用户名: 密码: 验证码:
小麦遗传连锁图谱构建及主要农艺和品质性状QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦(Triticum aestivum L.)是世界上重要的粮食作物之一。普通小麦是异源六倍体(2n=6x=42),含有A、B和D三个染色体组,基因组巨大,而且其中80%以上的DNA为重复序列,导致遗传标记在不同材料间的多态性较差,小麦的遗传研究落后于玉米、水稻等作物。因此,构建高密度小麦分子标记遗传连锁图,对主要农艺和品质相关性状进行QTL定位,明确其在染色体上的位置和效应,对于主要农艺和品质性状的遗传改良具有重要意义。本研究利用两个品种间杂交获得的重组自交系(RIL)作图群体,进行了分子标记遗传连锁图谱的构建,并进行了主要农艺和品质性状的条件和非条件QTL分析,获得了以下主要结果:
     (1)利用3123对不同来源的引物对亲本潍麦8号和洛旱2号进行多态性筛选,共检测出343对多态性引物。利用筛选的多态性引物对潍麦8号与洛旱2号杂交创制的重组自交系群体(RIL,F8:9)进行基因组扫描,共有246对引物在群体中扩增出条带清晰并有差异的位点,大多数位点在两个群体中的分布符合1:1的分离比例,且为纯合位点。表明该群体适于进行作图研究。
     (2)运用作图软件MapMaker/EXP3.0和Joinmap v3.0,将348个位点分别定位在小麦的21条染色体上,构建出一张较高密度的遗传连锁图谱。该图谱全长3132.2cM,标记间的平均距离为9.0cM;其A、B和D三个基组的遗传长度分别是1086.1cM、1170.8cM和875.2cM;以7B染色体上标记最多,为47个,3D上最少,只有2个。三个基组中,B基组的标记密度最高,D组最低;在7个部分同源群中,第7部分同源群标记密度最高,第6部分同源群最低。标记在染色体上的位置和顺序与graingenes2.0(http://wheat.pw.usda.gov/GG2/index.shtml)的基本一致。
     (3)利用完备区间作图软件IciMapping v3.0对小麦22个主要农艺性状(产量及其相关性状、株高、生育期、旗叶性状等)和8个主要品质性状(蛋白质含量、湿面筋含量、面团形成时间、面团稳定时间、容重、面粉白度、面粉吸水率和籽粒硬度)进行了2年3点的试验并进行QTL定位分析。共检测到30个性状的324个加性QTL位点,分布在所有的小麦染色体上,单个QTL可解释2.523.2%的性状表型变异;有54个QTL能解释>10%的性状表型变异,为主效QTL,其中12个QTL能在不同环境中被重复检测到。
     (4)首次对小麦产量与产量构成因素进行条件QTL分析。分析结果表明,千粒重在单个QTL水平对产量的贡献最高,其次是1米行长穗数,但是二者的贡献大小相差不明显,再次是主茎穗粒数和穗粒重,平均穗粒数在单个QTL水平对1米行长产量的的贡献最低。通过对蛋白质含量与产量构成因素的条件分析表明,千粒重和穗粒数对蛋白质含量的影响较大,且二者对的蛋白含量的影响大小大体相当,但二者在QTL水平影响的位点不同;1米行长穗数在单个QTL水平对蛋白质含量的影响较小。通过对面团稳定时间和产量相关性状条件分析表明,穗粒数、千粒重和1米行长穗数对面团稳定时间的表型变异影响很小,表明产量因素对小麦的加工品质影响甚微,提高产量不会影响到面粉加工品质的改良。QDst-WL-2D、QGpc-WL-5B和QGpc-WL-7A在排除穗粒数、千粒重和1米行长穗数的影响后仍然能够被检测到,并且能够解释较高的表型变异率,说明这三个QTL受产量及相关因素影响很小,通过对这三个位点的标记选择可能实现产量和品质的同时提高。通过对株高与节间长的条件QTL分析结果表明,倒三节间长对株高在单个QTL水平贡献最高。
A associated RIL populations comprising302(Weimai8/Luohan2-derived, WL) lineswas used in the present study to construct a genetic linkage map using SSR, EST-SSR, RAPD,SRAP, STS and ISSR markers. Then the inclusive interval mapping method was utilized tomap QTL with additive effect by software Icimapping v3.0for agronomic traits, such asSpikelet number per spike(SPN), kernel number per spike(KNPS);1000-kernel weight(TKW),Grain weight per meter row (GWPM),Plant height (PH),heading date (HD),Blooming date (BD),flag leaf length (FLL),and quality traits, such as grain protein content(GPC), wet gluten content (WGC), flour whiteness (FW),kernel hardness (KH),waterabsorption (Abs), and dough stability time (DST). What’s more, based on the novel moleculargenetic map above, multivariate conditional QTL mapping analysis was conducted to specifythe genetic characteristics of yield and yield-related traits, and quality traits respect toyield-related traits at the QTL level. The results were as follows:
     (1) Three thousand one handred and twenty three pairs of genomic primers were used togenotype the RIL populations and their parents, and in total246pairs of markers amplifiedclear and discrepant sites between Weimai8and Luohan2. The separation ratio of most sitesfit the1:1ratio, suggesting that the RIL population could be utilized in QTL mappinganalysis.
     (2) The genetic linage map, with23linkage groups, was constructed using the softwareMAPMAKER/EXP3.0and Joinmap v3.0, which was comprising348sites, with the wholegenome length of3132.20cM and an average distance of9.00cM between markers, and thenumber of markers being2on chromosomes3D to47on7B, showing that the mappingpopulation was suitable for QTL mapping.
