用户名: 密码: 验证码:
小麦骨干亲本矮孟牛衍生系主要农艺及品质性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(TriticumaestivumL.)是世界上主要粮食作物之一,小麦的许多重要性状是多基因控制的数量性状(Quantitativetraitlocus/loci,QTL),数量性状的表型和基因型研究是育种工作的基础。
     关联分析利用不同基因座等位变异(基因)间的连锁不平衡关系,进行标记与性状的相关性分析,它是一种十分有效的作图方法,可以鉴定特定目标性状基因(或染色体区段)。关联分析技术与传统的QTL相比,具有周期短、精确、鉴定位点多等优势。
     “矮孟牛”是一个新确定的小麦骨干亲本,由其培育出一批大面积推广的品种,也衍生出许多具有广泛应用价值的亲本育种材料。本研究利用“矮孟牛”及其衍生系共109份材料构成一个研究群体,获得6个环境下的农艺及品质性状数据;选用覆盖小麦全基因组的971个DArT(DiversityArrayTechnology)标记扫描;分析群体的遗传多样性水平和选择牵连效应“V”字形谷区段;筛选矮孟牛3个亲本的特异标记位点(染色体区段),明确它们在衍生后代材料中的遗传频率和遗传贡献率;确定群体的遗传结构和连锁不平衡式样;最后,利用基于混合线性模型的TASSEL2.0.1软件,对株高、籽粒、穗部等重要农艺性状及面粉、面团特性、加工品质等主要品质性状进行关联分析,定位控制这些性状的位点。
     对矮孟牛及其衍生系进行全基因组的高密度扫描,通过标记/性状关联分析,可以找到一些重要的基因组区段,定位一些骨干亲本所携带和传递的产量、品质相关基因。了解骨干亲本及其衍生系的基因组学基础,为品种分子设计、组合选配及后代分子标记选择提供重要的理论依据,进而为分子育种服务。本研究获得以下主要结果:
     1.明确了该群体的遗传多样性水平。全基因组扫描确定全部109份小麦材料的多样性指数(PIC值)范围是0.054~0.5,平均值为0.408;绘制了21条染色体的PIC曲线变化趋势图,获得60多个发生选择牵连效应的“V”字形基因组区段。
     2.明确了亲本特异标记位点的遗传特性。筛选到矮孟牛3个亲本的330个特异DArT位点,获得了它们在41份衍生后代(有详细系谱来源)中的遗传频率和遗传贡献率。结果发现3个原始亲本遗传差异较大;在对后代的影响方面,牛朱特影响最大,矮丰3号次之,孟县201最小;明确了对后代有较大贡献、高频率传递的染色体位点,其中7个位点效应显著。
     3.获得关联群体的遗传结构和连锁不平衡(Linkagedisequilibrium,LD)状况。基于模型的STRUCTURE软件将该群体划分为5个亚群。整个群体中,7.03%的DArT位点之间存在显著的LD(P<0.01),在各亚群中存在显著LD的位点占0.501%~2.64%,在染色体上发现了许多LD块。整个群体的连锁不平衡衰减距离为23.6cM,各亚群的衰减距离为6~15cM。
     4.对48个重要的农艺、品质性状进行6个环境下的关联分析,共确定了779个标记/性状关联(marker-traitassociations,MTAs)。这些关联分布在除4D、5A外的19条染色体上。其中,4个关联在4个环境中重复检测到,16个关联在3个环境中重复检测到,66个关联在两个环境中重复检测到。407个关联标记的变异解释率(R~2)较大(超过10%),14个关联标记的R~2超过20%。
     4.1株高相关性状的关联分析。株高共检测到55个显著的关联,其中,6个关联在3个环境中重复检测到,3个关联在4个环境中重复检测到(标记的R~2平均为10.06%、14.29%和14.32%)。标记wPt-3457在4个环境下均检测到,R~2均大于10%,且具有最大R~2值(20.64%,p<0.0001),这可能是一个重要的QTL;穗下茎共检测到68个显著的关联,其中2个关联可在3个环境中重复检测到,1个关联可在4个环境中重复检测到。标记wPt-4744的R~2最大(24.26%,p<0.0001);旗叶(长、宽及面积)共检测到61个显著的关联,各位点的R~2多小于10%。
     4.2籽粒相关性状的关联分析。籽粒相关性状(千粒重、容重、粒径、籽粒硬度)共检测到76个显著的关联。其中,籽粒硬度的1个关联可在3个环境中重复检测到;标记wPt-2526、wPt-9613和wPt-8598都同时与千粒重、粒径关联,R~2平均为9.4%和12.44%。
     4.3穗部相关性状的关联分析。穗部相关性状(穗长、总小穗数、有效小穗数、不育小穗数、穗密度、穗粒数、穗粒重)共检测到97个显著的关联。总小穗数的3个关联可在3个环境中重复检测到。其中穗长与穗密度的4个关联标记一致,尤其是标记wPt-9749、wPt-5737和wPt-9814的R~2都较高,在极显著水平下(p<0.0001)分别为15.19%和11.56%。
     4.4面粉特性的关联分析。面粉色泽(L*、a*和b*)共检测到27个显著的关联。色泽a*有两个极显著的关联(p<0.0001)(标记wPt-1196和wPt-669693)可在3个环境中重复检测到,R~2分别平均为14.26%和11.43%。面粉蛋白质含量,共检测到45个显著的关联,标记wPt-7330在3个环境中重复检测到,wPt-0864的R~2最大(18.12%)。湿面筋含量和指数,共检测到40个显著的关联,标记wPt-665169同时与两性状关联,在极显著水平下对湿面筋指数的变异解释率R~2为11.89%。Zeleny沉淀值,检测到46个显著的关联。wPt-6531和wPt-8393在2个环境中重复检测到,对性状的变异解释率最高,平均R~2为10.54%。淀粉糊化特性(RVA)的六个参数(糊化温度、峰值黏度、衰减值、回升值、最终黏度和低谷黏度)共检测到130个显著的关联。糊化温度的1个关联(wPt-9277)在3个环境中重复检测到。5个标记同时与3个参数关联,8个标记同时与4个参数关联。尤其是标记wPt-9423与4个参数关联且都在极显著水平下R~2为15.09%~23.27%。
