用户名: 密码: 验证码:
水稻苗期杂种优势分析及赤霉素与苗期杂种优势生物学基础的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)是世界上最重要的粮食作物之一。利用杂种优势提高水稻产量,是保证世界粮食安全的一条有效途径。要想全面认识和了解杂种优势这一现象的生物学基础,就需要从遗传水平、分子水平和生理水平来进行全面的分析和研究。在水稻中,尽管已经开展了许多关于杂种优势的研究,并且这些研究结果也的确加深了我们对于杂种优势的遗传基础和分子基础的认识,但是关于杂种优势生理学基础的研究却鲜有报道。植物激素在生理水平上,对植物的生长和发育发挥着及其重要的调控作用。并且已有研究认为,赤霉素(GAs)在杂种优势形成的植物激素调控过程中发挥着重要的基础作用。本研究的目的,就是为了更加深入的调查赤霉素在水稻苗期杂种优势形成过程中所发挥的生理调控作用,从而为揭示植物激素是水稻杂种优势的生理学基础提供证据。
     为此,我们使用生产上具有代表性的3个保持系(做母本)和3个恢复系(做父本),通过系间相互杂交,构建了一个包含9种杂交组合的不完全双列杂交组合(3×3incomplete diallel set)。首先,我们的苗期性状调查结果显示,在幼苗干重(SDW)、幼芽干重(ADW)和幼苗分蘖数(TN)这三个性状上存在着显著但是不同程度的杂种优势。干重和分蘖数的中亲优势率的变化范围分别为-9%—61.7%和1.4%—73.3%;幼芽干重的中亲优势率的变化范围是3.7%—64.4%。
     接着,我们使用GC-MS技术,对这套材料的20DAS幼苗和4d幼芽中,内源赤霉素的含量进行了精确分析。值得一提的是,本研究对GA代谢途径上的各种GAs分子——不仅仅包括活性GAs,还包括其前体物和代谢产物,均进行了精确定量。而这体现了本研究的一大特色:第一个在植物杂种优势分析中对尽可能多的赤霉素分子种类进行了如此全面的定量分析。20DAS幼苗中,赤霉素含量的杂种优势程度不高,在杂种中以亲本的加性效应为主;而4d幼芽中GA含量优势明显。
     然后,我们还使用实时荧光定量RT-PCR技术,对20DAS幼苗中GA代谢和信号传导基因的表达模式进行了准确分析。十分有趣的是:在16个基因中有13个基因(占81%)表现出差异性表达(differential expression);在出现差异性表达的情况中绝大部分(95%)表现为非加性作用模式(nonadditive modes of gene action),尤其以正向超显性(overdominance)和正向显性(positive dominance)模式为主。
     在此基础上,我们将上述实验数据综合起来进行了相关分析,结果发现:一些GA分子的含量与幼苗干重和分蘖数的杂种优势间存在显著的相关性;与此相呼应的是,一些GA相关基因的表达量与幼苗干重和分蘖数的杂种优势间也检测到了显著的相关性。本研究所得到的这些结果表明:赤霉素从生理水平上,对水稻苗期杂种优势的形成起着重要的调控作用。
Rice(Oryza sativa L.) is one of the most important food crops in the world. To solve the problem of the world food security, heterosis can be exploited to improve the yield potential of rice. A comprehensive understanding of the biological mechanism for heterosis will definitely benefit from knowledge at three levels:genetic, molecular and physiological. In rice, although many studies have been performed to contribute to a better understanding of the genetic and molecular basis of heterosis, little efforts have been made towards the physiological basis. Plant hormones play a vital role in the physiological regulation of plant growth and development, and it was proposed that gibberellins (GAs) provide a phytohormone basis for heterosis in plant. The study presented here is designed to investigate in depth the physiological role of GAs in the regulation of heterosis for rice seedling growth, or the hormonal basis for heterosis of rice.
     For this purpose, we developed a3×3incomplete diallel set and a matrix of all possible single-cross hybrids between them. Substantial and varying degree of heterosis for seedling growth was observed on the traits of SDW, ADW and TN. Mid-parent heterosis (MPH) ranged from-9%to61.7%for shoot dry weight,1.4%to73.3%for tiller number and3.7%to64.4%for axes dry weight.
