprovement of the soil water and fertilizer management, improved vegetable quality andyield.and therefore, are of great theoretical and practical significance.
     In this paper, tomato (Lycopersicon esculentum) which is plant widespread in theLoess hilly region in greenhouse was chosen as experimental material to study the effectsof water and fertilizer on fruit quality,yield and enenzy activity in fruit and leaves. Usingthe method of manual control experiments, a total of six treatments with three soil moisturelevels: water deficit (Wl,55%±5%of soil holding capacity), moderate irrigation (Wm,75%±5%of soil holding capacity), high irrigation (Wh,95%±5%of soil holding capacity)and two levels of fertilizer application: deficit fertilizer (Fl,420Kg·hm~(-2)N+294Kg·hm~(-2)P2O5+504Kg·hm~(-2)K_2O),and moderate fertilizer (Fm,600Kg·hm~(-2)N+420Kg·hm~(-2)P2O5+718Kg·hm~(-2)K_2O) were established. The following results were obtained.
     (1)The vegetables adaptation in Yangling is better than that in Yan'an and Yulin. The temperature in December and January can not meet the cucumber, tomatoes fruit vegetablenormal growth and development needs in Yan'an and Yulin. Therefore, this period shouldbe mainly based on improving the greenhouse temperature. Some measures such ascovering straw mat at night, wiping the dust on the films and other insulation measures canbe taken to increase the temperature of greenhouse. Since leafy vegetables can grow atlower temperature and accumulated temperature and have higher adaptability, thereforethese areas which have relatively poor heating conditions can plant leafy vegetables tomeet the needs of people in winter.
     (2)Soil moisture content was mainly affect by irrigation, not by nitrogen level. Thesoil water content in surface changed significantly. With the deeper of soil, the changingmagnitude of soil water content decreased. Irrigation mainly effected soil water content in0-40cm soil deepth. In the same fertilizer conditions, soil respiration increased with soilirrigation increased. In the same irrigation conditions, soil microbial activity and soilrespiration were inhibited with the amount of nitrogen reduction. The impact of differentwater and fertilizer on soil pH and was similar to EC. The change of pH and EC is less onthe vertical direction, but greater on the horizontal direction. Increasing fertilizer canincrease the soil conductivity. In the the same amount of fertilizer, soil electricalconductivity decreased with the increase of irrigation. The soil temperature have asignificant positive correlation with air temperature under different soil water and fertilizertreatment in different soil depths,and there had a significant negative correlation betweensoil moisture and soil temperature. With the increase in soil depth, the lag of soiltemperature became larger.
     (3)Different water and fertilizer treatments had significant effects on tomato yield.Tomato production increased with the increase of water amount, but fruit quality and wateruse efficiency decreased. Tomato yield increased with the increase of fertilizer amount.Tomato fruit quality had significant positive correlation with drought. Deficit irrigationimproved fruit quality. However, excessive irrigation decreased the Vc content of fruit. Inthe same fertilizer conditions, the Vc content in tomato fruit increased with reduction ofirrigation amount; In the same water levels, the content of soluble sugars, organic acidsdecreased.with the increase in the amount of fertilizer.
     (4)Under water deficit, SOD, POD, CAT and APX activity rised in tomato. The CAT activity and SOD activity was higher in deficit irrigation, while the POD and APXactivity was higher in moderate deficit irrigation. Moderate amount of nitrogen fertilizercan increase the activity of antioxidant enzymes in leaves. Fertilizer levels had notsignificantly affect on POD, APX activity in the leaves, but had significantly affect onSOD, CAT activity;Fertilizer levels had significantly effect on SOD, POD, CAT, APXactivity in fruits. The APX in fruit maintained a high level, to protect the fruit againstoxidative damage, while the SOD, POD, CAT activity was lower. Fruit quality has asignificant positive correlation with antioxidant enzyme activity. Deficit irrigationimproved fruit quality, but also increased the concentration of free oxygen.
     Therefore, different fertilizer and irrigation had significant effects on fruit quality,antioxidant systems and the soil environment of tomato in the greenhouse. Under highirrigation, the lag effect of soil temperaturet increased with the increase amount of fertilizer.Under deficit irrigation, the lag effect of soil temperature decreased the increase amount offertilizer. The changes of pH and EC were small in the vertical direction while large in thehorizontal direction. Under drought stress conditions fruit plants resist drought stress bydecreasing the content of fruit moisture, increasing soluble sugars, organic acids, solubleproteins and other macromolecules to increase the permeability, and enhancing antioxidantenzyme activity. Tomato fruit increasing the non-enzymatic antioxidants and antioxidantenzymes activity together to protect tomato from drought stress. Therefore, from the pointof increasing in tomato yield and quality, reducing the free oxygen ion concentration,improving water use efficiency view, the treatment75±5%of soil holding capacity and600Kg·hm~(-2)N+420Kg·hm~(-2)P2O5+718Kg·hm~(-2)K2O is the optimal combination.
引文
[1]高学田,郑粉莉.陕北黄土高原生态环境建设与可持续发展[J].水土保持研究,2004,11(4):47-49.
    [2]党永华,吴金娥.扇贝黄土高原区日光温室蔬菜发展的几点思考[J].中国农学通报,2006,22(6):269-272.
    [3]陈永安,孙光丽.加入WTO后中国园艺产业的机遇与对策[J].西北农林科技大学学报(社会科学版),2003,3(2):138-140.
    [4]王秀娟.陕西农业产业化实践及对策[J].西北农林科技大学学报(社会科学版),2001,1(2):50-52.
    [5]杨丽娟,张玉龙,须晖.设施栽培条件下节水灌溉技术[J].沈阳农业大学学报,2002,31(1):130-l32.
    [6] Leece D.R. Composition and ultra structure of leaf cuticles from fruit trees, relative to differentialfoliar absorption[J]. Australian Journal of Plant Physiology,1976,3:833-847.