     4.5面团流变学特性的关联分析。面团揉混Mixograph参数(峰值时间、峰值高度、峰值宽度、达到峰值时间总功量和8分钟带宽)共检测到63个显著的关联。标记wPt-0610对峰值宽度的R~2最高(15.86%,p<0.0001)。
     4.6加工品质的关联分析。面条品尝测试的七个参数(色泽、表现状态、硬度、粘弹性、光滑性、食味、品尝打分)共检测到30个显著的关联。wPt-3304等3个标记同时与3个参数关联,R~2都大于10%。面条TPA测试的七个参数(硬度、黏着性、弹性、黏聚性、胶着性、咀嚼性、回复性)共检测到33个显著的关联,wPt-6854等3个标记同时与3个参数关联,且R~2为10%左右。
     5.定位了30个新的性状关联标记。其中,与株高和穗下茎极显著关联的标记wPt-9280(R~2分别为13.74%和10.89%)与相同关联的定位标记wPt-4017(6A,20.7cM)存在完全连锁不平衡,可视为同一位点。
     6.在与性状关联的标记中,确定了103个来源于三个亲本的特异标记。其中,1A染色体上与色泽等性状关联的标记位点wPt-2872来自亲本矮丰3号,与株高等关联的标记位点wPt-3698来源于孟县201,与小穗数等关联的标记位点wPt-6005来源于牛朱特。
     7.综合考虑亲本特异性、选择牵连效应、连锁不平衡程度、关联显著性及重复性和效应大小,获得一批重要的染色体区段和位点。其中,标记wPt-730408(1A,90.1cM)、wPt-9423(2B,57.8cM)、wPt-5836(3B,71.6cM)、wPt-3457(5B,92.3cM)、wPt-7576(6B,73.6cM)等具有重要意义,可作为以后研究的重点。
Wheat (Triticum aestivum L.) is a major staple food in the world. Most traits in wheat are quantitative. Studies on the phenotype and genotypes for quantitative trait locus/loci (QTL) are the basis for breeding program.
     Association mapping is an important method to identify QTL contributing to phenotypic variation based on linkage disequilibrium (LD), which has obvious advantages compared with traditional linkage analysis.
     " Aimengniu" is a newly identified founder parent in wheat, and a number of varieties and parental breeding materials were derived from it. In this study, founder parent "Aimengniu" and its derived progenies were planted in six environments, and a large number of phenotype data were obtained. Genetic diversity and hitchhiking effects "V" shaped bottom were preliminary analyzed by scanning the collection genome with DArT (Diversity Array Technology) markers;330special markers for parents were selected and their genetic contribution rates for derivatives were obtained; population structure and linkage disequilibrium were determined for the association population; association mapping for plant height, grain, spike related agronomic traits and quality traits on flour, dough, noodle quality were performed using mixed linear model in TASSEL2.0.1software in order to locate these quantitative trait locus.
     If the founder parent "Aimengniu" could be scanned high-densely, some of important genomic segments could be detected by association analysis, and genes related with yield and quality traits carried by founder parent could also be located. So the genomic base of founder parent could be clarified, and important theoretical basis for molecular breeding could be provided for molecular design, parental combination match, and molecular markers selection in wheat breeding program.