     Then, the endogenous levels of GAs in these rice strains were measured unequivocally for the growing shoots of20DAS seedlings and the shoot plus root axes of4-d-old germinating seeds by GC-MS. It is worthy to note that all the molecules along the GA metabolic pathway, including not only bioactive GAs but also their precursors and catabolites, are included in the quantification analysis. To our knowledge, this might be the first study having such a full coverage of GA molecule species for heterosis analysis in plant. For20DAS seedlings, heterosis of GA contents was low and the contents in the hybrids were close to the means of the parents. In the shoot plus root axes of4-d-old germinating seeds, heterosis was relatively high.
     Furthermore, we also examined the expression profiles of a wide range of GA metabolism and signaling genes in rice using real time RT-PCR for the growing shoots of rice seedlings at20DAS. The cases of differential expression were frequently detected for most of the genes examined (13out of16), in the majority of which nonadditive modes of gene action were found, predominantly as the modes of overdominance and positive dominance.
     Through the combinative correlation analyses of the above data, we observed highly significant correlations of the contents of certain GA species with performance and heterosis of shoot dry mass and also with heterosis of tillering number. In accordance with this, strong correlations were detected between expression levels of certain GA-related genes and heterosis for shoot dry weight and tillering number, and also between heterotic expression effects of certain genes with heterosis of shoot dry weight. These strong correlations imply that GAs may play an important role at the physiologcial level in the regulation of heterosis for rice seedling growth.
引文
1.蔡得田,袁隆平,卢兴桂.二十一世纪水稻育种战略Ⅱ:利用远缘杂交和多倍体双重优势进行超级稻育种.作物学报,2001,27:110-116
    2.华金平.汕优63“永久F2”群体构建及其杂种优势的遗传研究.[博士学位论文].武汉:华中农业大学图书馆,2003
    3.李建雄.一个优良杂交组合的杂种优势遗传成因的分子标记分析.[博士学位论文].武汉:华中农业大学图书馆,1998
    4.李宗霆,周燮.植物激素及其免疫检测技术.南京,江苏科学技术出版社,1996:80-135
    5.潘瑞炽.赤霉素的生物合成、代谢和作用机理.见:余叔文,汤章城主编,植物激素与分子生物学.北京,科学出版社,1999,439-457
    6.袁隆平.杂交水稻的育种战略设想.杂交水稻,1987,1:1-3
    7. Aaradhana S, Saxena O P, Sadasivam A. Gibberellic acid-like substances and heterosis in pearl millet. Indian J Environ Toxicol,1998,8:66-68
    8. Ait-Ali T, Frances S, Weller J L, et al. Regulation of gibberellin 20-oxidase and gibberellin 3β-hydroxylase transcript accumulation during de-etiolation of pea seedlings. Plant Physiol,1999,121:783-791
    9. Ait-Ali T, Swain S M, Reid J B et al. The LS locus of pea encodes the gibberellin biosynthesis enzyme ent-kaurene synthase A. Plant J,1997,11:443-454
    10. Akita S, Blanco L and Katayama K. Physiological mechanism of heterosis in seedling growth of indica F1 rice hybrids. Japn J Crop Sci,1990,59:548-556
    11. Alabadi D, Gil J, Blazquez M A, et al. Gibberellins repress photomorphogenesis in darkness. Plant Physiol,2004,134:1050-1057
    12. Aleman L, Kitamura J, Abdel-mageed H, et al. Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1. Plant Mol Biol,2008, 68:1-16
    13. Andorf S, Selbig J, Altmann T, et al. Enriched partial correlations in genome-wide gene expression profiles of hybrids (A. thaliana):A systems biological approach towards the molecular basis of heterosis. Theor Appl Genet,2010,120:249-259
    14. Anonymous. Hormonal control of plant growth. Nature,1968,21:830-832
    15. Ariizumi T, Murase K, Sun T-p, et al. Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell,2008,20:2447-2459
    16. Asano K, Hirano K, Ueguchi-Tanaka M, et al. Isolation and characterization of dominant dwarf mutants, Slrl-d, in rice. Mol Genet Genomics,2009,281:223-231
    17. Ashikari M, Sakakibara H, Lin S, et al. Cytokinin oxidase regulates rice grain production. Science,2005,309:741-745
    18. Ashikari M, Sasaki A, Ueguchi-Tanaka M, et al. Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice'Green Revolution'. Breeding Sci,2002,52:143-150
    19. Ashikari M, Wu J, Yano M, et al. Rice gibberellin-insensitive dwarf mutant gene dwarf 1 encodes the a-subunit of GTP-binding protein. Proc Natl Acad Sci U S A, 1999,96:10284-10289