    [7] Baianchi G., Avato P. Surface waxes from grain, leaves, and husks of maize (zeamaysL)[J]. CerealChemistry,1984,61:45-47.
    [8] Flaishman M.A., Hwang C.S., Kolattukudy P.E. Involvement of protein phosphorylation in theinduction of appressorium formation in Colletotrichum gloeosporioides by its host surface wax andethylene[J]. Physiol.Molecular Plant Pathology,1995,47:103-117.
    [9]罗金旅,李少龙.我国设施农业节水灌溉理论与技术研究进展[J].节水灌溉,2003,(3):11-13.
    [10]张志斌.关于我国设施蔬菜生产可持续发展的探讨[J].沈阳农业大学学报,2000,31(1):15-17.
    [11] Nieolas T,Hans Christoph S,Ulrike W, et al.. Nitrogen Management in Field Vegetables-A guide toefficient fertilization. Published on the Web by the Hortieultural Researeh and Development Centre,Canada.
    [12] Neeteson J.J., Carton O.T., Rahn C., Fink M. The environmental impact of nitrogen in fieldvegetable production[J].Aeta-HortiCulturae,2001,563:21-28.
    [13]任华中,黄伟编著.大棚茄子栽培技术问答[M].北京:科学技术文献出版社,2001:14-248
    [14]董险峰,李宇兵.可持续发展的节水战略研究[J].水资源,2000,8(1):36-38.
    [15]黄元仿,李韵珠,李保国,陈德立.华北平原农田水、氮优化管理[J].农业工程学报,2001,17(2):37-41.
    [16]李俊良,崔德杰,孟祥霞,李晓林,张福锁.山东寿光保护地蔬菜施肥现状及问题的研究[J].土壤通报,2002,33(2):126-128.
    [17]张庆忠,陈欣,沈善敏.农田硝酸盐积累与淋失研究进展[J].应用生态学报,2002,13(2):233-238.
    [18] Aggelides S., Ioannis A., Petros K., Angelos S. Effects of soil water potential on the nitrate contentand the yield of lettuce[J].Soil Science and Plant Analysis.1999,30:235-243.
    [19] Beach E.D., Fernandez C.J., Huang W.Y. The potential risks of ground water and surface watercontamination by agricultural chemicals used in vegetable production[J]. Journal of EnvironmentalScience and Health,1995,30(6):1295-1325.
    [20]陈国安.蔬菜中硝酸盐的含量及其调控[J].长江蔬菜,2002,(1):11-13.
    [21]胡承孝,邓波儿.氮肥对小白菜蕃茄供食器官品质的影响[J].植物营养与肥料学报,1997,3(1):85-89.
    [22]黄启为,彭建伟,罗建新,杨志辉,王翠红.化肥对蔬菜硝酸盐含量的影响[J].湖南农业大学学报(自然科学版),2002,28(5):387-390.
    [23]张新明,李华兴,吴文良.氮素肥料对环境与蔬菜的污染及其合理调控途径[J].土壤通报,2002,33(6):471-475.
    [24] Cardenas N.R., Adamowicz S., Robin P. Nitrate accumulation in plants: a role for water[J]. Journalof Experimental Botany.1999,50:613-624.
    [25] Tei F., Benineasa P., Guidueei M.,Burns I.G., Bending G.D. Mulholland B. Nitrogen fertilization oflettuce,Proeessing tomato and sweet pepper: yield,nitrogen uptake and the risk of nitrateleaching[J]. Acta Hortieulturae,1999,506:61-67.
    [26] Bauer D, Biehler K, Fock H, et a1. A role of cytosolicglut amine synthetase in the remobilization ofleaf nitrogen during water stress in tomato[J]. Plant Physiology,1997,99:241-248.
    [27]李曙轩.蔬菜栽培生理[M].1979,上海:上海科技出版社.
    [28] Chloupek O.,Hrstkova P. Adaptation of crops to environment[J]. Theoretical and AppliedGenetics,2005,111:1316–1321.
    [29] Dencic S., Kastori R., Kobiljski B., Duggan B. Evaluation of grain yield and its components inwheat cultivars and landraces under near optimal and drought conditions[J]. Euphytica,2000,113:43–52.
    [30] Farshadfar E., Sutka J. Locating QTLs controlling adaptation in wheat using AMMI model[J].Cereal Research Communications,2003,31:249–256.
    [31] Liao Q., Sun S.X. New maize varieties dynamic of China[M], China agricultural science andtechnology press.2002.
    [32]李红,孙丹峰,张凤荣,周连第.基于GIS和DEM的北京西部山区经济林果适宜性评价[J].农业工程学报,2002,18(5):250-255.
    [33]刘明春,邓振镛,李巧珍,杨小利,蒲金涌.甘肃省玉米气候生态适应性研究[J].干旱地区农业研究,2005,23(3):112-117.
    [34]黄河. GIS支持下的区域蔬菜地适宜性评价[J].福建农业学报,2004,19(2):108-112.
    [35]张静,冯金侠,卞新民,臧敏,胡大伟.作物生态适宜性变权评价方法[J].南京农业大学学报,2006,29(1):13-17.
    [36] Philip J. R., De Vries D.A. Moisture movement in porous materials under temperature gradients[J].Trans Am Geophys Union,1957,38:222-232.
    [37] Warrick A.W. Time-dependent linearised infiltration.I. point sources[J]. Soil Science Society ofAmerica Journal,1974,38:383-386.
    [38] Warrick A.W. Point and line infiltration calculation of the wetted soil surface[J]. Soil ScienceSociety of America Journal,1985,49:1581-1583.
    [39] Mmolawa K. and Or D.Experimental and numerical evaluation of analytical volume balance modelfor soil water dynamics under drip irrigation[J]. Soil Science Society of America Journal,2003,67:1657-1671.
    [40] Cook F.J., Thorburn P.J. and Bristow K.L.,et al.Infiltration from surface and buried pointsources:the average wetting water content[J]. Water Resources Research,2003,39(12):1364TNN3-1:3-7.