     The main results were as the following:
     1. Clarifying genetic diversity in the population. The PIC of109wheat collection by genome-wide scanning was0.054-0.5, and the mean value was0.408. The PIC curve of each chromosome was drew, and genomic regions with60"V" selection sweep were found by hitchhiking effect analysis.
     2. Defining the genetic characters of special markers in parents. Derivatives with detail pedigrees were selected from the total material. The special DArT markers for three parents (Aifeng3//Mengxian201/Neuzucht) were identified and their genetic contribution ratios and transmission frequencies were analyzed. The results indicated that three parents had large genetic differences. Neuzucht contributed more genetic components to their derivatives than other parents, followed by Aifeng3, Mengxian201did the least. Markers with high genetic contribution ratio and high frequency transmission were found,7markers of which had significant effect.
     3. Linkage disequilibrium (LD) and population structure were obtained in order to construct the association population. The population was derived into five subpopulations.7.03%of the DArT markers was in significant LD (p<0.01) in total, while the percentage was0.501%-2.64%in subpopulations, some LD blocks were found in chromosomes regions. LD extended23.6cM, subpopulations extended6-15cM.
     4. Association analysis for48important agronomic and quality traits (in6environments) were determined, and779significant associations were identified, which spread over19chromosomes except for4D and5A. In these associations,4association were detected repeatedly in four environments,16associations in three environments,66associations in two environments. R2for407associations was large (>10%), and R2for14associations exceeded20%.
     4.1Associations for plant height and related traits.55associations were identified for plant height. In these associations,6associations were detected repeatedly in three environments,3associations in four environments (R2was10.06%,14.29%and14.32%in average). The marker wPt-3457was detected in four environments with the maximum R2value (20.64%,p<0.0001).68associations were identified for the first interrnode length counted from the top. In these associations,2associations were detected repeatedly in three environments, and1association in four environments. The marker wPt-4744was with the maximum R2(24.26%,p<0.0001).61associations were identified for flag leaf (length, width and area), and R2of most markers was larger (>10%).
     4.2Association mapping for grain related traits.76associations for grain related traits (thousand kernel weight, test weight, grain diameter, grain hardness) were identified. In which,1association for grain diameter were detected repeatedly in two environments,1association for grain hardness in three environments. The marker wPt-2526, wPt-9613and wPt-8598were associated with both thousand kernel weight and grain diameter, R2was9.4%and12.44%.
     4.3Association for spike related traits.97associations for spike related traits (spike length, total spikelet number per spike, fertile spikelet number, sterile spikelet number, spike density, grain number per spike, grain weight per spike) were identified. In which,3associations for total spikelet number were detected repeatedly in three environments.4markers associated with spike length and spike density were the same, R2of wPt-9749, wPt-5737and wPt-9814were15.19%and11.56%(p<0.0001).
     4.4Association for flor feature.27associations were identified for flour color (L*, a*and b*). Two very significant associations (marker wPt-1196and wPt-669693) were found repeatedly in three environments, R2was14.26%and11.43%in average.45associations were identified for flour protein content.1association (wPt-7330) was repeatedly detected in three environments, wPt-0864had the maximum R2(18.12%).40associations were identified for gluten content and gluten index. The marker wPt-665169was associated with both traits, R2for gluten index was18.11%.46associations were identified for Zeleny sedimentation value, The markers wPt-6531and wPt-8393were repeatedly detected in two environments, R2was10.54%.130associations for RVA parameters (RPV, RTV, RBd, RFV, RSb and RPT) were identified.1association of RPT was repeatedly detected in three environments. There were5markers associated with three parameters,8markers associated with4parameters. The marker wPt-9423was associated with4parameters, R2was15.09%-23.27%very significantly.
     4.5Association for dough rheological properties.63associations were identified for Mixograph parameters (MPT, MPV, MPW, MPI and MTxV). The R2of wPt-0610associated with MPW was15.68%.
     4.6Association for noodle quality.30associations were identified for white water noodle score parameters (NCo, NAp, NFi, NSt, NSm, NTa and NTS). There were3markers such as wPt-3304associated with three parameters, with R2more than10%.33associations were identified for white water noodle TPA parameters (NHa, NAd, NSp, NCo, NGu, NChe and NRe). R2was0.4%-13.49%. There were3markers associated with three parameters, such as wPt-6854, R2was more or less10%.
     5. A total of30unmapped markers were located on chromosomes based on LD. In these markers, wPt-9280was in total linkage disequilibrium with wPt-4017(6A,20.7cM). Both the two markers were associated with PH and FIITL, and they could be seemed as the same locus.
     6. A total of103special DArT markers for3founder parents were selected from the markers associated with traits. On chromosome1A, wPt-2872associated with flour clour was derived from Aifeng3, wPt-3698associated with PH was derived from Mengxian201, and wPt-6005associated with TSN was derived from Neuzucht.