    20. Auger D L, Gray A D, Ream T S, et al. Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics,2005,169:389-397
    21. Bao J, Lee S, Chen C, et al. Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. Plant Physiol,2005,138:1216-1231
    22. Bassel G W, Mullen R T and Bewley J D. procera is a putative DELLA mutant in tomato (Solanum lycopersicum):effects on the seed and vegetative plant. J Exp Bot, 2008,59:585-593
    23. Bate N J, Rood, S B, Blake, T J. Gibberellins and heterosis in poplar. Can. J. Bot, 1988,66:1148-1152
    24. Bernardo R. Best linear unbiased prediction of maize single-cross performance. Crop Sci,1996a,36:50-56
    25. Bernardo R. Best linear unbiased prediction of the performance of crosses between untested maize inbreds. Crop Sci,1996b,36:872-876
    26. Biemelt S, Tschiersch H, Sonnewald U. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol,2004,135:254-265
    27. Boppenmaier J, Melchinger A E, Seiltz G, et al. Genetic diversity for RFLPs in European maize inbreds. Plant Breed,1993,111:217-226
    28. Bruce A B. The Mendelian theory of heredity and the augmentaltion of vigor. Science, 1910,32:627-628
    29. Chandler P M, Harding C A, Ashton A R, et al. Characterization of gibberellin receptor mutants of barley (Hordeum vulgare 1.). Mol Plant,2008,1:285-294
    30. Chandler P M, Marion-Poll A, Ellis M, et al. Mutants at the Slender1 locus of barley cv himalaya. Molecular and physiological characterization. Plant Physiol,2002,129: 181-190
    31. Chang C W and Sun T P. Characterization of cis-regulatory regions responsible for developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana Plant Mol Biol,2002,49:579-589
    32. Chen X, Chang M, Wang B et al. Cloning of a Ca(Z+)-ATPase gene and the role of cytosolic Ca2+in the gibberellin-dependent signaling pathway in aleurone cells. Plant J,1997,11:363-371
    33. Choi Y H, Kobayashi M, Fujioka S, et al. Fluctuation of endogenous gibberellin levels in the early development of rice. Biosci Biotech Biochem,1995,59:285-288
    34. Coles J P, Phillips A L, Croker S J, et al. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J,1999,17:547-556
    35. Croker S J, Hedden P, Lenton J R, et al. Comparison of gibberellins in normal and slender barley seedlings. Plant Physiol,1990,94:194-200
    36. Curaba J, Moritz T, Blervaque R, et al. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiol,2004,136:3660-3669
    37. Davies PJ. Plant Hormones:Biosynthesis, Signal Transduction, Action! Dordrecht, The Netherlands:Kluwer Academic Publishers,2004,177-186
    38. de Leon J C, Abe T and Sasahara T. Variations in morpho-physiological traits relating to seedling vigor and heterosis in reciprocal crosses of rice. Breeding Sci,2001,51: 57-61
    39. Dellaporta S L. Calderon-Urrea A. The sex determination process in maize. Science, 1994,266:1541-1544
    40. Dill A, Jung H S and Sun T P. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci U S A,2001,98:14162-14167
    41. Dudley J W, Maroof M A S and Rufener G K. Molecular markers and grouping of parents in maize breeding programs. Crop Sci,1991,31:718-723
    42. East E M. Heterosis. Genetics,1936,21:375-397
    43. Eastwood D, Tavener R J, Laidman D L. Sequential action of cytokinin and gibberellic acid in wheat aleurone tissue. Nature,1969,221:1267
    44. Edwards M D, Stuber C W and Wendel J F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics,1987,116:113-125
    45. Eriksson M E, Israelsson M, Olsson O, et al. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotech,2000,18:784-788
    46. Falconer D S, Mackay T F C. Introduction to quantitative genetics.4th ed. UK: Prentice Hall, Harlow,1996,82-88
    47. Fleet C M and Sun T P. A dellacate balance:The role of gibberellin in plant morphogenesis. Curr Opin Plant Biol,2005,8:77-85
    48. Fleet C M, Yamaguchi S, Hanada A, et al. Overexpression of AtCPS and AtKS in Arabidopsis confers increased ent-kaurene production but no increase in bioactive gibberellins. Plant Physiol,2003,132:830-839
    49. Frisch M, Thiemann A, Fu J, et al. Transcriptome-based distance measures for grouping of germplasm and prediction of hybrid performance in maize. Theor Appl Genet,2010,120:441-450
