用户名: 密码: 验证码:
小麦渐渗系山融3号盐胁迫应答基因TaHB30和TaCHP的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦作为世界上分布最广、种植面积最大、加工制品最为丰富的粮食作物之一,其农业地位的重要性不可忽视。然而随着水资源的日益匮乏及土地荒漠化的日趋严重,非生物胁迫如高盐、干旱等对小麦品质的提高及产量的增加形成了较大的负面影响。加之非生物胁迫应答是由多基因控制的复杂性状,涉及到细胞防御、离子平衡、次生代谢以及能量代谢等诸多方面。且小麦作为异源六倍体,同拟南芥等模式植物相比,耐盐机制研究的复杂性相应增加,生长周期也相对延长,因此,即便与水稻、玉米等其他作物相比,小麦逆境分子机理的研究仍然进展缓慢。
     由于小麦属于甜土植物,自身耐盐能力不强,而其野生近缘物种则是抗逆改良的重要基因库,可作为基因工程和细胞工程技术培育耐逆新品种的重要基因源。本实验利用不对称体细胞杂交渐渗技术,获得了盐敏感小麦品种济南177(Triticum aestivum2n=42, JN177)与强耐盐性小麦近缘属长穗偃麦草(Thinopyrum ponticum,2n=70)的渐渗系抗盐新品种山融3号(SR3)。山融3号的耐盐指数及各项生理生化指标均明显优于亲本小麦JN177,其耐盐性由主效基因和微效基因共同控制。
     在本实验前期对SR3全基因组芯片和蛋白组分析的基础上,我们发现两个受胁迫表达变化的基因,结合SR3盐胁迫cDNA全长文库和RACE手段,获得基因全长。下面分别对两个基因进行功能验证,主要的研究内容及结果包括:
     1.小麦耐盐相关基因TaHB30的克隆及初步功能分析
     通过分析SR3盐胁迫cDNA全长文库基因,发现了一个受盐胁迫表达显著上调的基因,依据文库编号将其命名为TaHB30。在对其编码的蛋白序列进行Blast分析时,发现该基因含有Cu/Zn超氧化物歧化酶典型的激活位点,并包含有4个Cu2+结合位点和4个Zn2+结合位点,将其归类于Cu/Zn超氧化物歧化酶大类。
     200mM NaCl处理条件下,在SR3及其亲本JN177根叶中总体为上调的表达趋势;10mM过氧化氢处理后,根部的变化情况SR3同JN177较为一致,都呈现先下调后上调的波动变化。叶中SR3仍为先下调后上调的趋势,而JN177则是下调表达。在这些处理中,TaHB30在SR3中的表达量均高于JN177。
     由于Cu/Zn超氧化物歧化酶在植物细胞中分布比较广泛,为确定TaHB30的功能作用部位,对基因表达产物进行亚细胞定位。通过该蛋白偶联GFP,基因枪法转化洋葱表皮细胞和PEG诱导拟南芥原生质体,GFP荧光信号一致出现在细胞质与细胞核中,表明该基因产物主要在胞质同核中起作用。
     构建TaHB30表达载体并分别转化拟南芥和小麦,对拟南芥过表达转基因株系(OE系)在多种逆境胁迫下的表型进行分析。在对照条件下,OE系和对照株系生长状况正常,没有明显差异;在不同浓度的Mannitol处理下,OE系与对照株系差异也不明显。但当NaCl浓度增加到50mM以后,OE系的生长状态明显好于对照株系,主根根长同对照植株相比较长,侧根的生长也比对照株系发达。在添加H2O2的培养基上,OE系的生长状况也明显优于对照株系。随后进行了不同种类激素,包括IAA、JA、ABA与GA3的处理,在对照和转基因株系中都未发现表型的明显差异。初步推测,TaHB30通过增强ROS途径促进OE系的耐盐能力,同相关的植物激素信号通路没有交汇。利用拟南芥突变体验证该基因功能,将TaHB30转化拟南芥突变体,发现TaHB30过表达拟南芥突变体在正常条件下比对照系的根短,而在NaCl和H202的处理下这种根长度的差异消除,推测与该基因调控拟南芥内源ROS的信号途径有关。
     RT-PCR和real time PCR结果显示,正常生长条件下,拟南芥过表达株系(OEl,OE2)本底的超氧化物歧化酶(SOD)编码基因比对照株系表达量增高;而其下游多个ROS清除酶编码基因表达上调:谷胱甘肽过氧化物酶(GPX)表达量的增幅最为显著,其他如过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)分别编码的2个基因在OE系的表达量同对照也具有显著差异。值得注意的是:位于ROS途径上游、与H2O2产生密切相关的NADPH氧化酶编码基因RBOH-D, RBOH-F的表达明显提高,并且在同时含有H202和NADPH氧化酶抑制剂的培养基上,OE系的生长状况不再优于对照株系;在正常条件下,TaHB30过表达拟南芥突变体的RBOH-D基因表达变化不显著,而GPX基因的表达量对照系比较明显上调。以上结果表明:小麦Cu/Zn超氧化物歧化酶基因TaHB30通过调控NADPH氧化酶的变化,进入ROS信号途径而在耐盐中起作用。
     进一步测定了OE系及空载体对照的ROS相关酶活性,结果表明:OE系的ROS清除酶系统中总超氧化物歧化酶(SOD)和Cu/Zn超氧化物歧化酶的酶活力都较对照提高;过氧化氢酶(CAT)的酶活力约为对照的1.5-2倍;谷胱甘肽过氧化物酶(GPX)的酶活力约为对照的1.3倍。而ROS的产生酶-非特异性NADPH氧化酶(NOX)活性也在过表达拟南芥中明显升高(1.6倍);DAB染色显示,TaHB30过表达株系中H202含量明显低于对照植株;而NBT染色后,超氧阴离了的含量高于对照植株。
     以上结果表明:TaHB30通过调节ROS信号转导系统提高植物耐盐性。2.小麦耐盐相关基因TaCHP的功能分析