     7. Some important chromosome regions and locus were detected by association mapping based on hitchhiking effect analysis. The markers wPt-730408(1A,90.1cM), wPt-9423(2B,57.8cM), wPt-5836(3B,71.6cM), wPt-3457(5B,92.3cM), wPt-7576(6B,73.6cM) could be the focus in future study.
引文
Crosbie,等著.阎俊译.亚洲食品对小麦品质的要求.麦类作物,1999,19(3):19-21
    崔法,赵春华,鲍印广,宗浩,王玉海,王庆专,杜斌,马航运,王洪刚.冬小麦种质矮孟牛第一部分同源群染色体遗传差异分析.作物学报,2010,36(9):1450-1456
    方宣钧,吴为人,唐纪良作物DNA标记辅助育种.北京:科学出版社,2001,pp35-83;91-127
    盖红梅,王兰芬,游光霞,郝晨阳,董玉琛,张学勇.基于SSR标记的小麦骨干亲本育种重要性研究.中国农业科学,2009,42(5):1503-1511.
    韩俊,张连松,李静婷,石丽娟,解超杰,尤明山,杨作民,刘广田,孙其信,刘志勇.小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析.作物学报,2009,35(8):1395-1404
    金亮,水稻关联定位群体的构建及若干品质性状的关联分析(博士学位论文),北京:中国农业科学院图书馆,2009
    李晴祺.冬小麦种质创新与评价利用.济南:山东科学技术出版社,1998:1-34
    李小军,徐鑫,刘伟华,李秀全,李立会.利用SSR标记探讨骨干亲本欧柔在衍生品种的遗传.中国农业科学,2009,42(10):3397-3404
    廖祥政,马巧云,栗进朝,王蕊敏,雷体文.高产优质强筋国审豫麦34号的选育与推广应用.种子,2005,24(3):82-84
    亓增军,刘大钧,陈佩度,李晴祺.冬小麦种质“矮孟牛”的分子细胞遗传学研究.植物学报,2001a,43(5):469-474
    亓增军,刘大钧,陈佩度,王苏玲,李斯深,李晴祺.冬小麦种质“矮孟牛”中新型小麦黑麦复杂易位的遗传传递分析.作物学报,2001b,27(5):582-587.
    司清林,刘新伦,刘智奎,王长有,吉万全.阿夫及其衍生小麦品种(系)的SSR分析.作物学报,2009,35(4):615-619
    王荣焕,王天宇,黎裕关联分析在作物种质资源分子评价中的应用.植物遗传资源学报,2007,8(3):366-372
    王瑞霞,张秀英,伍玲,王瑞,海林,闫长生,游光霞,肖世和.不同生态环境条件下小麦籽粒灌浆速率及千粒重QTL分析.作物学报,2008,34(10):1750-1756
    王珊珊,李秀全,田纪春.利用SSR标记分析小麦骨干亲本“矮孟牛”及衍生品种(系)的遗传多样性.分子植物育种,2007,5(4):485-490.
    王学峰,杨富岭,李万林.周麦18超高产栽培技术.种业导刊,2007(9):21.
    文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒(中国栽培和野生大豆农艺品质性状与SSR标记的关联分析1群体结构及关联标记.作物学报,2008,34(7):1169-1178
    文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒中国栽培和野生大豆农艺品质性状与SSR标记的关联分析Ⅱ优异等位变异的发掘.作物学报,2008,34(8):1339-1349
    肖静,刘金良,田纪春.矮孟牛及其衍生品种(系)HMW-GS、蛋白质含量及沉淀值的演化分析.麦类作物学报,2010,30(4):765-769
    杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展.作物学报,2007,33(4):523-530
    游光霞,小麦重要SSR位点的发现及其与农艺性状的关联分析(博士学位论文),北京:中国农业科学院图书馆,2006
    游光霞,张学勇.基于选择牵连效应的标记/性状关联分析简介.遗传,200729(7):881-888
    袁园园,王庆专,崔法,张景涛,杜斌,王洪刚.小麦骨干亲本碧蚂4号的基因组特异位点及其在衍生后代中的传递.作物学报,2010,36(1):9-16
    赵春华,崔法,李君,丁安明,李兴峰,高居荣,王洪刚.冬小麦种质“矮孟牛”姊妹系遗传差异.作物学报,2011,37(8):1333-1341
    张军,赵团结,盖钧镒.大豆育成品种农艺性状QTL和SSR标记的关联分析.作物学报,2008,34(2):2059-2069
    张立平.普通小麦品质性状遗传与QTL分析,中国农业科学院博士学位论文,2003
    张正斌编著.小麦遗传学.北京:中国农业出版社,2001
    张学勇,童依平,游光霞,郝晨阳,盖红梅,王兰芬,李滨,董玉琛,李振声.选择牵连效应分析:发掘重要基因的新思路.中国农业科学,2006,39(8):1526-1536
    张学勇,董玉琛,游光霞,等.中国小麦大面积推广品种及骨干亲本的高分子量谷蛋白亚基组成分析.中国农业科学,2001,34(4):355-362
    庄巧生.中国小麦品种改良及系谱分析.北京:中国农业出版社,2003
    Agrama HA, Eizenga ZGC, and Yan ZW. Association mapping of yield and its components in rice cultivars. Mol Breed,2007,19:341-356
    Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet,2006,113:1409-1420
    Andersen JR. Schrag T, Melchinger A.E, Zein I, Lubberstedt T. Validation of Dwarf8polymorphisms associatiated with flowering time in elite European inbred lines of maize(Zea mays L.). Theoretical and Applied Genetics,2005,111:206-217
    Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, Toomajian C, Taw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg MGenome-wide association mapping in Arabidopsis identifies previously known flowering time ang pathogen resistance genes. PLoS Genetics,2005:1-e60
    Bao J S, Corke H, and Sun M. Microsatellites, single nucleotide polymorphisms and a sequence tagged site in starch-synthesizing genes in relation to starch physicochemical properties in nonwaxy rice(Oryza sativa L.). Theor Appl Genet,2006,113:1185-1196
    Bariana HS, Bansal UK, Schmidt A, Lehmensiek A, Kaur J, Miah H, Howes N, McIntyre CL. Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica,2010,176:251-260
    Belo A P,Zheng S, Luck. Whole genome scan detects an allelic variant of fad2associated with increased oleic acid levels in maize. Mol Genet Genomics,2008,279:1-10
    Borner A, Schumann E, Furste A, Corter H, Leithold B, Roder MS, Weber WE. Mapping of quantitative trait locus determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet,2002,105:921-936