     (3) Based on the genetic linkage map, the software IciMapping v3.0(with inclusiveinterval mapping method) was used to conduct QTL mapping of the agrononmic and qualitytraits, in three environments. Totally274QTL with additive effect for the twenty twoagronomic traits were mapped on all wheat chromosomes, with the explanation of phenotypic variation (PVE) from2.54%to40.64%of a single QTL. Of these,30of which accounted forat least10%of the phenotypic variation,14QTL showed significance in at least two trials ofE1, E1, E3and P, being major stable QTL. In total, up to50QTL with additive effect foreight traits were mapped, with the explanation of phenotypic variation (PVE) from3.60%to16.15%of a single QTL. Of these,7QTL showed significance in at least two trials of E1, E1,E3and P,10of which can explain at least10%of the phenotypic variation in one or twoenvironments, being major QTL.
     (4) For the first time, conditional QTL mapping was conducted for grain yield and yiledcomponents in wheat. The results showed that all of the yield related components, at the QTLlevel, thousand-grain-weight (TKW) contributed to yield (GWPM) the most, followed byspike number per meter row (SNPM), but the contribution of the two sizes is pretty much thesame, and next to the kernel number per spike of main stem (KNPS) and kernel weight per ear(KWPS), and the everage kernel number per spike (EKNPS) has the lest contribution to it.When protein content (GPC) conditional on yield related traits, the conditional QTL mappingshowed that thousand-kernel-weight (TKW) and kernel number per spike (KNPS) has equalcontribution to protein content, although they did not affected all the same QTL sites, bycontrast, the spike number per meter row (SNPR) has a little influence on it. When doughtstable time (DST) conditional on yield related traits, the conditional mapping analysis showedthat kernel number per spike (KNPS), thousand-kernel-weight (TKW) and spike number permeter row (SMPM) has little effect on the phenotypic variation of dought stable time (DST),which means that the grain yiled componens have little effects on quality trais of wheat, andthat makes the yield and flour processing quality improving simultaneously possible. Thepossible genetic relationships anasysis between plant height (PH) and its components showed,that spike length (SL) contributed the least to PH, the third internode length from the top(TITL) had the strongest influence on PH. Conditional and unconditional QTL mappingshowed that when the effects of kernel numbper per spike (KNPS), thousand-kernel-weight(TKW) and spike number per meter row (SNPR) were excluded, the QTL QDst-WL-2D、QGpc-WL-5B and QGpc-WL-7A can still be detected, which means that those three QTL wereaffected very little by the three yiled components, therefore, by Marker-asisted selection tothese three sites, it may makes the improving of the yield and quality at the same time.
引文
陈海梅,李林志,卫宪云,李斯深,雷天东,胡海州,王洪刚,张宪省.小麦EST-SSR标记的开发、染色体定位和遗传作图[J].科学通报,2005,50(20):2208–2216.
    陈佩度,周波,齐莉莉.用分子原位杂交(GISH)鉴定小麦-簇毛麦双二倍体、附加系、代换系和易位系[J].遗传学报,1995,22(5):380–386.
    崔法,王洪刚.高密度小麦遗传连锁图谱构建及产量相关性状QTL定位[D].山东农业大学博士毕业论文,2011.
    崔世友,喻德跃.大豆不同生育时期叶绿素含量QTL的定位及其与产量的关联分析.作物学报,2007,33(5):744–750.
    丁安明,王洪刚.小麦关联RIL群体遗传连锁图谱构建及产量相关性状的QTL定位[D].山东农业大学硕士毕业论文,2011.
    郝晨阳,王兰芬,张学勇,游光霞,董玉琛,贾继增.我国育成小麦品种的遗传多样性演变[J].中国科学(C辑)2005,35(5):408–415.
    何慈信,朱军,严菊强, Mebrouk Benmoussa,吴平.水稻穗干物质重发育动态的QTL定位.中国农业科学,2000,33(1):24–32.
    洪义欢,肖宁,张超,苏琰,陈建民. DArT技术的原理及其在植物遗传研究中的应用.遗传,2009,31(4):359–364.
    贾继增,张正斌,Devos K,Gale M.D.小麦21条染色体RFLP作图位点遗传多样性分析[J].中国科学(C辑),2001,31(1):13–21.
    贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1–10
    贾旭,钱幼亭.一个抗小麦黄矮病新种质的选育和鉴定[J].中国科学(B辑),1995,25(10):1049–1053.
    孔令让,董玉琛.粗山羊草抗小麦白粉病基因遗传多样性的研究[J].作物学报.1997,23(2):176–180.
    李慧慧,张鲁燕,王健康.数量性状基因定位研究中若干常见问题的分析与解答.作物学报,2010,36(6):918–931.
    李君,王洪刚.小麦遗传图谱的构建及主要品质性状的QTL定位[D].山东农业大学硕士毕业论文,2011.
    李立会,李秀全.小麦种质资源描述规程和数据标准[M].北京:中国农业出版社,2006.
    李晴祺,李斯深,王洪刚.冬小麦种质矮孟牛种质创新与评价利用[M].山东科学技术出版社,1998,2–47.
    李卫华,尤明山,刘伟,徐杰,刘春雷,李保云,刘广田.小麦GMP含量发育动态的QTL定位.作物学报,2006,32(7):995–1000.
    李卫华,刘伟等.利用多种SSR引物构建小麦遗传连锁图谱及其多态性分析[J].麦类作物学报2007,27(1):1–6.