    [41] Warrick,A.W.,and D.O.Lomen. Time-dependent linearized infiltration:III. strip and discsources[J].Soil Science Society of America Journal,1976,40:639-643.
    [42] Warrick A.W. Steady infiltration from line sources into a layered profile[J]. Water ResourcesResearch,2003,39(12):1327SBH2-1:2-6.
    [43] El-Hafedh A.V.O.M., Daghari H. et al. Analysis of several drip irrigation system[J]. AgriculturalWater Management,2001,52:33-52.
    [44] Lubana P.P.S. and N.K.Narda. Modelling soil water dynamics under trickle emitters-a review[J].Journal of agricultural engineering research,2001,78(3):217-232.
    [45]邵明安,黄明斌.土—根系统水动力学[M].西安:陕西科学技术出版社,2000.
    [46]左强,王数,陈研.反求根系吸水速率方法的探讨[J].农业工程学报,2001,17(4):17-21.
    [47] Dunbabin V.M., Diggle A.J., Rengel Z. et al. Modelling the interactions between water and nutrientuptake and root growth[J]. Plant and Soil,2002,239:19-38.
    [48] Willigen P., Heinen M., Mollier A. et al. Two-dimensional growth of a root system modelled asadiffusion process:I.analytical solutions[J]. Plant and Soil,2002,240:225~234.
    [49] Heinen M., Mollier A. Willigen P.D. Growth of a root system described as diffusion. II.numericalmodel and application[J]. Plant and Soil,2003,252:251-265.
    [50] Wilderotter O. An adaptive numerical method for the Richards equation with root growth[J].Plant&Soil,2003,251:255-267.
    [51] Zuo Q., Meng L. and Zhang R. Simulating soil water flow with root-water-uptake applying aninverse method[J]. Soil Science,2004,169(1):13-24.
    [52] Green S.R.,and Clothie B.E. Root water uptake by kiwifruit vines following partial wetting oftheroot zone[J]. Plant and Soil,1995,173:317-328.
    [53] Mmolawa K. and Or D.Water and solute dynamics under a drip-Irrigated crop:experiments andanalytical model[J]. Transactions of the ASAE,2000,43(6):1597-1608.
    [54] Li Mingsi. Root architecture and water uptake for cotton under furrow and mulchedtrickleirrigation. Proceedings of International Conference on Water-saving Agriculture andSustainable Use of Water and Land Resources[M],Xi`an:Shaanxi Science and Technology Press,2003:484-490.
    [55]李明思,孙海燕,谢云等.滴头流量对土壤湿润体的影响研究[J].沈阳农业大学学报,2004,35(5,6):420-422.
    [56] Earl K.D. and Jury W.A.Water movement in bare and cropped soil under Isoland trickleemitters:II.analysis of cropped soil experiments[J]. Soil Science Society of America Journal,1977,41:856-861.
    [57] Oliveira M.R.G., Calado A.M. Tomato root distribution under drip irrigation[J]. Journal of theAmerican Society for Hhorticultural Science,1996,121(4):644-648.
    [58] Bar-Yosef B., Lambert J.R., Bake D.N. Rhizos: a simulation of root growth and soilprocesses.sensitivity analysis and validation for cotton[J]. Transactions of the ASAE,1982,25(5):1268-1273.
    [59] Randall H.C.and Locassio S.J. Root growth and water status of trickle-irrigated cucumberandtomato[J]. Journal of the American Society for Horticultural Science,1988,113(6):830-835.
    [60] Ghali G.S. Svehlik Z.J. Soil-water dynamics and optimum operating regime in trickle-irrigatedfields[J]. Agricultural Water Manage,1988,13:127-143.
    [61]张妙仙.滴灌土壤湿润体与作物根系优化匹配研究[J].中国生态农业学报,2005,13(1):104-107.
    [62]赵彩芹.保护地土壤盐渍化的危害及防治[J].陕西农业科学,2005,(2):82-83.
    [63]徐富安,林长英.南京郊区保护地蔬菜的灌溉问题[J].土壤,1994,26(3):140-142.
    [64]王晓丽,邓璐娟.温室作物模糊蒸腾模型的设计与仿真[J].现代化农业,2004,10:30-32.
    [65]陈新明,蔡焕杰,李红星,王健,杜文娟.温室大棚内作物蒸发蒸腾量计算[J].应用生态学报,2007,18(2):317-321.
    [66] Stanghellini C., Van Meurs W.Th.m.. Environmental control of greenhouse crop transpiration[J].Journal of Agricultural Engineering Research,1992,51:297-311.
    [67]罗卫红等.南方现代化温室黄瓜冬季蒸腾测量与模拟研究[J].植物生态学报,2004,28(1):59-65.
    [68]雷水玲,孙忠富.基于气候阻力的温室黄瓜蒸腾速率模拟[J].农业工程学报,2006,22(9):176-179.
    [69]王进鑫,张晓鹏,高保山,贺秀贤.渭北旱塬红富士苹果需水量与限水灌溉效应研究[J].水土保持研究,2000,7(1):69-72.
    [70]陈海山,孙照渤.陆气相互作用及陆面模式的研究进展[J].南京气象学院,2002,25(2):277-288.
    [71] Gao Z.Q., Fan X., Bian L.Analytical solution to one-dimen-sional thermal conduction convectionin soil[J]. Soil Science,2003,168(2):99-106.
    [72] Gardner W.R. Solution of the flow equation for the dry ing of soil and the porous media[J]. SoilScience Society of America Proceedings,1959,23:183-187.
    [73] Constantz J., Murphy F. The temperature dependence of ponded infiltration under isothermalconditions[J]. J.Hydrology,1991,122:119-128.
    [74] Jackson R.D. Temperature and soil-water diffusivity relation[J]. Soil Science Society of AmericaJournal,1963,27:363-366.
    [75] Changhui Wang, Shiqiang Wan, Xuerong Xing, Lei Zhang, Xingguo Han. Temperature and soilmoisture interactively affected soil net N mineralization in temperate grassland in NorthernChina[J].Soil Biology&Biochemistry,2006,38:1101–1110.