    Bordes J, Ravel C, Gouis J Le, Lapierre A, Charmet G, Balfourier F. Use of a global wheat core collection for association analysis of flour and dough quality traits. Journal of Cereal Science.2011,54:137-147
    Breseghello F, Sorrells ME. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics,2006,172:1165-1177
    Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Girous M J, Hareland G, Fulcher RG, Sorrells ME, Finney PL. Quantitative trait loci associated with kernel traits in a soft by hard wheat cross. Crop Sci,1999,39:1184-1195
    Camus-Kulandaivelu L, Veyricras J B,Madur D, Combes V,Fourmann M, Barraud S,Dubreuil P,Gouesnard B, Manicacci D, Charcosset A. Maize adaptation to temperate climate relationship with population structure and polymorphism in the Dwarf8gene. Genetics,2006,172(4):1449-1463
    Comadran J, Thomas WTB, van Eeuwijk FA, Caccarelli S, Grando S, Stanca AM, Pecchioni N, Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varhney RK, Marshall DF, Graner A, Close TJ, Waugh R. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA,2006,103:18656-18661.
    Chao S, Zhang W, Dubcovsky J, Sorrels ME. Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum.) germplasm representing different mark classes. Crop Sci,2007,47:1018-1030
    Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo Metal. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure, Genetics,2007,177:1889-1913
    Dhoop BB, Paulo MJ, Mank RA, van Eck HJ, van Eeuwijk FA Association mapping of quality traits in potato(Solanum tuberosum L.). Euphytica,2008,161:47-60
    Doerge R.W. Mapping and analysis of quantitative trait loci in experimental populations, Nat.Rev. Genet,2002,3:43-52
    Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE:a simulation study. Mol Ecol,2005,14:2611-2620
    Falush D,Stephens M, and Pritchard J K.Inference of population structure using multilocus genotype data:linked loci and correlated allelefrequencies.Genetics.2003,164:1567-1587
    Fay JC, Wu CI. Hitchhiking under positive Darwinian selection. Genetics,2000,155(3):1405-1413
    Flint-Garcia SA., Thornsberry JM., Buckler ES. Structure of linkage disequilibrium in plants. Annu RevPlant Biol,2003,54:357-374
    Francki MG, Walker E, Crawford AC, Broughton S, Ohm H W, Barclay I, Wilson RE, McLean R. Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics,2009,281:181-191
    Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P and Schuler K. Assessing genetic potential in germplasm collections of crop plants by marker-trait association:a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Molecular Breeding,2004,13:93-102
    Gonzalez-Martine SC, Ersoz E, Brown GR, Wheeler NC, Neale DB. DNA sequence variation and selection of Tag singlenucleotide polymorphisms at candidate genes for drount-stress response in Pinus taeda. Genetics,2006,172:1915-1926
    Gonzalez-Martine SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB. Association genetics in Pinus taeda L. I.Wood property traits. Genetics,2007,175:399-409
    Gupta PK, Mir RR, Mohan A, Kumar J. Wheat genomics:present status and future prospects. International Journal of Plant Genomics,2008. doi:10.1155/2008/896451
    Hai L, Guo H J, Wagner C, Xiao S H, Friedt W. Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Science,2008,175:226-232
    Hamblin MT, Mitchell SE, White GM, Gallego J, Kukatla R, Wing RA, Paterson AH, Kresovich S. Comparative population genetics of the panicoid grasses:sequence polymorphism.linkage disequilibrium and selection in a diverse dample of Sorghum bicolor.Genetics,2004.167:471-483
    Hansen M, Kraft T, Ganestam S,et al,Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers.Genet Res,2001,77:61