     通过本实验前期工作,发现了一个盐胁迫应答新基因TaCHP,编码一个CHP-rich(半胱氨酸,组氨酸和脯氨酸丰富)的锌指蛋白家族基因。TaCHP含有能特异性结合磷脂信号分子甘油二酯(DAG)的C1结构域和可能的激酶结构域,含有该结构域的蛋白质大多具有蛋白激酶(定位细胞膜)和/或转录调控因子(定位细胞核)活性。本研究发现,TaCHP定位在细胞膜和细胞核,推测是一个具有蛋白激酶和转录因子双重功能的抗逆相关重要蛋白。体外PKC激酶活性测定表明,TaCHP表达蛋白无激酶活性。转录激活活性分析发现C’端两个C1结构域及TaCHP全长具有转录激活活性,表明该基因可能作为一个转录因子行使功能。
     进行TaCHP胁迫表达模式及其定位分析,发现TaCHP主要在三叶期的小麦根部表达,原位杂交结果表明转录产物定位于根尖的皮层和分生组织细胞内。TaCHP表达量在SR3中比亲本JN177高,通过NaCl,干旱,ABA等处理后,二者都呈现下调趋势。但是,SR3总体表达量均维持在比JN177明显高的水平。
     将TaCHP转化盐敏感小麦济南17,小麦的耐盐、抗旱、抗氧化能力及相关生理生化指标都明显提高,证明了该基因的抗逆功能。构建了TaCHP过表达(BS、A5)拟南芥株系,进一步研究该基因可能的作用机制。除了耐盐性以外,拟南芥对H202和ABA的耐受性也有所增加。在盐处理下,过表达系中一部分胁迫响应基因(AtCBF3, AtDREB2A, AtABI2和AtABI1)的表达量升高,而ABA合成基因AtAA03, AtABA2和AtMYB15的表达量降低。Real-time PCR显示转基因拟南芥BS、A5的AtRBOHD表达量平均增幅达7倍,其编码的NADPH氧化酶是ROS产生的重要组成部分,而活性氧清除酶CAT和APX编码基因AtCAT2、AtAPX2在拟南芥过表达株系中被诱导,结合转基因拟南芥BS、A5株系中较高的SOD和CAT酶活性,表明ROS的产生及清除能力在过表达株系中都增强。
     以上结果表明:TaCHP通过ABA依赖和非依赖信号途径以及ROS信号途径参与植物对非生物胁迫的响应。
Wheat has the most extensive distribution, the largest amount of acreage and the most abundance of processed products among major crops. Its yield and quality were adversely affected by the scarcity of water resources, land desertification and increasingly serious of abiotic stresses such as drought and salt, which promotes us to dissect its rules of stress response with the aim to stress-tolerance cultivar breeding. However, the response upon abiotic stress is governed by multi-genes, and so many physiological evens are involved, including cellular defense, ion transport, secondary metabolism, energy flow and so on. On account of the different chromosome type to Arabidopsis and rice (allohexaploid to diploid), the salt tolerance mechanism of wheat would be more complicated, such research progress in wheat is also much slower than in rice, corn and other crops.
     Wheat is a glycophyte with limited salt tolerance, but its wild relatives have been demonstrated to be the pivotal gene pool for salt tolerance improvement breeding via genetic and cell engineering technologies. In our previous work, a new somatic hybrid introgression line Shanrong No.3(SR3) had been generated from hybrids of common wheat Jinan177(Triticum aestivum2n=42, JN177) with Thinopyrum ponticum (2n=70), a salt and drought tolerant grass. The salinity tolerance indices as well as physiological, biochemical and genetic parameters of SR3were significantly better than JN177, suggested that major salt tolerance genes and some minor genes controlled the salt tolerance of SR3.