    [76] Sierra J.Temperature and soil moisture dependent of N mineralization in intact soil cores[J]. SoilBiology&Biochemistry,1997,29:1557–1563.
    [77] Cookson W.R., Cornforth I.S., Rowarth J.S. Winter soil temperature (2–5℃) effects on Ntransformations in clover green manure amended or unamended soils: a laboratory and fieldstudy[J]. Soil Biology&Biochemistry,2002,34,1401–1415.
    [78] Dalias P., Anderson J.M., Bottner P., Couteaux, M.M. Temperature responses of net Nmineralization and nitrification in conifer forest soils incubated under standard laboratoryconditions[J]. Soil Biology&Biochemistry,2002,34,691–701.
    [79] Paul K.I., Polglase P.J., O’Connell A.M., Carlyle J.C., Smethurst P.J., Khanna P.K. Defining therelation between soil water content and net N mineralization[J]. European Journal of Soil Science,2003,54:39–47.
    [80] Stanford G., Epstein E. Nitrogen mineralization-water relations in soils[J]. Soil Science Society ofAmerica Proceedings,1974,38,103–107.
    [81] Jaleel C.A., Manivannan P., Kishorekumar A. et al. Alterations in osmoregulation, antioxidantenzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit[J]. Colloids andSurfaces B-Biointerfaces,2007,59:150-157.
    [82]胡新生,王世绩.树木水分胁迫生理与耐旱性研究进展及展望[J].林业科学,1998,34(2):77-89.
    [83] Chaves M.M., Pereira J.S., J Maroco., et al. How plants cope with water stress in the field.Photosynthesis and growth [J]. Annals of Botany,2002,89:907-916.
    [84] Verslues P.E., Agarwal M., Katiyar-Agarwal S., et al. Methods and concepts in quantifyingresistance to drought, salt and freezing, abiotic stresses that affect plant water status [J]. PlantJournal,2006,46:1092-1092.
    [85] Wassmann R., Jagadish S.V.K., Heuer S., et al. Climate change affecting rice production: thephysiological and agronomic basis for possible adaptation strategies [J]. Advances in Agronomy,2009,101:59-122.
    [86] Coley P.D. Possible effects of climate change on plant/herbivore interactions in moist tropicalforests [J]. Climatic Change,1998,39:455-472.
    [87] Seki M., Umezawa T., Urano K., et al. Regulatory metabolic networks in drought stress responses[J]. Current Opinion in Plant Biology,2007,10:296-302.
    [88] Bacelar E.A., Santos D.L., Moutinho-Pereira J.M., et al. Immediate responses and adaptativestrategies of three olive cultivars under contrasting water availability regimes: Changes onstructure and chemical composition of foliage and oxidative damage [J]. Plant Science,2006,170:596-605.
    [89] Dichio B., Xiloyannis C., Sofo A., et al. Osmotic regulation in leaves and roots of olive treesduring a water deficit and rewatering [J]. Tree Physiology,2006,26:179-185.
    [90]韩建会,石琳琪,武彦荣.水分胁迫对日光温室黄瓜产量的影响[J].西南农业大学学报,2000,22:395-397.
    [91]翟胜,梁银丽,王巨媛,杜社妮.土壤水分对日光温室黄瓜生长发育及光合特性的影响[J].中国农学通报,2005,21(2):187-191.
    [92]冯嘉玥,邹志荣,陈修斌.土壤水分对温室春黄瓜苗期生长与生理特性的影响[J].西北植物学报,2005,25(6):1242-1245.
    [93]熊亚梅,梁银丽,贺丽娜等.土壤水分对日光温室西葫芦耗水量及产量的影响[J].西北农业学报,2007,16(3):141-144.
    [94]周军,杨荣泉,陈海军,黄德明,徐秋明.冬小麦水肥增产耦合效应模型研究[J].水利学报,1996,6:57-64.
    [95]田军仓.水肥耦合模型及其优化组合方案研究[J].武汉水利电力大学学报,1997,2:18-22.
    [96]孟兆江等.黄淮豫东平原冬小麦节水高产水肥藕合数学模型研究[J].农业工程学报,1998,14(3):86-90.
    [97]黄兴法.冻期土壤水盐热运动模型与模拟及其应用研究[J].1993,北京农业工程大学,博士学位论文.
    [98]黄元仿,李韵珠,陆锦文.土壤一作物系统中氮素行为的模拟.见:李韵珠等著,土壤水和养分的有效利用[M],北京农业大学出版社,1994,179-194.
    [99] Bresler E.Two-dimensional transport of solutes during nonsteady infiltration form a tricklesource[J]. Soil Science Society of America Journal,1975,39:604-613.
    [100] BarYosef B., Sheikholslami MR. Distribution of water and ions in soil irrigation and fertilizedfrom a trickle source[J]. Soil Science Society of America Journal,1976,40:575-582.
    [101] Papadopoulos I. Nitrogen fertigation of greenhouse-grown cucumber[J]. Plant and soil,1986,3:87-93.
    [102] Papadopoulos I. Nitrogen fertigation of greenhouse-grown tomato[J]. Communication in SoilScience and Plant Analysis,1987,18:897-907.
    [103] Omary M. Thiree-dimensional movement of water and pestieide from trickle irrigation:fiuiteelement model[J]. Transactions of the ASAE,1992,35(3):811-821.
    [104]吕家龙,李敏,钱伟.蔬菜品质、标准和感官鉴定[J].长江蔬菜,1992,(6):3-5.
    [105]任华中,黄伟编著大棚茄子栽培技术问答[M].北京科学技术文献出版社,2001,14-248.
    [106]汤丽玲,陈清,张宏彦,张晓晨,李晓林,Liebig,H.R等.不同灌溉与施氮措施对露地菜田土壤无机氮残留的影响[J].植物营养与肥料学报,2002,8(3):282-287.