    李艳秋,苏志芳,王立新,季伟,姚骥,赵昌平.小麦分子遗传图谱的加密[J].作物学报,2009,35(5):861–866.
    李振声,穆素梅,蒋立训,等.蓝粒单体小麦研究[J].遗传学报,1982,29(6):24–31.
    李振声,容珊,钟冠昌.小麦远缘杂交[M].科学出版社,1985,84–129.
    李子先,陈忠权,刘国平等.水稻抽穗期遗传变异得初步研究.[J].作物学报,1980,6(3):179–188.
    廖祥政,王瑾,周荣华,任正隆,贾继增.发掘人工合成小麦中千粒重QTL的有利等位基因作物学报.2008,34(11):1877–1884.
    刘大钧,陈佩度,吴沛良,等.硬粒小麦-簇毛麦双二倍体[J].作物学报,1986,12(3):155–161.
    刘建军,何中虎.1BL/1RS易位对小麦加工品质的影响[J].作物学报,2004,30(2):149–153.
    刘建文.普通小麦与东方旱麦草属间杂种的形态和细胞遗传学研究[J].遗传学报,1996,23(2):117–123.
    刘来福,毛盛贤,黄远樟.作物数量溃传.农业出版社,1984.
    刘树兵,王洪刚.抗白粉病小麦-中间偃麦草(Thinopyrum intermedium,2n=42)异附加系的选育及分子细胞遗传鉴定[J].科学通报,2002,47(19):1500–1503.
    刘现鹏,田纪春.麦胚乳蛋白与小麦品质的关系[D].山东农业大学硕士毕业论文,2002,26.
    刘志勇,孙其信.小麦抗白粉病基因Pm21的分子鉴定和标记辅助选择.遗传学报,1999,26(6):673–682.
    马渐新,周荣华,贾继增等.小麦背景中簇毛麦6染色体的遗传稳定性及其通过配子的遗传[J].遗传学报,1999,26(4):384–390.
    倪中福,张义荣,梁荣奇,等.从CIMMYT引进的人工合成六倍体小麦D染色体组微卫星分子标记的遗传差异[J].遗传学报,2002,29(6):542–548.
    彭勃,王阳,李永祥,刘成,张岩,刘志斋,谭巍巍,王迪,孙宝成,石云素,宋燕春,王天宇,黎裕.玉米籽粒产量与产量构成因子的关系及条件QTL分析.作物学报,2010,36(10):1624–1633.
    亓增军,刘大均,陈佩度等.冬小麦种质“矮孟牛”的分子细胞遗传学研究[J].植物学报,2001(a),43(5):469–474.
    亓增军,刘大钧,陈佩度等.冬小麦种质“矮孟牛”中新型小麦-黑麦复杂易位的遗传传递分析[J].作物学报,2001(b),27(5):582–587.
    齐莉莉,刘大钧.小麦基因组研究进展[J].麦类作物,1999,19(1):1–5.
    茹岩岩,张学勇,李大勇等.对基因组原位杂交信号释译可能出现的片面性-来自一个小麦易位系(A-3)中外源遗传物质鉴定的启示[J].作物学报,2002,28(1):6–10.
    石培春,王光利等.小麦SSR连锁图谱的构建及多态性研究[J].新疆农业科学,2007,44(3):71–76.
    孙其信,黄铁诚,倪中福.小麦杂种优势群研究2:利用RAPD标记研究小麦种间遗传变异[J].农业生物技术学报,1996,4(2):103–111.
    唐宗祥,任正隆.重复序列引起小麦染色体结构、基因组及性状的改变[D].四川农业大学博士学位毕业论文,2006,1–20.
    王辉,朱建楚,孙道杰.小麦西农1376籽粒干物质累积特点及调控途径.麦类作物学报,1996,24(5):31–34.
    王健康.数量性状基因的完备区间作图方法.作物学报,2009,35(2):239–245.
    王瑞霞,张秀英,伍玲,王瑞,海林,游光霞,闫长生,肖世和.不同生态环境下冬小麦籽粒大小相关性状的QTL分析.中国农业科学,2009,42(2):398–407.
    王珊珊,李秀全,田纪春.利用SSR标记分析小麦骨干亲本“矮孟牛”及衍生品种(系)的遗传多样性[J].分子植物育种,2007,5(4):485–490.
    王竹林,刘曙东等.百农64×京双16小麦遗传连锁图谱构建[J].麦类作物学报,2006,26(5):866–892.
    魏育明,郑有良,周荣华,周永红,颜泽洪,贾继增,张志清.几种鉴定小麦背景中1BL/1RS易位染色体的分子标记方法比较研究[J].四川农业大学学报,2001,19(1):10–13.
    吴崇明,徐智斌,王涛.小麦1BL/1RS易位系的生化和分子标记鉴定[J].西南农业学报,2007,20(1):15–18.
    徐琼芳,马有志.应用原位杂交及RAPD技术标记抗黄矮病小麦-中间偃麦草染色体异附加系[J].遗传学报,1999,26(1):49–53.
    徐云碧. QTL作图效率胡影响因素—群体大小.浙江农业大学学报,1994,20(6):573–578.
    许自成,池振中,贾志强,许时伦.小麦数量性状基因定位及比较基因组研究进展[J].河南农业大学学报,1997,31(4):327–333.
    薛秀庄,Richard R C Wang.用RAPD和染色体原位杂交检测Elymus rectisetus染色体附加到普通小麦中[J].遗传学报,1999,26(5):539–545.