     Based on the transcriptomic and proteomic data of SR3, we found two genes showing obvious stress-responsive patterns, and isolated their full-length sequences via PCR from the SR3salt-stressed cDNA library and RACE cloning, respectively. Then, their functions in stress tolerance were performed. The main research contents and results were summarized as follows:
     1. Cloning and preliminary functional analysis of TaHB30gene involved in salt stress
     Based on the screening of SR3salt-stressed cDNA library, we found a gene that was up-regulated in response to salinity treatment, which was named TaHB30according to the library number. Its deduced protein sequence possesses a typical active site of Cu/Zn superoxide dismutase, including four Cu2+and four Zn2+binding sites. Therefore, TaHB30was classified into the Cu/Zn superoxide dismutase gene family.
     The transcription of TaHB30was gradually induced both in SR3and JN177when treated with200mM NaCl. After exposure to10mM H2O2, the expression of TaHB30was down-regulated at the early phase and then gradually resumed in roots of two cultivars; in leaves, the gene appeared the comparable expression profile in SR3, while it was down-regulated during the whole treatment course. Moreover, SR3accumulated more TaHB30transcripts in SR3than in JN177under the two treatments.
     Cu/Zn superoxide dismutase is found to be ubiquitously distributed in plant cells. To determine the action site of TaHB30, a subcellular localization assay was conducted by transiently expressing TaHB30-GFP fusion protein in onion epidermal cells and Arabidopsis protoplasts. The GFP signals traced that TaHB30located in both cytoplasm and nucleus.
     TaHB30was transformed into Arabidopsis and wheat for determining its role in abiotic stress tolerance, and transgenic Arabidopis overexpression (OE) lines were used to further analyze. Under the control conditions, OE lines and vector control (VC) line had no developmental and reproductive difference during the whole life cycle. Under more than50mM NaCl treatment, OE lines showed more vigorous growth ability than VC line, and they had longer main roots and more amounts of lateral roots. Moreover, OE lines had higher tolerance capacity to H2O2. By contrast, OE and VC lines had unconspicuous phenotype in medium plate containing different concentrations of mannitol. Besides, TaHB30overexpression did not change the sensitivity to phytohormone such as IAA, JA, ABA, and GA3. These results speculates that TaHB30enhance the plant salt tolerance through the ROS pathway, which seems to have no interplay with the hormone pathways. TaHB30was further transformed into Arabidopsis defective in the homologue of TaHB30. In comparison with VC line, the mutants overexpressing TaHB30had shorter main roots under the control conditions, but similar ones under NaCl or H2O2treatments, which is possibly attributed to the modulating effect of TaHB30in ROS signaling pathway.
     Semi-quantitative RT-PCR and real-time quantitative PCR indicated that OE lines had higher abundance of endogenous SOD (superoxide dismutase) transcripts than VC line under the control conditions. The genes encoding ROS scavenging enzymes catalyzing in downstream steps of SOD were also up-regulated, of which the transcription of GPX (glutathione peroxidase) was notably elevated, and APX (ascorbate peroxidase) and CAT (catalase) also had a higher expression levels. It was noteworthy that the expression of AtRBOH-D and AtRBOH-F, encoding two subunits of NADPH oxidase and functioning in H2O2generation, was significantly raised, what's more, OE lines did not show more vigorous growth ability than VC line to H2O2and inhibitor of NADPH oxidase; The expression of AtRBOH-D did not change and GPX had a higher expression levels in the mutants overexpressing TaHB30than VC line under the control conditions. The results above showde that Wheat Cu/Zn superoxide dismutase gene TaHB30played a pivotal role in salt tolerance through regulating NADPH oxidase of ROS signaling pathways.
     Following the transcriptional profiles, the activities of these ROS generating and scavenging enzymes were also improved in TaHB30overexpressors. Of them, the activities of total SOD and Cu/Zn SOD were both remarkably increased in OE lines, the CAT and GPX activities of transgenic plants were higher approximately1.5-2and1.3times respectively than those of VC line, and the activity of nonspecific NADPH oxidase (NOX) was also increased by1.6fold. DAB staining showed OE lines had less H2O2content than VC line, while NBT staining exhibited that they had higher amount of superoxide anion.
     These results confirmed that wheat Cu/Zn superoxide dismutase enhanced salt tolerance through ROS signaling pathways.