    Harjes CE, Rochefird TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleon AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan J, Buckler ES. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification.Science,2008,319:330-333
    Harr B, Kauer M, Schlotterer C. Hitchhiking mapping:A population-based fine-mapping strategy for adaptive mutations in Drosphila melanogaster. Pro Natl Acad Sci USA,2002,99(20):12949-12954
    Huang Q, Borner A, Roder S, and Ganal W.2002Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl.Genet.105:699-707
    Huang S, Morrison WR. Aspects of proteins in Chinese and British common hexaploid wheats of quality to white and yellow Chinese noodle. J Cereal Sci,1988,8:177-188
    Huang S, Yun S, Quil K, Moss R. Establishment of flour quality guidelines for Northern style Chinese steamed bread. J of Cereal Sci,1996,24:179-185
    Huang XH, Wei XH, Sang T, Zhao Q, Feng Q, Zhao Y, Li CY, Zhu CR, Lu TT, Zhang ZW, Li M, Fan DL, Guo YL, Wang A, Wang L, Deng LW, Li WJ, Lu YQ, Weng QJ, Liu KY, Huang T, Zhou TY, JingY F, Li W, Lin Z, Buckler ES, Qian Q, Zhang QF, Li JY, Han B. Genome-wide association studies of14agronomic traits in rice landraces Nature genetics,2010,42(11):961-967
    Huang XQ, Cloutier S, Lycar L, et al. Molecular detection of QTL for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triricum aestivum L.). Theor Appl Genet,2006,113:753-766
    Huang XQ, Kempf H, Ganal MW, Roder MS. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet,2004,109:933-943
    Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD. Molecular detection of QTL for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet,2006,113:753-766
    Iwata H, Uga Y, Yoshioka Y, Ebana K, and Hayashi T. Bayesian association mapping of multiple quantitative trait loci and its application to the analysis of genetic variation among Oryza sativa L.germplasms. Theor Appl Genet,2007,114:1437-1449
    Ivandic V, Hackett CA., Nevo E, Keith R, Thomas WTB, and Forster BP. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent:associations with ecology, geography and flowering time. Plant Molecular Biology,2002,48:511-527
    Jaccoud D, Peng K, Feinstein D, Kilian A. Diversity Arrays:a solid state technology for sequence information independent genotyping. Nucleic Acids,2001,29(4):e25
    Jun,T H, Van k,Kim M Y,Lee H S, Walker DR,Association analysis using SSRmarkers to find QTL for seed protein content in soybean, Euphytica,2007,162:179-191
    Kraakman ATW, Maritinez F, Mussiraliev B, v.E euwijk F, Niks RE. Linkage disequlibrium mapping of morphological resistance and other agronomically relevant traits in modern spring barley cultivars. Molecular Breeding,2006,17:41-58
    Kraft,T.,Hansen,M,and Nilsson,N.O. Linkage disequilibrium and fingerprinting in sugar beet,Theor.Appl.Genet,2000,1:323-326
    Keller M, Keller B, Schachermayr G, Winzeler M, Schmid J E, Stamp P, Messmer M M. Quantitative trait loci for resistance against powdery mildew in a segregating wheat X spelt population. Theor Appl Genet,1999,98:903-912
    Kuchel H, Langride P, Mosionek L, Williams K, Jefferies SP. The genetic control of milling yield, dough rheology and baking quality o wheat. Theor Appl Genet,2006,112:1487-1495
    Laurie C, Chasaloe SD,Dudley JW, et al. The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel, Genetics,2004,168:21-41
    Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bj Φ rnstad A. The adult plant rust resistance loci Lr34/Yr18and Lr46/Yr29are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theoretical and Applied Genetics,2008,116:1155-1166
    Liu K, Muse SV. PowerMarker:Integrated analysis environment for genetic marker data. Bioinformatics.2005,21:2128-2129
    Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2populations. Mol Gen Genomics,2007,277:31-42.