    严建兵,汤华,黄益勤,石永刚,李建生,郑用琏.不同发育时期玉米株高QTL的动态分析.科学通报,2003,48(18):1959–1964.
    颜济,杨俊良.小麦-山羊草复合群[M].中国农业出版社,1999,(1):102–104.
    颜启传,黄亚军,徐媛.醇溶蛋白聚丙烯酰胺凝胶电泳方法鉴定品种的标准程序[J].作物学报,1992,18(1):61–68.
    张坤普,徐宪斌,田纪春.小麦籽粒产量及穗部相关性状的QTL定位.作物学报,2009,35(2):270–278.
    张立平,何中虎,陆美琴.用Glu-B Gli-B1、Sec-1b复合引物PCR检测普通小麦1BL/1RS易位系[J].中国农业科学,2003,36(12):1566–1570.
    张立平.普通小麦品质性状遗传与QTL分析.中国农业科学院博士学位论文,2003.
    张学勇,董玉琛.小麦与彭梯卡偃麦草杂种及其衍生后代的细胞遗传研究[J].遗传学报,1994,21(40):287–296.
    张正斌编著.小麦遗传学.北京:中国农业出版社,2001.
    赵茂林.普通小麦-多枝赖草二体附加系的选育与鉴定[D].北京:中国农科院研究生院,1993.
    钟少斌,姚景侠.1B/1R易位系“84059-4-2”的细胞学鉴定[J].作物学报,1991,17(5):321–325.
    周淼平,任丽娟,张旭,余桂红,马鸿翔,陆维忠.小麦产量性状的QTL分析.麦类作物学报,2006,26(4):35–40.
    周淼平,张旭,任丽娟.用JoinMap3.0初步构建小麦遗传连锁图[J].江苏农业学报,2003,19(3):133–138.
    朱振东,贾继增.小麦SSR标记的发展及应用[J].遗传,2003,25(3):355–360.
    庄巧生.中国小麦品种改良及系谱分析.北京:中国农业出版社,2003.
    Ammiraju J. S. S., Dholakia B. B., Santra D. K., Singh H., Lagu M. D., Tamhankar S. A.,Dhaliwal H. S., Rao V. S., Gupta V. S., Ranjekar P. K.. Identification of inter simplesequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet,2001,102:726–732.
    Araki E., Miura H., Sawada S.. Identification of genetic loci affecting amylose content andagronomic traits on chromosome4A of wheat. Theor Appl Genet,1999,98:977–984.
    Atchley W. R., Zhu J.. Development quantitative genetics, conditional epigenetic variabilityand grouth in mice. Genetics Society of America,1997,147:765–776.
    Austin D. F., Lee M.. Comparative mapping in F2:3and F6:7generations of quantitative traitloci for grain yield and yield components in maize. Theor Appl Genet,1996,92:817–826.
    Bathia C.R., and Rabson R.,1987Relationship of grain yield and nutritional quality. In:Nutritional quality of cereal grains: genetic and agronomic improvement. AgronomyMonograph (ed. ASA-CSSA-SSSA). no.28, pp,11–43. Madison, WI53711, USA.
    Blanco A., De Giovanni C., Laddomada B., Sciancalepore A.,Simeone R., Devos K.M, GaleM.D.. Quantitative trait loci influencing grain protein content in tetraploid wheats. PlantBreed,1996,115:310–316.
    Blanco A., Gadaleta A., Simeone R.. Variation for yield andquality components in durumwheat backcross inbred linesderived from ssp. dicoccoides. Aust J Agric Res,2003,54:163–170.
    Blanco A., Pasqualone A., Troccoli A., Di Fonzo N., Simeone R.. Detection of grain proteincontent QTLs across environmentsin tetraploid wheats. Plant Mol Biol,2002,48:615–623.
    Blanco A., Simeone R., Gadaleta A. Detection of QTL for grain protein content in durumwheat. Theor Appl Genet.2006,112:1195–1204.
    B rner A., Schumann E., Fürste A., C ster H., Leithod B., R der M. S., Weber W. E..Mapping of quantitative trait loci determining agronomic important characters inhexaploid wheat (Ttiticum astivum L.). Theor Appl Genet,2002,105:921–936.
    Botstein D., White R. L., Skolnick M., Davis R. W.. Construction of a genetic linkage mapusing restriction fragment length polymorphisms. Amer J Hum Genet,1980,32:314–331
    Burr B., Burr E. A., Thompson K. H., Albertson M. C., Stuber C. W.. Gene mapping withrecombinant inbreds in maize. Genetics,1988,118:519–526.
    Cadalen T., Boeuf C., Bernard S., Bernard M.. An intervarietal molecular marker map inTriticum aestivum L. and comparison with a map from a wide cross. Theor Appl Genet,1997,94:367–377.
    Campbell B. T., Baenziger P. S., Gill K. S., Eskridge K. M., Budak H., Erayman M., DweikatI., Yen Y.. Identification of QTLs and environmental interactions associated withagronomic traits on chromosome3A of wheat. Crop Sci,2003,43:1493–1505.
    Campbell K. G., Bergman C. J., Gualberto D. G., Anderson J. A., Giroux M. J., Hareland G.Quantitative trait loci associated with kernel traits in a soft×hard wheat cross. Crop Sci.1999,39:1184–1195.
    Campbell K.G., Finney P.L., Bergman C.J., Daisy G. Gualberto, James A.. Quantitative traitloci associated with milling and baking quality in a soft×hard wheat cross. Crop Sci.2001,41:1275–85.