     2. Functional analysis of TaCHP gene involved in salt stress
     In our previous study, we identified a salt stress response gene TaCHP, which encoded a CHP-rich (for cysteine, histidine, and proline rich) zinc finger protein family gene. TaCHP possesses three divergent C1domains; C1domain was found to specifically bind to phospholipid signaling molecule diacylglycerol (DAG) in animals, and most of proteins with this domain have kinase activity (localize at cytoplasm) and/or act as transcriptional factors (localize in nucleus). Here, TaCHP was found to localize at cytoplasm and in nucleus, suggesting that TaCHP might serve as both a transcription factor and a putative DAG binding protein to confer salt tolerance. The in vitro PKC kinase activity result showed that TaCHP had no kinase activity. Transactivation assay showed that the full-length TaCHP and C-terminal two C1domains had transcriptional activation activity, which indicated that TaCHP might function as a transcription factor.
     TaCHP was majorly transcribed in roots of seedlings at the three-leaf stage with a more remarkable level in SR3than in JN177. in situ hybridization further showed that the transcript localized in the cells of the root tip cortex and meristem. Its transcript abundance was reduced by the imposition of salinity or drought stress, as well as by the exogenous supply of ABA, but SR3overall expression maintained at a significantly higher level than JN177.
     When JN17, a salinity hypersensitive wheat cultivar, was engineered to overexpress TaCHP, its performances in the face of salinity, drought and the indexes of physiological and biochemical indicators all improved, proving the abiotic stress tolerance of TaCHP. To study the mechanism of its action, TaCHP overexpression Arabidopsis lines(BS, A5) were constructed. In addition to the salt tolerance, the tolerance about H2O2and ABA increased in overexpression Arabidopsis lines. The expression levels of a number of stress reporter genes (AtCBF3, AtDREB2A, AtABI2, and AtABIl) were raised in the transgenic lines in the presence of salinity stress, while ABA synthetic genes AtAAO3, AtABA2and AtMYB15reduced. Real-time PCR displayed that the average increase expression of AtRBOH-D, which encoded a component of NADPH oxidase required for ROS production, was about7times in the overexpression lines, the ROS scavenging enzymes CAT and APX encoding genes AtCAT2and AtAPX2were induced, combining with the improved enzymatic activity results of SOD and CAT, indicating that ROS production and scavenging capacity were increased in BS and A5lines.
     These data indicated that TaCHP participates in abiotic stress response through the ABA-dependent, ABA-independent and ROS signaling pathways.
引文
Achard, P. et al. (2008). Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr. Biol,18,656-660.
    Agarwal, M. et al. (2006). A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem,281,37636-37645.
    Alexandre, J., Lassalles, J. P.,& Kado, R. T. (1990). Opening of Ca++ channels in isolated red beet root vacuole membrane by inositol 1,4,5-triphosphate. Nature 343,567-570.
    Allan, AC, Fluhr R. (1997). Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9,1559-1572.
    Anthony, R. G., Henriques, R., Helfer, A., Meszaros, T., Rios, G., Testerink, C., Bogre, L. (2004). A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO Journal,23,572-581.
    Apel, K., Hirt, H. (2004). Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol,55,373-399.
    Arisz, S. A., Testerink, C.,& Munnik, T. (2009). Plant PA signaling via diacylglycerol kinase. Biochimica et Biophysica Acta,1791,869-875.
    Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology,141,391-396.
    Asada, K. and Takahashi, M. (1987). Production and scavenging of active oxygen in photosynthesis. In Photoinhibition. Elsevier,9,227-287.
    Askerlund P, L. C., Widell S, Moller IM (1987). NAD(P)H oxidase and peroxidase activities in purified plasma membranes from cauliflower inflorescences. Physiologia Plantarum,71,9-19.
    Ball L., et al. (2004). Evidence for a Direct Link between Glutathione Biosynthesis and Stress Defense Gene Expression in Arabidopsis The Plant Cell,16,2448-2462.
    Bayr H, et al. (2005). Reactive oxygen species and sepsis. Crit Care Med,33,498-501.
    Buchanan, et al. (2005). Redox regulation:a broadening horizon. Annu Rev Plant Biol,56,187-220.
    Catherine G., et al. (2006). Control of plant development by reactive oxygen species. Plant Physiology, 141(2),341-345.
    Chamnongpol, S., et al. (1998). Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. U.S.A.,95,5818-5823.
    Chandok, M. R.,& Sopory, S. K. (1998). ZmcPKC 70, a protein kinase c type enzyme from maize. Biochemical characterization regulation by phorbol 12 myristate 13 acetate and its possible involvement in nitrate reductase gene expression J Biol Chem,273,19235-19242.
    Chaouch, S., Noctor, G. (2010). Myo-inositol abolishes salicylic aciddependent cell death and pathogen defence responses triggered by peroxisomal hydrogen peroxide. New Phytol.,188,711-718.
    Cheeseman, J. M. (2007). Hydrogen Peroxide and Plant Stress:A Challenging Relationship. Plant Stress,1(1),4-15.
    Chinnusamy, V., et al. (2003). ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev.,17,1043-1054.