    Maccaferri M, Sanguineti MC, Natoli V, Ortega JLA, Salem MB, Bort J, Chenenaoui C, De Ambrogio E, del Moral LG, De Monti A, et al. Tuberosa R. A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Genetic Resources,2006.4,79-85
    Mackay I, Powell W. Methods for linkage disequilibrium mapping in crops. Trends in Plant Science,2007,12:57-63
    Mantovani P, Maccaferri M, Sanguineti M C, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Huttner E, Ambrogio E D, Kilian A. An integrated DArT-SSR linkage map of durum wheat. Mol Breeding,2008,22:629-648
    Marza F, Bai G H, Carver B F, Zhou W C. Quantitative trait locus for yield and related traits in the wheat population Ning7840X Clark. Theor Appl Genet,2006,112:688-698
    Neale DB, and Savolainen O. Association genetics of complex traits in conifers. TREND Plant Sci,2004,9:325-330
    Neumann K, Kobiljski B, Dencic S, Varsheny R.K.,Borner A. Genome-wide association mapping:a case study in bread wheat (Triticum aestivum L.). Mol Breeding,2011,27:37-58. DOI10.1007//s1032-010-9411-7
    NordborgM, Borevitz.JO, Bergelson J, Berry CC, Chory J, Hagenblad.J, Kreitman.M,Maloof JN, Noye T, Oefner P. Stahl, Stahl EA, Weigel D. The extent of linkage disquilibrium in Arabidopsis thaliana, Nature Genet,2002,30:190-193
    Olsen KM, Purugganan MD. Midecular evidence on the origin and evolution of glntinons rice. Genetics,2002,162:941-950
    Olsen KM, Halldorsdottir SS, Stinchcombe JR, Weinig C,Schmitt J, Purugganan MD. Linkage disequilibrium mapping of avabidopsis CRY2flowering time alleles, Genetics,2004,167:1361-1369
    Palaisa K, Morgante M, Tingey S, Rafalski A. Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1GENE are indicative of an asymmetric selective sweep. Proceesings of The National Academy of Sciences of The United States of America,2004,101:9885-9890
    Parisseaux B, Bemardo R. In silico mapping of quantitative trait loci in maize. Theor Appl Genet,2004,109-508
    Paux EP, Sourdille J, Salse C, Saintenac F, Choulet et al. A physical map of the1-Gigabase bread wheat chromosome3B. Science,2008,322:101-104
    Ravel C, Praud S, Murigneux A, Linossier L, Darderet M,Balfourier F,Dufourier F,Dufour P, Brunet D, Charm et G, Identification of Glu-B1-1as a candidate gene for the quantity of high molecular-weight glutenin in bread wheat (Triticum aestivum L,)bymeans of an association study. Theor Appl Gent,2006,112:738-743
    Peleg Z, Saranga Y, Suprunova T, Ronin Y W, Roder M S, Kilian A, Korol A B, Fahima T. High-density genetic map of durum wheat X wild emmer wheat based on SSR and DArT markers. Theor Appl Genet,2008,117:103-115
    Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt S, Dorbley J,Kresovich.S, Goodman.MM., Buckler.ES. Structure of linkage disquilibrium and phenotypic associations in the maize genome. Proc. Natl. Acad. Sci. USA,2001.98:11479-11484
    Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science,1996,273:1516-1517doi:10.1126/science.273.5281.1516
    Rhone B, Raquin A L, Goldringer I. Strong linkage disequilibrium near the selected Yr17resistance gene in a wheat experimental population. Theor Appl Genet,2007,114:787-802
    Price AH. Believe or not, QTLs are accuratel! Trends Plant Sci.2006,11:213-216
    Pritchard JK, Rosenberg NA. Use of unlinkedgenetic markers to detect population strstification in association studies. Am J Hum Genet,1999,65:220-228
    Pritchard JK Stephens M, Rosenberg NA,Donnelly P. Association mapping in structured populationa.Am J Hum Genet,2001,67:170-181
    Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Grner A, Close TJ, Waugh R. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA,2006,103:18656-18661
    Roussel V, Koenig J, Beckert M, Balfourier F. Molecular diversity in French bread wheat assections related to temporal trends and breeding programmes. Theor Appl Genet,2004,108:920-930
    Salvi S. Conserves non-coding genomic sequences associated with a flowering-time quantitative trait locus in maize.Proc.Natl.Acad.Sci.USA,2007,104:11376-11381
    Semagn K, Bjornstad H, Skinnes AG. Mar Φy Y, Tarkegne et al.Distribution of DArT, AFLP and SSR markers in a genetic linkage map of a double haploid hexaploid wheat population. Genome,2006,49:545-555
    Simko I, One potato,two potato:haplotype association mapping in autotertraploids.Trends Plant Sci.2004,9:441-448
    Singh D, Simmonds J, Park RF, Bariana HS, Snape JW. Inheritance and QTL mapping of leaf rust resistance in the European winter wheat cultivar'Beaver'. Euphytica,2009,169:253-261
    Singh R, Matus-Cadiz M, Baga M, Hucl P, Chibbar R N. Identification of genomic regions associated with seed dormancy in white-grained wheat. Euphytica,2010,174:391-408.