    Charmet G., Cadalen T., Sourdille P., Sourdille P., Bernard M.. An extension of the markerregression method to interactive QTL. Molecular Breeding,1998,4:67–72.
    Chastain T.G., Ward K.J, and Wysocki D.J.. Stand establishment responses of soft whitewinter wheat to seedbed residue and seed size. Crop Sci.1995,35:213–218.
    Cao G.Q., Zhu J., He C.X., Gao Y.M., Yan J.Q, Wu P.. Impacts of epistasis and QTL×environment interaction for developmental behavior of plant height in rice (Oryza sativaL.). Theor Appl Genet,2001,103:153–160.
    Chee P.W., Elias E.M., Anderson J.A., Kianian S.F.. Evaluaion of a high protein QTL fromTriticum turgidum L.var. dicoccoides in an adapted durum wheat background. Crop Sci,2001,41:295–301.
    Chen H. M., Li L. Z., Wei X. Y., Li S. S., Lei T. D., Hu H. Z., Wang H. G., Zhang X. S..Development, chromosome location and genetic mapping of EST-SSR markers in wheat.Chinese Sci Bull,2005,50:2328–2336.
    Donmez E., Sears R.G., Shroyer J.P, Paulsen G.M. Genetic gain in yield attributes of winterwheat in the Great Plains. Crop Sci,2001,41:1412–1419.
    Dubcovsky J., Luo M. C., Zhong G. Y., Bransteintter R., Desai A., Kilian A., Kleinhofs A.,Dvorak J.. Genetic map of diploid wheat, Triticum Monococcum L., and its comparisonwith maps of Hordeum vulgare L. Genetics,1996,143:983–999.
    Cui F., Li J., Ding A. M., Zhao C. H., Li X. F., Feng D. S., Wang X. Q.,Wang L., Wang H.G..QTL Detection of Internode Length and its Component Index in Wheat Using TwoRelated RIL Populations.Cereal Research Communications,DOI:10.1556/CRC.2012.0002
    Cui F., Li J., Ding A. M., Zhao C. H., Li X. F., Feng D. S., Wang X. Q., Wang L., Gao J.R.,Wang H. G.. Wheat kernel dimensions: how do they contribute to kernel weight at anindividual QTL level? Journal of Genetics,2011,90:409–425.
    Cui F., Li J., Ding A. M., Zhao C. H., Wang L., Wang X. Q., Li S. S., Bao Y. G., Li X. F., FengD. S., Kong L. R., Wang H. G.. Conditional QTL mapping for plant height with respect tothe length of the spike and internode in two mapping populations of wheat. Theor ApplGenet,2011,122:1517–1536.
    Eujayl I., Sorrells M. E., Baum M., Wolters P., Powell W.. Isolation of EST-derivedmicrosatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet,2002,104:399–407.
    Frary A., Clint Nesbitt T., Frary A., Grandillo S., Knaap E. V. D., Cong B., Liu J. P., Meller J.,Elber R., Alpert K. B., Tanksley S. D.. fw2.2: A Quantitative Trait Locus Key to theEvolution of Tomato Fruit Size. Science,2000,289:85–88.
    Gale M. D., Atkinson M. D., Chinoy C. N., Harcourt R. L., Jia J., Li Q. Y., Devos K. M..Genetic maps of hexaploid wheat. In: Li Z. S., Xin Z. Y..(eds) Proc8th Int Wheat GenetSymp.. Beijing, China A gricultural Scientech Press,1995. pp29–40.
    Gao L. F., Jing R. L., Huo N. X., Li Y., Li X. P., Zhou R. H., Chang X. P., Tang J. F., Ma Z. Y.,Jia J. Z.. One hundred and one new microsattllite loci derived from ESTs (EST-SSR) inbread wheat. Theor Appl Genet,2004,108:1392–1400.
    Groos C., Robert N., Bervas E., Charmet G.. Genetic analysis of grain protein content, grainyield and thousand-kernel weight in bread wheat. Theor Appl Genet,2003,106:1032–1040.
    Guo L. B., Xing Y. Z., Mei H. W., Xu C. G., Shi C. H., Wu P., Luo L. J.. Dissection ofcomponent QTL expression in yield formation in rice. Plant Breeding,2005,124:127–132.
    Hao Y.F., Liu A.F., Wang Y.H., Feng D.S., Gao J.R., Li X.F., Wang H.G. Pm23: a new alleleof Pm4located on chromosome2AL in wheat. Theor Appl Genet,2008,117:1205–1212.
    Helentjaris T., Slocum M., Wright S., Schaefer A., Nienhuis J.. Construction of geneticlinkage maps in maize and tomato. Theor Appl Genet,1986,72:761–769.
    Huang X. Q., Kempf H., Canal M. W., Roder M. S.. Advanced backcross QTL analysis inprogenies derived from a cross between a German elite winter wheat variety and asynthetic wheat (Triticun aestivum L.). Theor Appl Genet,2004,109:933–943.
    Huang X. Q., Cloutier S., Lycar L., Radovanovic N., Humpphreys D. G., Noll J. S., Somers D.J., Brown P. D.. Molecular detection of QTLs for agronomic and quality traits in a doublehaploid population derived from two Canadian wheats (Triticun aestivum L.). Theor ApplGenet,2006,113:753–766.
    Joppa L.R., Du C., Hart G.E., Hareland G. A.. Mapping gene(s) for grain protein in tetraploidwheat (Triticum turgidum L.) using a population of recombinant inbred chromosomelines.Crop Sci,1997,37:1586–1589.