    Colon-Gonzalez, F., et al. (2006). C1 domains exposed:From diacylglycerol binding to protein-protein interactions.Biochimica et Biophysica Acta,1761,827-837.
    Corpas F.J., et al. (2001). Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends in Plant Science,6,145-150.
    De Tullio, et al. (2010). Redox regulation of root apical meristem organization:connecting root development to its environment. Plant Physiol. Biochem.,48,328-336.
    Deswal, R., Chowdhary, G. K.,& Sopory, S. K. (2004). Purification and characterization of a PMA-stimulated kinase and identification of PMA-induced phosphorylation of a polypeptide that is dephosphorylated by low temperature in Brassica juncea. Biochemical and Biophysical Research Communications,322,420-427.
    DeWald, D. B., Torabinejad, J., Jones, C. A., Shope, J. C., Cangelosi, A. R., Thompson, J. E., Hama, H. (2001). Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol.,126,759-769.
    Dunand, C., Crevecoeur, M., and Penel, C. (2007). Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development:possible interaction with peroxidases. New Phytol,174,332-341.
    Dutilleul C, et al. (2003). Leaf mitochondria modulate whole cell redox homeostasis,set antioxidant capacity,and determine stress resistance through altered signaling and diurnal regulation. Plant Cell,15,1212-1226.
    Foyer C H, et al. (1997). Purification and properties of dehydroascorbate reductase from spinach leaves. Phytochemistry,16,1347-1350.
    Foyer C.H., N. (2005). Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. The Plant Cell,17,1866-1875.
    Franga, M. G. C., Matos, A. R., D'arcy-Lameta, A., Passaquet, C., Lichtle, C., Zuily-Fodil, Y.,& Pham-Thi, A. T. (2008). Cloning and characterization of drought-stimulated phosphatidic acid phosphatase genes from Vigna unguiculata. Plant Physiology and Biochemistry,46, 1093-1100.
    Fridovich, I. (1995). Superoxide radical and superoxide dismutases. Annu. Rev. Biochem,64,97-112.
    GAD MILLER, N. S., SULTAN CIFTCI-YILMAZ1 & RON MITTLER. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stressespce. Plant, Cell and Environment 33,453-467.
    Grunewald, et al. (2010). The march of the PINs:developmental plasticity by dynamic polar targeting in plant cells. EMBO J.,29,2700-2714.
    Guo, K., Nichol, R., Skehel, P., Dormann, D., J.Weijer, C., G.Williams, J.,& Pears, C. (2001). A Dictyostelium nuclear phosphatidylinositol phosphate kinase required for developmental gene expression. The EMBO Journal,20,6017-6027.
    H. Attia, N. K., N. Msilini and M. Lachaal. (2011). Effect of salt stress on gene expression of superoxide dismutases and copper chaperone in Arabidopsis thaliana. BIOLOGIA PLANTARUM 55(1),159-163.
    Ha, K. S.,& Thompson Jr, G. A. (1991). Diacylglycerol Metabolism in the Green Alga Dunaliella salina under Osmotic Stress. Plant Physiology,97,921-927.
    Halliwell B, C. M., Long L. (2000). Hydrogen peroxide in the human body. FEBS Letters,486,10-13.
    Hansen JM, G. Y., Jones DP.. (2006). Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol,46(4),215-234.
    Helling, D., Possart, A., Cottier, S., Klahre, U.,& Kost, B. (2008). Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling. Plant Cell,18,3519-3534.
    Hironaka Tsukagoshi, W. B., and Philip N. Benfey. (2010). Transcriptional Regulation of ROS Controls Transition from Proliferation to Differentiation in the Root. Cell,143,606-616.
    Hu, et al. (2011). Molecular Cloning and Expression of Two Cytosolic Copper-Zinc Superoxide Dismutase Genes from Nelumbo nucifera. Appl Biochem Biotechnol 163,679-691.
    Hunt, L., Mills, L. N., Pical, C., Leckie, C. P., Aitken, F. L., Kopka, J.(2003). Phospholipase C is required for the control of stomatal aperture by ABA. Plant J,34,47-55.
    Isabel A.,et al. (2010). Superoxide dismutases—a review of the metal-associated mechanistic variations. Biochimica et Biophysica Acta,1804(2),263-274.
    Jiang M, Z. J. (2001). Effect of abscisic acid on active oxygen species, antioxidant defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol,42,1265-1273.
    June M.Kwak, I. C. M., Zhen-Ming Pei, Nathalie Leonhardt,Miguel Angel Torres3, Jeffery L.Dangl,Rachel E.Bloom, Sara Bodde,,& I.Schroeder, J. D. G. J. a. J. (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. The EMBO Journal 22(11),2623-2633.
    Karpinski S, R. H., Karpinska B, Wingsle G, Creissen G, Mullineaux P. (1999). Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science,284,654-657.