    [107]郭盛熙,吴礼树.施用氮钾肥料对蔬菜品质影响的研究进展[J].华中农业大学学报,2002,216:593-598.
    [108] Merghany MM. Effect of irrigation system and nitrogen levels on vegetative growth,yield yieldcomponents and some chemical composition of tomato Pplants grown in newly reCclaimed sandysoils[J].Annals of Agrieultural Seienee,1997,35(2):965-981.
    [109] Stanislaw K, Jan R, Jaeek D. Response of leek to irrigation,fertigation and broadcast nitrogenfertilization[J]. Vegetable Crops Researeh Bulletin,1999,51:39-48.
    [110] Jorn Nygaard S. Nitrogen effects on vegetabtle Crop production and chemieal composition[J].Acta Horticulturae,1999.506:41-50.
    [111]杨丽娟,梁成华.不同用量氮、钾肥对油菜产量及品质的影响[J].沈阳农业大学学报,1999,30(2):109-111.
    [112] Krystyna E,Irena B. Influence of irrigation and nitrogen fertilization on quality of fresh andfrozen broccoli[J]. Vegetable crops research bulletin,1999,50:93-106.
    [113]毕宏文.水分对蔬菜产品质量影响[J].北方园艺,1997,117:68-69.
    [114]刘明池,陈殿奎.亏缺灌溉对樱桃番茄产量和品质的影响[J].中国蔬菜,2002,(6):4-6.
    [115]刘向莉.亏缺灌溉提高番茄果实品质风味的基础研究[硕士学位论文].2005,北京:中国农业大学.
    [116]齐红岩,李天来,张洁,等.亏缺灌溉对番茄蔗糖代谢和干物质分配及果实品质的影响[J].中国农业科学,2004,37(7):1045-l049.
    [117] Stevens, M A, A A Kader, et al. Potential for increasing tomato flavor vise increasing sugar andacid content[J]. Journal of the American Society for Horticultural Science,1979,104:40-42.
    [118] Baseiga Yrisarry J.J. et al. Response of processing tomato to three different levels of water andnitrogen applications[J]. Acta Horticulturae,1993,335:149-153.
    [119] Yasuyoshi H.T., Toshiko T. B., Satoru K. D. et al. The effect of water stress on the growth, sugarand nitrogen content of cherry tomato fruit[J]. Journal of the Japanese Society for HorticulturalScience,1998,67(5):759-766.
    [120] Zushi K., Matsuzoe N. Effect of soil water deficit on vitamin C, sugar, organic acid, amino acidand cartene contents of large-fruited tomatoes[J]. Journal of the Japanese Society for HorticulturalScience,1998,67(6):927-933.
    [121]任华中.水氮供应对日光温室番茄生育、品质及土壤环境的影响[博士学位论文].2003,北京:中国农业大学.
    [122]杨红,姜虹,詹永发等.不同水肥条件对辣椒干物质积累、养分吸收及产量的影响[J].作物杂志,2008,6:26-29.
    [123]陈碧华,郜庆炉,杨和连,等.日光温室膜下滴灌水肥耦合技术对番茄生长发育的影响[J].广东农业科学,2008,(8):63-65.
    [124] Shao H.B., Chu L.Y., Jalee C.A. l, et al. Water-deficit stress-induced anatomical changes in higherplants [J]. Comptes Rendus Biologies,2008,331:215-225.
    [125] de Soyza A.G., Killingbeck K.T., Whitford W.G.. Plant water relations and photosynthesis duringand after drought in a Chihuahuan desert arroyo [J]. Journal of Arid Environments,2004,59:27-39.
    [126] Shulaev V., Cortes D., Miller G., et al. Metabolomics for plant stress response [J]. PhysiologiaPlantarum,2008,132:199-208.
    [127] Mayek-Perez N., Garcia-Espinosa R., Lopez-Castaneda C., et al. Water relations, histopathologyand growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophominaphaseolina under drought stress [J]. Physiological and Molecular Plant Pathology,2002,60:185-195.
    [128]王磊,张彤,丁圣彦.干旱和复水对大豆光合生理生态特性的影响[J].生态学报,2006,26(7):2073-2078.
    [129] Naor A.. Relations between leaf and stem water potentials and stomatal conductance in threefield-grown woody species [J]. Journal of Horticultural Science and Biotechnology,1998,73:431-436.
    [130]史胜青,袁玉欣,杨敏生等.水分胁迫对4种苗木叶绿素荧光的光化学淬灭和非光化学淬灭的影响[J].林业科学,2004,40(1):168-173.
    [131]徐秀梅,杨万仁,刘东宁.干旱区20个紫花苜蓿品种抗旱性研究[J].种子,2004,23(11):21-24.
    [132]李贵全,张海燕,季兰等.不同大豆品种抗旱性综合评价[J].应用生态学报,2006,17(12):2408-2412.
    [133] Reddy A.R., Chaitanya K.V., Vivekanandan M.. Drought-induced responses of photosynthesis andantioxidant metabolism in higher plants [J]. Journal of Plant Physiology,2004,161:1189-1202.
    [134] Cregg B.M., Zhang J.W.. Physiology and morphology of Pinus sylvestris seedlings from diversesources under cyclic drought stress [J]. Forest Ecology and Management,2001,154:131-139.
    [135] Galmes J., Abadia A., Medrano H., et al. Photosynthesis and photoprotection responses to waterstress in the wild-extinct plant Lysimachia minoricensis [J]. Environmental and ExperimentalBotany,2007,60:308-317.
    [136]关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31:293-297.
    [137]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [138]云建英,杨甲定,赵哈林.干旱和高温对植物光合作用的影响机制研究进展[J].西北植物学报,2006,26(3):641-648.
    [139] Morgan J.M.. Osmoregulation and water stress in higher plants [J]. Annual Review of PlantPhysiology,1984,35:299-319.