    Joppa L.R., Cantrell R.G.. Chromosomal location of genes for grain protein content of wildtetraploid wheat. Crop Sci,1990,30:1059–1064.
    Joppa L.R., Du C., Hart G.E. and Hareland G.A. Mapping gene(s) for grain protein intetraploid wheat (Triticum turgidum L.) using a population of recombinant inbredchromosome lines. Crop Sci,1997,37:1586–1589.
    Kato K., Miura H., Sawada S.. Mapping QTLs controlling grain yield and its components onchromosome5A of wheat. Theor Appl Genet,2000,101:1114–1121.
    Kato K., Nakamura W., Tabiki T., Miura H., Sawada S.. Detection of loci controlling seeddormancy on group4chromosomes of wheat and comparative mapping with rice andbarley genomes. Theor Appl Genet,2001,102:980–985.
    Kirigei F. M., Ginkel M. V., Brown-Guedira G., Gill B. S., Paulsen G. N., Fritz A. K.. Makersassociated with a QTL for grain yield in wheat under drought. Mol Breed,2007,20:401–413.
    Kuchel H., Williams K., Langridge P., Eagles A.. Jefferies S P.. Genetic dissection of grainyield in bread wheat. II. QTL-by-environment interaction. Theor Appl Genet,2007,115:1015–1027.
    Kumar N., Kulwal P. L., Gaur A., Gaur A., Tyagi A. K., Khurana J. P., Khurana P., Balyra H.S., Gupta P. K.. QTL analysis for grain weight in common wheat. Euphytica,2006,151:135–144.
    Kumar N., Kulwal P. L., Balyyan H. S.. QTL mapping for yield and yield contributing traits intwo mapping populations of bread wheat. Mol Breeding,2007,19:163–17.
    Lander E. S., Botstein D.. Mapping mendelian factors underlying quantitative traits usingRFLP linkage maps. Genetics,1989,121:185–199.
    Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A..Corrigendum to “MAPMAKER: An interactive computer package for constructingprimary genetic linkage maps of experimental and natural populations”. Genomics,1987,1:174–181.
    Li H. H., Ye G. Y., Wang J. K.. A modified algorithm for the improvement of compositeinterval mapping. Genetics Society of America,2007,175:361–374.
    Li S. S., Jia J. Z., Wei X. Y., Zhang X. C., Li L. Z., Chen H. M., Fan Y. D., Sun H. Y., Zhao X.H., Lei T. D., Xu Y. F., Jiang F. S., Wang H. G., Li L. H.. A intervaietal genetic map andQTL analysis for yield traits in wheat. Mol Breeding,2007,20:167–178.
    Liang D., Tang J. W., Pena R. J., Singh R., He X. Y., Shen X. Y., Yao D. N., Xia X. H., He Z.H.. Characterization of CIMMYT bread wheats for highand low-molecular weightglutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC andmolecular markers. Euphytica,2010,172:235–250.
    Lin F., Xue S. L., Tian D. J., Li C. J., Cao Y., Zhang Z. Z., Zhang C. Q., Ma Z. Q.. Mappingchromosomal regions affecting flowering time in a spring wheat RIL population.Euphytica,2008,164:769–777.
    Liu G. F., Yang J., Xu H. M., Hayat Y., Zhu J.. Genetic analysis of grain yield conditioned onits component traits in rice. Australian Journal of Agricultural Research,2008,59:189–195.
    Liu G. F., Zhu H. T., Liu S. W., Zeng R. Z., Zhang Z. M., Li W. T., Ding X. H., Zhao F. M.,Zhang G. Q.. Unconditional and conditional QTL mapping for the developmentalbehavior of tiller number in rice (Oryza sativa L.). Genetica,2010,138:885–893.
    Liu S. X., Chao S. M., Anderson J. A.. New DNA markers for high molecular weight gluteninsubunits in wheat. Theor Appl Genet,2008,118:177–183.
    Liu Y. G., Tsumewaki K.. Restriction fragment length polymorphism (RFLP) analysis inwheat II. Linkage maps of the RFLP sites in common wheat. Jpn J Genet,1991,66:617–633.
    Mackay T. F. C.. The genetic architecture of quantitative traits. Annu Rev Genet,2001,35:303–339.
    Mann G., Diffey S., Cullis B., Azanza F., Martin D., Kelly A.. Genetic control of wheatquality: interactions between chromosomal regions determining protein content andcomposition, dough rheology, and sponge and dough baking properties. Theor Appl Genet.2009,118:1519–1537.
    Marino C. L., Nelson J. C., Hart G. E., Nelson J. C., Sorrells M. E., Lu Y. Z., Leroy P., LopesC. R.. Molecular genetic maps of the group6chromosomes of hexaploid wheat (Triticumaestivum L. em. Thell.). Genome,1996,39:359–366.
    Marza F., Bai G.H., Carver B.F., Zhou W.C. Quantitative trait loci for yield and related traitsin the wheat population Ning7840Clark. Theor Appl Genet,2006,112:688–698.
    Miura H., Parker B. B., Snape J. W.. The location of major genes and associated quantitativetrait loci on chromosome arm5BL of wheat. Theor Appl Genet,1992,85:197–204.
    Mullan D. J., Platteter A., Teakle N. L., Appels R., Colmer T. D., Anderson J. M., Francki M.G.. ESR-derived SSR markers from defined regions of the wheat genome to identifyLophopyrum elongatum specific loci. Genome,2005,48:811–822.