    Karpinski S., G. H., Mateo A., Karpinska B.& Mullineaux P.M. (2003). Light perception in plant disease defence signalling. Current Opinion in Plant Biology,6,390-396.
    Kheifets, V.,& Mochly-Rosen, D. (2007). Insight into intra- and inter-molecular interactions of PKC: Design of specific modulators of kinase function. Pharmacological Research,55,467-476.
    Khokon, M., et al. (2011). Involvement of extracellular oxidative burst in salicylic acid-induced stomata] closure in Arabidopsis. Plant Cell Environ,34,434-443.
    Klotz, L., et al. (2002). Oxidant-induced signaling:effects of peroxynitrite and singlet oxygen. Biol. Chem.,383,56-443.
    Knight, H., Zarka, D.G., Okamoto, H., Thomashow, M.F. and Knight, M.R. (2004). Abscisic Acid Induces CBF Gene Transcription and Subsequent Induction of Cold-Regulated Genes via the CRT Promoter Element. Plant Physiol.,135,1710-1717.
    Kobayashi M, O. I., Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H. (2007). Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell,19,1065-1680.
    Lam-Son Phan Tran, K. N., Kazuo Shinozaki,and Kazuko Yamaguchi-Shinozaki. (2007). Plant Gene Networks in Osmotic Stress Response:From Genes to Regulatory Networks. Methods in Enzymology,428,109-128.
    Lee, Y.,& Assmann, S. M. (1991). Diacylglycerols induce both ion pumping in patch-clamped guard-cell protoplasts and opening of intact stomata Proc. Natl. Acad. Sci. U. S. A.,88, 2127-2131.
    Lin CC, et al. (2001). Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci 160,323-329.
    Marinus Pilon, K. R., Wiebke Tapken. (2011). The biogenesis and physiological function of chloroplast superoxide dismutases. Biochimica et Biophysica Acta 1807,989-998.
    Meng-ChengWang, Z.-Y. P., Cui-Ling Li, Fei Li, Chun Liu and Guang-Min Xia. (2008). Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8(7),1470-1489.
    Mikuni T, T. M., Kamachi M. (1987). Scavenging effect of butylated hydroxytoluene on the production of free radicals by the reaction of hydrogen peroxide with N- methyl-N'-nitro-N nitrosoguanidine. J Natl Cancer Inst,79,281-283.
    MisakoK, S. (1985). Chlorophyll metabolism in higher plant VI.Involvement of peroxidase in chlorophyll degradation. Plant Cell Physiol,26,1291-1301.
    Mittler R, V. S., Gollery M, van Breusegem F (2004). Reactive oxygen gene network of plants. Trends in Plant Science,9,490-498.
    Moller, I. M. (2001). Plant Mitochondria and oxidative stredd:Electron transport,NADPH turnover,and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol.,52,561-591.
    Moller, I. M. (2001). PLANT MITOCHONDRIA AND OXIDATIVE STRESS:Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species. Annu Rev Plant Physiol Plant Mol Biol,52,561-591.
    Mu" hlenbock, et al.(2007). Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1. Plant Cell,19,3819-3830.
    Munns, R.,& Tester, M. (2008). Mechanisms of salinity tolerance. Annu Rev Plant Biol,59,651-681.
    Narusaka, Y., Nakashima, K., Shinwari, Z.K., Sakuma, Y., Furihata, T., Abe, H., Narusaka, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2003). Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J.,34,137-148.
    Noctor G., Gomez L., Le' Ne Vanacker He,et al. (2002). Interactions Between Biosynthesis, Compartmentation andTransport in the Control of Glutathione Homeostasis and Signaling. Journal of Experimental Botany,53(372),1283-1304.
    Noctor G., V.-J. S., Driscoll S., Novitskaya L.& Foyer C.H.. (2002). Drought and oxidative load in the leaves of C3 plants:a predominant role for photorespiration?Annals of Botany,89,841-850.
    Ort D. R. and Baker. N. R. (2002). A photoprotective role for 02 as an alternative electronic sink in photosynthesis. Curr Opin Plant Biol,5,193-198.
    Palma J.M., et al. (2009). Proteome of plant peroxisomes:new perspectives on the role of these organelles in cell biology. Proteomics,9,2301-2312.
    Parre, E., Ghars, M. A., Leprince, A. S., Thiery, L., Lefebvre, D., Bordenave, M., Savoure, A. (2007). Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. Plant Physiol.,144(503-512).
    Peng, Z., et al. (2009). A Proteomic Study of the Response to Salinity and Drought Stress in an Introgression Strain of Bread Wheat. Molecular and Cellular Proteomics,8,2676-2686.
    Pierrugues, O., Brutesco, C., Oshiro, J., Gouy, M., Deveaux, Y., Carman, G. M., Kazmaier, M. (2001). Lipid phosphate phosphatases in Arabidopsis. Regulation of the AtLPPl gene in response to stress. J. Biol. Chem.,276,20300-20308.