    [140] Ludlow M. M. and Muchow R. C.. A critical evaluation of traits for improving crop yields inwater-limited environments [J]. Advances in agronomy,1990,43:107-153.
    [141] Koch K. E. Carbohydrate-modulated gene expression in plants. Annual Reviews of Plant [J]Physiology and Plant Molecular Biology,1996,47:509-540.
    [142] Hayata Y., Tabe T., et al. The effects of water stress on the growth,sugar and nitrogen content ofcherry tomato fruit [J]. Journal of the Japanese Society for Horticultural Science,1998,67:459-766.
    [143] Patakas A., Nikolaou N., Zioziou E., et al. The role of organic solute and ion accumulation inosmotic adjustment in drought-stressed grapevines [J]. Plant Science,2002,163:361-367.
    [144] Iannucci A., Russo M., Arena L., et al. Water deficit effects on osmotic adjustment and soluteaccumulation in leaves of annual clovers [J]. European Journal of Agronomy,2002,16:111-122.
    [145] Verbruggen N., Hermans C. Proline accumulation in plants: a review [J]. Amino Acids,2008,35:753-759.
    [146] Delauney A.J., Verma D.P.S.. Proline biosynthesis and osmoregulation in plants [J]. Plant Journal,1993,4:215-223.
    [147] Bacelar E.A., Santos D.L., Moutinho-Pereira J.M., et al. Immediate responses and adaptativestrategies of three olive cultivars under contrasting water availability regimes: Changes onstructure and chemical composition of foliage and oxidative damage [J]. Plant Science,2006,170:596-605.
    [148] Chaves M.M., Pereira J.S., Maroco J., et al. How plants cope with water stress in the field.Photosynthesis and growth [J]. Annals of Botany,2002,89:907-916.
    [149] Iannucci A., Russo M., Arena L., et al. Water deficit effects on osmotic adjustment and soluteaccumulation in leaves of annual clovers [J]. European Journal of Agronomy,2002,16:111-122.
    [150]王霞,侯平,尹林克等.水分胁迫对柽柳植物可溶性物质的影响[J].干旱区研究,1999,16(2):6-11.
    [151] Bartels D., Sunkar R.. Drought and salt tolerance in plants [J]. Critical Reviews in Plant Sciences,2005,24:23-58.
    [152] Yordanov I., Velikova V., Tsonev T.. Plant responses to drought, acclimation, and stress tolerance[J]. Photosynthetica,2000,38:171-186.
    [153] Mittler R.. Oxidative stress, antioxidants and stress tolerance [J]. Trends in Plant Science,2002,7:405-410.
    [154] Neto A.D.D., Prisco J.T., Eneas J., et al. Effect of salt stress on antioxidative enzymes and lipidperoxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes [J].Environmental and Experimental Botany,2006,56:87-94
    [155] Mittler R., S Vanderauwera., Gollery M., et al. Reactive oxygen gene network of plants [J].Trends in Plant Science,2004,9:490-498.
    [156]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯,1996,32(2):144-150.
    [157] Liu,Y.D., G.H. Wang, K. Chen, et al. The involvement of the antioxidant system in protection ofdesert cyanobacterium Nostoc sp against UV-B radiation and the effects of exogenous antioxidants[J]. Ecotoxicology and Environmental Safety,2008,69:150-157.
    [158]李曙轩.1979.蔬菜栽培生理[M].上海:上海科技出版社.
    [159]张静,冯金侠,卞新民等.作物生态适宜性变权评价方法[J].南京农业大学学报,2006,29(1):13-17.
    [160]党永华,胡元宝,吴金娥.陕西设施蔬菜产业可持续发展的问题与对策[J].安徽农学通报,2006,12(10):27-29.
    [161]余松烈,沈煜清,顾慰连,等.作物栽培学[M].北京:农业出版社,1991:43-56.
    [162]刘巽浩.耕作学[M].北京:中国农业出版社,1998:70-76.
    [163]曹国,王番,张思聂.高油玉米的生态适宜性及产量效益分析[J].耕作与栽培,2002,10(4):38-39.
    [164]王明喜,崔世茂,王红彬等.大棚型日光温室光照、温度及湿度等性能的初步研究[J].农业工程技术,2008,05:19-21.
    [165]冯国民.蔬菜大棚温度、湿度与光照条件的调节[J].种植业,2000,1:5.
    [166]张振贤.蔬菜栽培学〔M].北京:中国农业大学出版社,2003:l-300.
    [167]范双喜,李光晨.园艺植物栽培[M].北京:中国农业大学出版社,2007:1-300.
    [168]崔学明.农业气象学[M].北京:高等教育出版社,2006:1-300.
    [169]吕云生,吕海波.怎样调节蔬菜大棚的温湿度与光照[J].瓜菜栽培,2009,(1):13-16.
    [170] Dencic, S., Kastori, R., Kobiljski, B., Duggan, B. Evaluation of grain yield and its components inwheat cultivars and landraces under near optimal and drought conditions. Euphytica,2000,113:43–52.
    [171]廉华.蔬菜产量形成与设施内环境因素之间的动态关系的研究.2001届攻读硕士学位研究生毕业论文,东北农业大学.
    [172] Xu, H.L., Wang, R., Gauthier L.,et al. Tomato leaf photosynthetic responses to humidity andtemperature under salinity and water deficit[J]. Pedosphere,1999,9(2):105-112.
    [173] Trigui M, Barrington S F, Gauthier L. Effects of humidity on tomato (Lycopersicon esculentumcv.Truss) water uptake yield and dehumidification cost[J]. Canadian Agricultural Engineering,1999,41(3):135-140.
    [174] Comstock J, Ehleringer J. Stomatal response to humidity in common bean (phaseolus vulgaris):implications for maximum transpiration rate, water use efficiency and productivity[J].AustralianJournal of Plant Physiology,1993,20(6):669-691.
    [175] Stanghellini C, Meurs, WTM Van, Van Mear WTM. Environmental control of greenhouse croptranspiration[J]. Journal of Agricultural Engineering Research,1992,51(4):297-311.