    Nagaoka T., Ogihara Y.. Applicability of inter-simple sequence repeat polymorphisms inwheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor ApplGenet,1997,94:597–602.
    Olmos S., Diestelfeld A., Chicaiza O., Schatter A.R., Fahima T., Echenique V., Dubcovsky J..Precise mapping of a locus affecting grain protein content in durum wheat. Theor ApplGenet,2003,107:1243–1251.
    O’Neill C. M., Morgan C., Kirby J., Tscheop H., Deng P. X., Brennan M., Rosas U., Fraser F.,Hall C., Gill S., Bancroft I.. Six new recombinant inbred populations for the study ofquantitative traits in Arabidopsis thaliana. Theor Appl Genet,2008,116:623–634.
    Paillard S., Schnurbusch T., Winzeler M., Messmer M., Sourdille F., Abderhalden O., KellerB., Schachermayr.. An integrative genetic linkage map of winter wheat (Triticum aestivumL.). Theor Appl Genet,2003,107:1235–1242.
    Paterson A. H., Damon S., Hewitt J. D., Zamir D., Rabinowitch H. D., Lincoln S. E., LanderE. S., Tanksley S. D.. Mendelian factors underlying quantitative traits in tomato:comparison across species, generations, and environments. Genet Soc Am,1991,127:181–197.
    Peleg Z., Cakmak I., Ozturk L., Yazici A., Jun Y., Budak H., Korol A. B.. Quantitative traitloci conferring grain mineral nutrient concentrations in durum wheat×wild emmer wheatRIL population, Theor Appl Genet,2009,119:353–369.
    Peng J. H., Lapitan N. L. V.. Characterization of EST-derived microsatellites in the wheatgenome and development of SSR markers. Funct Integr Genomics,2005,5:80–96.
    Perretant M.R., Cadalen T., Charmet G., Sourdille P., Nicolas P.,Boeuf C., Tixier M.H.,Branlard G., Bernard S., Bernard M.. QTL analysis of bread-making quality in wheatusing a doubled haploid population. Theor Appl Genet,2000,100:1167–1175.
    Prasad M., Kumar N., Kulwal P.L., Roder M.S., Balyan H.S., Dhaliwal H.S., Roy J.K., GuptaP.K.. QTL analysis for grain protein content using SSR markers and validation studiesusing NILs in bread wheat. Theor Appl Genet,2003,106:659–667.
    Quarrie S. A., Steed A., Calestani C., Semikhodskii A., Lebreton C., Chinoy C., Steele N.,Pljevljakusic D., Waterman E., Weyen J., Schondelmaier J., Habash D. Z., Farmer P.,Saker L., Clarkson D. T., Abugalieva A., Yessimbekova M., Turuspekov Y., Abugalieva S.,Tuberrosa R., Sanguineti M. C., Hollington P. A., Aragues R., Royo A., Dodig D.. Ahigh-density genetic map of hexaploid wheat (Triticun aestivum L.) from the crossChinese Spring×SQ1and its use to compare QTLs for grain yield across a range ofenvironments. Theor Appl Genet,2005,110:865–880.
    Ramya P., Chaubal A., Kulkrani K., Gupta L., Kadoo N., Dhaliwal H. S., Chhuneja P., LaguM., Gupta V.. QTL mapping of1,000-kernal weight, kernel length, and kernel width inbread wheat (Triticum aestivum L.). Theor Appl Genet,2001,51:421–429.
    Ranjekar P.K.. Molecular marker analysis of protein content using PCR-based marker inwheat. Biochem Genet,2001,39:325–338.
    Sharp P. J., Chao S., Desai S.. The isolation, characterization and application in the Triticeaeof a set of wheat RFLP probes identifying each homoeologous chromosome arm. TheorAppl Genet,1989,78:342–348.
    Simmonds NW The relation between yield and protein in cereal grain. J Sci Food Agric,1995,67:309–315.
    Simon M., Loudet O., Durand S., Berard A., Brunel D., Sennesal F. X., Durand-Tardif M.,Pelletier G., Camilleri C.. Quantitative trait loci mapping in five new large recombinantinbred line populations of Arabidopsis thaliana genotyped with consensussingle-nucleotide polymorphism markers. Genet Soc Am,2008,178:2253–2264.
    Snape J. W., Quarrie S. A., Laurie D. A.. Comparative mapping and its use for the geneticanalysis of agronomic characters in wheat. Euphytica,1996,89:27–31.
    Somers JD, Isaac P, Edwards K A high-density microsatellite consensus map for breadwheat (Triticum aestivum L.). Theor Appl Genet,2004,109:1105–1114.
    Sourdille P., Cadalen T., Guyomarch H., Snape J., Perretant M., Charmet G., Boeuf C.,Bernard M.. An update of the Courtot×Chinese Spring intervarietal molecular markerlinkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet,2003,106:530–538.
    Sourdille P., Tixier M. H., Charmet G., Gay G., Cadalen T., Bernard S., Bernard M.. Locationof genes involved inear compactness in wheat (Triticum aestivum) by means of molecularmarkers. Molecular Breeding,2000,6:247–255.
    Sun H.Y., Lu J.H. Fan Y.D. Zhao Y., Kong F.M., Li R.J. Quantitative trait loci (QTLs) forquality traits related to protein and starch in wheat. Progress in Natural Science,2008,18:825–831.
    Sun X.C., Marza F., Ma H.X., Carver Brett F., Bai G.H. Mapping quantitative trait loci forquality factors in an inter-class cross of US and Chinese wheat. Theor Appl Genet,2010,120:1041–1051.