    Pignocchi, C., et al. (2006). Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. Plant Physiol,141,423-435.
    Pitcher, L. H., et al. (1996). Overexpression of copper/zinc superoxide dismutase in the cytosol of transgenic tobacco confers partial resistance to ozone-induced foliar necrosis. Plant Physiol 110,583-588.
    Potters G, H. N., Bellone S, et al. (2004). Dehydroascorbate Influences the Plant Cell Cycle Through a Glutathione-independent reduction Mechanism Plant Physiology,134,1479-1487.
    Potters, et al.(2009). Different stresses, similarmorphogenic responses:-integrating a plethora of pathways. Plant Cell Environ,32,158-169.
    Qiu Quan-Sheng,, et al. (1999). Influence of osmotic stress on the lipid physical states of plasma membrance from wheat roots. Acta Botanica Sinica,41(2).
    Quintero, F. J., Ohta, M., Shi, H., Zhu, J.K. and Pardo, J.M.. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc. Nat. Acad. Sci.,99, 9061-9066.
    Ramanjulu Sunkar, A. K., and Jian-Kang Zhu. (2006). Posttranscriptional Induction of Two Cu/Zn Superoxide Dismutase Genes in Arabidopsis Is Mediated by Downregulation of miR398 and Important for Oxidative Stress Tolerance. The Plant Cell,18,2051-2065.
    Rhoads D.M., U. A. L., Subbaiah C.C.& Siedow J.N.. (2006). Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiology,141,357-366.
    Rieu, I., et al.(2008). Genetic analysis reveals that C19-GA2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell (20),2420-2436
    Rizhsky L, L. H., Mittler R. (2003). The water-water cycle is essential for chloroplast protection in the absence of stress. J Biol Chem.,278,38921-38925.
    Ron Mittler, S. V, Nobuhiro Suzuki, Gad Miller, Vanesa B. Tognetti, Klaas Vandepoele, Marty Gollery, Vladimir Shulaev and Frank Van Breusegem. (2011). ROS signaling:the new wave? Trends in Plant Science,16(6),300-309.
    Rubinovich, L., et al. (2010). The Arabidopsis cysteine-rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta. Plant J.,64,1018-1027.
    Ruth Grene Alscher, N. E., Lenwood S. (2002). Role of superoxide dismutases(SODs) in controlling oxidative stress in plants. Journal of Experimental Botany,53(372),1131-1134.
    Sagi M, et al.(2001). Superoxide production by plant homologues of the gp91phox NADPH oxidase.Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol 126,1281-1290.
    Sagi M, F. R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol, 141,336-340.
    Scandalios, J. G. (1993). Oxygen stress and superoxide dismutase. Plant Physiol,101,7-12.
    Sen Gupta, A., Heinen, J.L., Holaday, A.S., Burke, J.J., and Allen,R.D. (1993). Increased resistance to oxidative stress in transgenicplants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl.Acad. Sci. U.S.A.,90,1629-1633.
    Shao H.B., C. L. Y, Shao M.A., Jaleel C.A., Mi H.M. (2008). Higher plant antioxidants and redox signaling under environmental stresses. Comptes Redus Biologies,331,433-441.
    Shi, H., Ishitani,M., Kim, C.-S. and Zhu, J.K.(2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl Acad. Sci.,97,6896-6901.
    Shinozaki, et al. (2000). Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways. Curt.Opin. Plant Biol.,3,217-223.
    Skopelitis D S, et al. (2006). Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell, 18,2767-2781.
    Smirnoff N., et al. (1996). Ascorbate metabolism in relation to oxidative stress. Biochemical Society Transactions,24,472-478.