    Skot L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead IP, Thomas ID. Association of candidate genes with flowering time and water-soluble carbohydratecontent in Lolium perenne (L). Genetics,2007,177:535-547
    Skot L, Humphreys MO, Armstead I, Heywood S, Skot KP, Sanderson R, Thomas ID, Chorlton KH, Hamilton NRS. An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L). Molecular Breeding,2005,15:233-245
    Somers D, Banks T, Depauw R., Fox S, Clarke J, Pozniak C, McCartney C. Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome2007,50,557-67
    Tenaillon MI, Sawkins MC, Ankhony D. Long AD, Gaut RL, Doebley JF, and Gaut BS. Patterns of DNA sequence polymorphism along chromosome1of maize (Zea mays ssp. Mays L.). Proc Natl Acad Sc USA,2001,98:9161-9166
    Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES. Dwarf8polymorphisms associate with variation in flowering timel Nat Genet,2001,28:286-289
    Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B. Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Genet,2007,115:697-708
    Tracy WF, Whitt SR,Buckler ES.Recurrent mutation and genome evolution:Example of Sugary1and the origin of sweet maize.Crop Sci,2006,46:549-554
    Varshney RK, Prasad M, Roy JK, Kumar N, Harjit-Singh Dhaliwal HS, Balyan HS, Gupta PK. Identification of eight chromosomes and a microsatellite marker on IAS associated with QTL for grain weight in bread wheat. Theor Appl Genet,2000,100:1290-1294
    Vigourroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC, Jaqueth J, Smith OS, Doebley J. An analysis of genetic diversity across the maize genome using microsatellites. Genetics,2005,196:1617-1630
    Voorrips RE. MapChart, software for the graphical presentation of linkage maps and QTLs. Journal of Heredity,2002,93:77-78
    Wang RX, Zhang XY, Wu L, Wang R, Hai L, Yan CS, You GX, Xiao SH. QTL mapping for grain filling rate and thousand-grain weight in different ecological environments in wheat. Acta Agronomica Sinica,2008,34(10):1750-1756
    Wei J B, Luo Q Y, Ma Z Q. Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419×Wangshuibai population:Ⅱ. Type I resistance. Theoretical and Applied Genetics,2006,112:528-535
    Wenzl MP, Caig V, Carling J, Xia L, et al. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. T Akbari heoretical and Applied Genetics,2006,113:1409-1420
    Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. Diversity Arrays Technology (DArT) for whole genome profiling of barley. Proceedings of the National Academy of Sciences of the United States of America,2004,101:9915-9920
    White J, Law JR, MacKay I, Chalmers KJ, Smith JS, Kilian A, and Powell W.2008. The genetic diversity of UK, US and Australian cultivars of Triticum aetivum measured by DArT markers and considered by genome. Theor. Appl. Genet.116:439-453
    Wilson L M, Whitt S R,Ibanez-carranza A M,Rocheford T R, Goodman M M, Buckler E S.Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell,2004,16:2719-2733
    Yao J, Wang L, Liu, L, Zhao C, Zheng Y. Association mapping of agronomic traits on chromosome2A of wheat. Genetica,2009,137:67-75
    Yu J, Buckle, Genetic association mapping and genome organization of maize. Current opinion in Biotechnology,2006,17:155-160
    Yu J,Pressoir G,Briggs WH, BIV,Yamasaki M, Doebley JF, McMullen MD,Gaut BS,Nielsen DM, Holland JB. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness.Nat Genet,2006,38:203-208
    Zhang L Y, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang AM. Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. Journal of Integrative Plant Biology,2010,52(11):996-1007
    Zhang N, Xu Y, Akash M, McCouch S, Oard JH. Identification of candidate markers associated with agronomic traits in rice using discriminant analysis. Theor Appl Genet,2005,110(4):721-729
    Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M. An arabidopsis example of association mapping in structured samples. PLoS Genetics,2007:3-e4
    Zhu YL, Gore M, Buckle ES, Yu J. Status and Prospects of association mapping in plants. The Plant Genome,2008,1:5-20
    Zhu.YL, Song QL, Hyten, D1,Van,Tassell,CP.,Matukumalli LK, Grimm DR, Hyattt SM, Fickus EW,Young ND, Cregan PB1.Single nucleotide polymorphisms in soybean,Genetics,2003,163:1123-1134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700