    Sun X. Y., Wu K., Zhao Y., Kong F. M., Han G. Z., Jiang H. M., Huang X. J., Li R. J., Wang H.G., Li S. S.. QTL analysis of kernel shape and weight using recombinant inbred lines inwheat. Euphytica,2009,165:615–624.
    Suprayogi Y., Curtis Jerry Pozniak, Clarke F. R., Clarke J. M., Knox R. E. and Singh A. K.Identification and validation of quantitative trait loci for grain protein concentration inadapted Canadian durum wheat populations. Theor Appl Genet,2009,119:437–448.
    Somers D. J., Isaac P., Edwards K.. A high-density microsatellite consensus map for breadwheat (Triticum aestivum L.). Theor Appl Genet,2004,109:1105–1114.
    Tanksley S. D., Nelson J. C.. Advanced backcross QTL analysis: a method for thesimultaneous discovery and transfer of valuable QTL from unadapted germplasm intoelite breeding lines. Theor Appl Genet,1996,92:191–203.
    Torada A., Koike M., Mochida K., Ogihara Y.. SSR-based linkage map with new markersusing an intraspecific population of common wheat. Theor Appl Genet,2006,112:1042–1051.
    Torada A., Ileguchi S., Koike M.. Mapping and validation of PCR-based markers associatedwith a major QTL for seed dormancy in wheat. Euphytica,2005,143:251–255.
    Turner A.S., Bradburne R.P., Fish L., Snap J.W. New quantitative trait loci influencing graintexture and protein content in bread wheat. J Cereal Sci,2004,40:51–60.
    Varshney R. K., Prasad M., Roy J. K., Kumar N., Singh H., Dhaliwal H. S., Balyan H. S.,Gupta P. K.. Identification of eight chromosomes and a microsatellite marker on1ASassociated with QTL for grain weight in bread wheat. Theor Appl Genet,2000,100:1290–1294.
    Wang R. X., Hai L., Zhang X. Y., You G. X., Yan C. X., Xiao S. H.. QTL mapping for grainfilling rate and yield related traits in RILs of the Chinese winter wheat populationHeshangmai×Yu8679. Theor Appl Genet,2009,118:313–325.
    Williams J., Kubelik A., Livak K., Rafalski J., Tingey S.. DNA polymorphisms amplified byarbitrary primers are useful as genetic markers. Nucl Acid Res,1990,18:6531–6535.
    Xiao J., Li J., Yuan L., Tanksley S. D.. Identification of QTL affecting traits of agronomicimportance in recombinant inbred population derived from a subspecific rice cross.TheorAppl Genet,1996,92:230–244.
    Yamamoto T., Kuboki Y., Lin S. Y., Sasaki T., Yano M.. Fine mapping of quantitative trait lociHd-1, Hd-2and Hd-3, controlling heading date of rice, as single Mendelian factors. TheorAppl Genet,1998,97:37–44.
    Yan J. Q., Zhu J., He C. X., Benmoussa M., Wu P.. Molecular dissection of developmentalbehavior of plant height in rice (Oryza sativa L.). Genetics Society of America,1998,150:1257–1265.
    Yano M., Sasaki T.. Genetic and molecular dissection of quantitative traits in rice. PlantMolecular Bio,1997,35:145–153.
    Yano M., Katayase Y., Ashikari M., Yamanouchi U., Monna L., Fuse T., Baba T., YamamotoK., Umehara Y., Nagamura Y., Sasaki T.. Hd1, a major photoperiod sensitivity quantitativetrait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS.The Plant Cell,2000,12:2473–2483.
    Yao J., Wang L. X., Liu L. H., Zhao C. P., Zheng Y. L.. Association mapping of agronomictraits on chromosome2A of wheat. Genetica,2009,137:67–75.
    Yu J. K., Dake T. M., Singh S., Benscher D., Li W., Gill B., Sorrells M. E.. Development andmapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome,2004,47:805–818.
    Zabeau M., Vos P.. Selective restriction fragment amplification: A general method for DNAfingerprints. European Patent Application, Pub,1993.
    Zhao C.H., Cui F., Zong H., Wang Y.H., Bao Y.G., Hao Y.F.. Transmission of thechromosome1R in winter wheat germplasm Aimengniu and its derivatives revealed bymolecular markers. Agric Sci China2009,8:652–657.
    Zhang K. P., Zhao L., Tian J. C., Chen G. C., Jiang X. L., Liu B.. A genetic map constructedusing a double haploid population derived from two elite Chinese common wheat varieties.Journal of Integrative Plant Biology,2008,50:941–950.
    Zeng Z. B.. Precision Mapping of Qutitative Trait Loci. Genetics Society of America,1994,136:1457–1468.
    Zhang L. Y., Bernard M., Leroy P., Feuillet C., Sourdille P.. High transferability of breadwheat EST-derived SSRs to other cereals. Theor Appl Genet,2005,111:677–687.
    Zhao C. H., Cui F., Zong H., Wang Y. H., Bao Y. G., Hao Y. F., Du B., Wang H. G..Transmission of the chromosome1R in winter wheat germplasm aimengniu and itsderivatives revealed by molecular markers. Agricultural Sciences in China,2009,8:652–657.
    Zhu J.. Analysis of conditional genetic effects and variance components in developmentalgenetics. Genetics Society of America,1995,141:1633–1639.
    Zhu J. and Weir B. S.. Mixed model approaches for diallel analysis based on a bio-model.Genet Res, Camb,1996,68, pp.233–240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700