    Steponkus, P. L., Uemura, M., Joseph, R.A., Gilmour, S.J. and Thomashow, M.F. (1998). Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana.. Proc.Natl Acad. Sci.,95,14570-14575. Strizhov, N., Abraham, E., Okresz, L., Blickling, S., Zilberstein, A., Schell, J., Koncz, C. and Szabados, L. (1997). Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J., 12,557-569. Subramaniam, R., Despres, C.,& Brisson, N. (1997). A functional homolog of mammalian protein kinase C participates in the elicitor-induced defense response in potato. Plant Cell,9,653-664. Sumimoto, H. (2008). Structure,regulation and evolution of Noxfamily NADPH oxidases that produce reactive oxygen species. FEBS J,275(13),3249-3277. Szabolcs. (1989). Salt-Affected Soils. Boca Raton. Takahashi, S., Katagiri, T., Hirayama, T., Yamaguchi-Shinozaki, K.,& Shinozaki, K. (2001). Hyperosmotic stress induced a rapid and transient increase in inositol 1,4,5-trisphosphate independent of abscisic acid in Arabidopsis cell culture. Plant Cell Physiol,42,214-222. Tester, M.,et al.(2003). Na+ Tolerance and Na+ Transport in Higher Plants Ann. Bot.,91(5),503-527. Thomashow, M. F. (1999). PLANT COLD ACCLIMATION:Freezing Tolerance Genes and Regulatory Mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol.,50,571-599. Tognetti,et al.(2010). Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell,22, 2660-2679. Torres MA, et al. (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8,397-403. Torres MA, D. J., Jones J.DG. (2002). Arabidopsis gp91(phox) homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences,99,517-522. van Schooten, B., et al. (2006). Signalling diacylglycerol pyrophosphate, a new phosphatidic acid metabolite. Biochim. Biophys. Acta.,1761,151-159. Veljovic-Jovanovic SD, P. C., Noctor G, Foyer CH. (2001). Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol,127,426-435. Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J.,& Zhu, J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J,45(4),523-539. Vlot A. C. et al. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol,47,177-206. Wang, P. and. Song, C.P. (2008). Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol.,178,703-718. Wang, Q. J. (2006). PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci,27, 317-323. Wheeler, G. L.,& Brownlee, C. (2008). Ca2+ signalling in plants and green algae-changing channels. Trends Plant Sci,13,506-514. Willekens H., L. C, Tire C, et al. (1994). Differential expression of catalase genes in Nicotiana plumbaginifolia (L.). Proc Natl Acad Sci USA.,91(22),10450-10454. Wong HL, P. R., Hayashi K, Tabata R,Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T et al. (2007). Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell,19,4022-4034.
    Xia G, X. F., Zhou A, Wang H, Chen H. (2003). Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi. Theor Appl Genet, 107(299-305).
    Xiang F, X. G., Chen H.. (2003). Asymmetric somatic hybridization between wheat (Triticum aestivum) and Avena sativa L. Sci China C Life Sci,46,243-252.
    Zago, E. e. a. (2006). Nitric oxide-and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiol,141,404-411.
    Zetterstrom R., E. C., Sir Hopkins F. G.. (2006). The Dawn of Vitamins and Other Essential Nutritional Growth Factors. Acta Paediatrica,95(11),1331-1333.
    Zhang, W., Qin, C., Zhao, J.,& Wang, X. (2004). Phospholipase Dal-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. U. S.A.,101,9508-9513.
    Zhang, W., Yu, L., Zhang, Y.,& Wang, X. (2005). Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species. Biochimica et Biophysica Acta,1736, 1-9.
    Zhu, J. K. (2001). Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol,4,401-406.
    Zhu, J. K. (2003). Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol.,6,441-445.
    王仁雷,华春.(1992).高等植物叶绿体中活性氧的产生及清除.生物学通报,9,12-14.
    -王宝山,蔡蕾,李平华.(2000).盐碱地耐盐小麦覆膜栽培高产机理的研究.西北植物学报,20(5),746-753.
    王红涛,赵玉珉.(2011).水分胁迫对植物活性氧代谢的影响.通化师范学院学报,(2),52-54.
    李世东.(Ed.)(1995) (Vols.34).北京:科学出版社.
    李彬,王至春,孙志高.(2005).中国盐碱地资源与可持续利用研究.干旱地区农业研究,23(2),154-158.
    李翠玲.(2008).小麦渐渗系新品种山融3号耐盐表达谱和耐2盐相关基因的研究.山东大学博士论文.
    李晓燕,宋古午,董志贤.(2004).植物的盐胁迫生理.西北师范大学学报(自然科学版),40(3),106-111.
    郝福顺,陈珈.(2005).植物NADPH氧化酶研究进展.植物学通报,22(增刊),1-10.
    曾洪学,王俊.(2005).盐害生理与植物抗盐性.生物学通报,40(9),11-13.
    蔡以滢,陈珈.(1999).植物防御反应中活性氧的产生和作用.植物学通报,16(2),107-112.
    刘俊君,彭学贤,王慧中.(2000).转mtlD/gutD双价转基因水稻的耐盐性.科学通报45(7),724-729.
    张新春,庄炳昌,李白超.(2002).植物耐盐性研究进展.玉米科学,10(1),50-56.
    张丽,张华新,杨升,冯永巍.(2010).植物耐盐机理的研究进展.西南林业学院学报,30(3),82-86.
    张锦广.(2005)NADPH氧化酶参与盐胁迫诱导的烟草悬浮细胞活性氧的产生.中国优秀博硕士学位论文全交数据库《硕士).
    杨闯,尚丽霞,李淑芳,于志晶,林秀峰,马瑞.(2010).水稻耐盐转基因研究进展.吉林农业科毙35(3),21-26.
    齐宏飞,阳小成.(2008).植物抗逆性研究概述.安徽农业科学36(32),13943—13946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700