    [176]康绍忠,梁银丽等.旱区水-土-作物关系及其最优调控原理[M].1998,中国农业出版社.
    [177] E.Penrod, J.M.Elliot,W.K.Brown.Soil temperature variation at Lexington.Kentucky[J]. Journal ofSoil Science,1960,90:275-283.
    [178] J.E.Carson. Analysis of siol and air temperature by Fourier techniques[J]. Journal of GeophysicalResearch,1963,68:2217-2232.
    [179] G..Mihalakakou. On estimating soil surface temperature profiles[J].Energy and Buildings,2002,34:251-259.
    [180] Machado, R. M. A. and M. R. G. Oliveira. Tomato root distribution, yield and fruit quality underdifferent subsurface drip irrigation regimes and depths[J]. Irrigation Science,2005,24:15-24.
    [181] Marouelli, W. A. and Silva, W. L. C. Water tension thresholds for processing tomatoes under dripirrigation in central Brazil[J]. Irrigation Science,2007,25:411-418.
    [182] Zotarelli, L., Scholberg, J.M. et al.Tomato yield, biomass accumulation, root distribution andirrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigationscheduling[J]. Agricultural Water Management,2009,96:23-34.
    [183] Gao, Z.Q., Fan, X., Bian L. Analytical solution to one-dimen-sional thermal conductionconvection in soil[J]. Soil Science,2003,168(2):99-106.
    [184] Axel Garcia y Garcia, Larry C. Guerra, Gerrit Hoogenboom.Impact of generated solar radiationon simulated crop growth and yield[J]. ecological modelling,2008,210:312–326.
    [185]杨邦杰Blac, P.S.土壤表面蒸发阻力模型与田间测定方法[J].地理学报,1997,52(2):177-183.
    [186] Gardner W R. Solution of the flow equation for the dry ing of soil and the porous media[J]. SoilScience Society of American Proceedings,1959,23:183-187.
    [187] Philip J R,De VriesD A. Moisture movement in porous materials under temperaturegradients[J].Transactions, American Geophysical Union,1957,38:222-232.
    [188] Constantz J,Murphy F. The temperature dependence of ponded infiltration under isothermalconditions[J]. Journal of hydrology,1991,122:119-128.
    [189] Jackson R D.Temperature and soil-water diffusivity relation[J]. Soil Science Society of AmericaJournal,1963,27:363-366.
    [190] Smith W. Thermal conductivities in moisture soils[J]. Soil Science Society of AmericanProceedings,1940,(4):32-40
    [191]王琳琳,高志球,沈新勇等.土壤水分的垂直运动对黄土高原糜田土壤温度的影响[J].南京气象学院学报,2008,31(3):363-368
    [192]陈海山,孙照渤.陆气相互作用及陆面模式的研究进展[J].南京气象学院学报,2002,25(2):277-288.
    [193]辛晓洲,柳钦火,田国良等.利用土壤水分特征点组分温差假设模拟地表蒸散[J].北京师范大学学报:自然科学版,2007,43(3):221-227.
    [194] Neilson J.W., Pepper I.L. Soil respiration as an index of soil aeration[J]. Soil Science Society ofAmerica Journal,1990,54,428-432.
    [195]张小兰.不同水氮处理对露地叶菜硝酸盐积累与土壤氮淋失的影响[J].北京:中国农业大学硕士学位论文.2002.
    [196]齐述华,李子忠,龚元石.应用农田水量平衡原理计算三种蔬菜的需水量和作物系数[J].中国农业大学学报,2002,7(1):71-76.
    [197]李毅,王文焰.宽地膜覆盖条件下土壤温度场特征[J].农业工程学报,2001,17(3):32-36.
    [198]范爱武,刘伟,王崇琦.不同环境条件下土壤温度日变化的计算模拟[J].太阳能学报,2003,24(2):167-171.
    [199]杨邦杰, Blac P. S.土壤表面蒸发阻力模型与田间测定方法[J].地理学报,1997,52(2):177-183.
    [200]吕雄杰,陆文龙,宋治文.农田土壤温度和水分空间变异研究[J].灌溉排水学报,2006,25(6):79-81.
    [201]王铁良,李晶晶,李波等.不同灌溉方式对日光温室土壤温度的影响[J].北方园艺,2009:147-149.
    [202]陈丽娟,张新民,王小军.不同土壤水分处理对膜上灌春小麦土壤温度的影响[J].农业工程学报,2008,24(4):9-13.
    [203]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    [204]薛继澄,吴志行,李家金,毕德义,刘玉峰.设施栽培土壤氮肥施用问题的研究[J].中国蔬菜,1994(5):22-25.
    [205]李俊良,朱建华,张晓最,孟祥霞,陈清,李晓林,张福锁.保护地番茄养分利用及土壤氮素淋失[J].应用与环境生物学报,2001,7(2):26-129.
    [206]葛晓光,王晓雪,张听,张恩平,刘秀茹.长期偏施氮肥对露地蔬菜一土壤生态系统变化的影响[J].园艺学报,2000,27(4):263-268.
    [207] T.W. Hegarty. Seed activation and seed germination under moisture stress [J]. New Phytologist,1977,78:349-359.
    [208]高俊凤.植物生理学实验技术[M].世界图书出版公司,2000.
    [209] E.A. Bray. Plant responses to water deficit[J]. Trends in Plant Science,1997,2:48-54.
    [210] Yordanov I., Velikova V., Tsonev T. Plant responses to drought, acclimation, and stresstolerance[J]. Photosynthetica,2000,38:171-186.
    [211] S.G. Saraswathi, K. Paliwal. Diurnal and seasonal trends in photosynthetic performance ofDalbergia sissoo Roxb. and Hardwickia binata Roxb. from a semi-arid ecosystem[J].Photosynthetica,2008,46:248-254.
    [212]汤丽玲,张晓晨,陈清,张宏彦,李晓林.蔬菜氮素营养与品质[J].北方园艺,2002,3:6-7.
    [213]姚磊,杨阿明.不同水分胁迫对番茄生长的影响[J].华北农学报,1997,12(2):102-106.
    [214] Montemurro F,Colueei R,Bari V,Ferri D,Anae D,MartinPrevel P.Effects of a temporary waterand nitrogen deficit in the soil on tomato yield and quality.Improved Crop Quality by nutrientmanaement[M],Kluwer Aeademie Publishers, Netherlands,1999:127-130.
    [215] Aehilea O,Anae D,MartinPrevel P. Citrus and tomato quality is improved by optimized Knutrition. Improved Crop Quality by nutrient manaement[M],Kluwer Aeademie Publishers,Netherlands,1999:19-22.
    [216]赵凤艳,王敏秋.保护地黄瓜优质高产氮肥施用参数的研究[J].黑龙江农业科学,2000,(6):8-10.
    [217]葛晓光,王晓雪,张听,张恩平,刘秀茹.长期偏施氮肥对露地蔬菜一土壤生态系统变化的影响[J].园艺学报,2000,27(4):263-268.
    [218]李俊良,崔德杰,孟祥霞,李晓林,张福锁.山东寿光保护地蔬菜施肥现状及问题的研究[J].土壤通报,2002,332:126-128.
    [219]刘明池,陈殿奎.氮肥用量与黄瓜产量和硝酸盐积累的关系[J].中国蔬菜,1996,3:26-28.
    [220] Hanson, B. R., R. B. Hutmacher, et al.. Drip irrigation of tomato and cotton under shallow salineground water conditions. Irrigation and Drainage Systems,2006,20:155-175.
    [221] Zhang J. X. and M. B. Kirkham. Antioxidant Responses to Drought in Sunflower and SorghumSeedlings. New Phytologist,1996,132(3):361-373.
    [222] Manivannan, P., C.A. Jaleel, et al. Changes in antioxidant metabolism of Vigna unguiculata(L.)Walp. by propiconazole under water deficit stress[J]. Colloids and Surfaces B: Biointerfaces,2007,57:69-74.
    [223] Jaleel, C. A., P. Manivannan, et al. Responses of antioxidant potentials in Dioscorea rotundataPoir. Following paclobutrazol drenching[J]. Comptes Rendus Biologies,2007,330:798-805.
    [224] Farooq, M., Wahid, A., D.J. Lee, et al. Advances in Drought Resistance of Rice [J]. CriticalReviews in Plant Sciences,2009,28:199-217.
    [225] Jones,H.G., Corlett, J.E. Current topics in drought physiology [J]. Journal of Agricultural Science,1992,119:291-296.
    [226]高俊凤.植物生理实验技术[M].西安:世界图书出版社,2000.
    [227] Zhu, Z.B., Liang,Z.S., Han, R.L. Saikosaponin accumulation and antioxidative protection indrought-stressed Bupleurum chinense DC. plants[J]. Environmental and Experimental Botany,2009,66:326-333.
    [228] Alva, A.K., Paramasivam, S. et al. Nitrogen best management practice for citrus trees-I. Fruityield, quality, and leaf nutritional status[J]. Scientia Horticulturae,2006,107(3):233-244.
    [229]姜慧芳,任小平.干旱胁迫对花生叶片SOD活性和蛋白质的影响[J].作物学报,2004,30:169-174.
    [230] Dhindsa, R.S. and Matow, E.W.. Drought tolerance in two mosses: correlated with enzymedefense against lipid peroxidation[J]. Journal of Experimental Botany,1981,32:79-91.
    [231] Chowdhury, R.S. and M.A. Choudhuri Hydrogen peroxide metabolism as index of water stresstolerance in jute[J]. Physiologia Plantarum,1985,65:503-507.
    [232]王娟,李德全,谷令坤.不同抗旱性玉米幼苗根系抗氧化系统对水分胁迫的反应[J].西北植物学报,2002,22(2):285-290.
    [233] Iturbe-Ormaetxe, I., Escuredo, R.P. et al. Oxidative damage in pea plant exposed to water deficitor paraquat[J]. Plant Physiology,1998,119:173-181.
    [234] Kim, T.H., Lee,B.R., Li,L.S. et al. Water deficit-induced oxidative stress and the activation ofantioxidant enzymes in white clover leaves [J]. Biological Plantarum,2009,53:505-510.
    [235] Ludlow, M.M. and Muchow, R.C. A critical evaluation of traits for improving crop yields inwater-limited environments[J]. Advances in Agronomy,1990,43:107-153.
    [236] GE T.D., Sui F.G.., Bai L.P., Lu Y.Y, and Zhou G..S. Effects of Water Stress on the ProtectiveEnzyme Activities and Lipid Peroxidation in Roots and Leaves of Summer Maize[J].Agricultural Sciences in China,2006,5(4):291-298
    [237] Jung, S. Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thalianasubjected to drought[J]. Plant Science,2004,166(2):459-466.
    [238] Pernice, R., Parisi, M. et al. Antioxidants profile of small tomato fruits: Effect of irrigation andindustrial process[J]. Scientia Horticulturae,2010,126:156-163.
    [239] Gao, Z., Sagi, M. et al. Car bohydrate metabolismin leaves and assimilate partitioning in fruits oftomato (Lycopersiconesculentum L.) as affected by salinity[J]. Plant Sciences.,1998,135:149-159.
    [240] Feil, B., Moser, S.B., et al. Mineral composition of the grain of tropical maize varieties as affectedby pre-anthesis drought and rate of nitrogen fertilization. Crop Science.,2005,45:516-523.
    [241] Sala, J.M. Involvement of oxidative stress in chilling injury in cold-stored mandarin fruits[J].Postharvest Biology and Technology,1998,13(3):255-261.
    [242] Ozaki, K., Uchida, A. et al. Enrichment of sugar content in melon fruits by hydrogen peroxidetreatment[J]. Journal of Plant Physiology,2009,166(6):569-578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700