    50. Fujisawa Y, Kato T, Ohki S, et al. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc Natl Acad Sci U S A,1999, 96:7575-7580
    51. Gartner T, Steinfath M, Andorf S, et al. Improved heterosis prediction by combining information on DNA-and metabolic markers. PLoS ONE,2009,4:e5220
    52. Ghosh P K, Rakshit S C. Physio-genetic study in roots of mutated and hybrid of capsularis jute. Indian JAgr Res,1995,29:219-222
    53. Gil J and Garcia-Martinez J L. Light regulation of gibberellin A1 content and expression of genes coding for ga 20-oxidase and ga 3(3-hydroxylase in etiolated pea seedlings. Physiol Plant,2000,108:223-229
    54. Godshalk E B, Lee M and Lamkey K R. Relationship of restriction fragment length polymorphisms to single-cross hybrid performance of maize. Theor Appl Genet,1990, 80:273-280
    55. Gomez-Mena C, de Folter S, Costa M M R, et al. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development, 2005,132:429-438
    56. Griffiths J, Murase K, Rieu I, et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell,2006,18:3399-3414
    57. Gubler F, Chandler P M, White R G, et al. Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiol,2002,129:191-200
    58. Guo M, Rupe M A, Danilevskaya O N, et al. Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J,2003,36:30-44
    59. Guo M, Rupe M A, Zinselmeier C, et al. Allelic variation of gene expression in maize hybrids. Plant Cell,2004,16:1707-1716
    60. Guo M, Rupe M, Yang X, et al. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet,2006,113: 831-845
    61. Hall A M, Smith A R, Moshkov I E et al. Ethylene-cytokinin interactions in signal transduction. In:Strrad M, Pec P, Beck R eds., Advances in plant growth and development. Czech Republic. Palachy University Press,2000,200-225
    62. Hay A, Kaur H, Phillips A, et al. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol,2002,12: 1557-1565
    63. He G, Zhu X, Elling A A, et al. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell,2010,22:17-33
    64. Hedden P and Croker S J. GC-MS analysis of gibberellin in plant tissues. In Molecular Aspects of Hormonal Regulation of Plant Development. Proceedings 14th International Biochemical Congress,1990, The Hague
    65. Hedden P and Phillips A L. Gibberellin metabolism:New insights revealed by the genes. Trends Plant Sci,2000,5:523-530
    66. Hedden P, Phillips A L, Rojas M C, et al. Gibberellin biosynthesis in plants and fungi: a case of convergent evolution? J Plant Growth Regul,2001,20:319-331
    67. Hedden P. Modern methods for the quantitative analysis of plant hormones. Ann Rev Plant Physiol Plant Mol Biol.1993,44:107-129
    68. Herzog M, Dome A M, Grellet F. GASA, a gibberellin-regulated gene family from Arabidopsis thaliana related to the tomato GAST1 gene. Plant Mol. Biol,1995,27: 743-752
    69. Hirano K, Asano K, Tsuji H, et al. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell,2010,22: 2680-2696
    70. Hirano K, Nakajima M, Asano K, et al. The GID1-mediated gibberellin perception mechanism is conserved in the lycophyte selaginella moellendorffii but not in the bryophyte physcomitrella patens. Plant Cell,2007,19:3058-3079
    71. Hirano K, Ueguchi-Tanaka M and Matsuoka M. GID1-mediated gibberellin signaling in plants. Trends Plant Sci,2008,13:192-199
    72. Hirano K, Ueguchi-Tanaka M and Matsuoka M. GID1-mediated gibberellin signaling in plants. Trends Plant Sci,2008,13:192-199
    73. Hua J P, Xing Y Z, Xu C G et al. Genetic dissection of heterosis using an immortalized F2 population. Abstract, Plant Genomics in China Ⅰ,2000, Dalian, China
    74. Hua J P, Xing Y Z, Xu C G, et al. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics,2002,162: 1885-1895
    75. Hua J, Xing Y, Wu W, et al. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,2003,100:2574-2579
    76. Huang S, Raman A S, Ream J E, et al. Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol,1998,118: 773-781
    77. Huang Y, Zhang L, Zhang J, et al. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol,2006,62:579-591-591
    78. Ikeda A, Ueguchi-Tanaka M, Sonoda Y, et al. slender Rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell,2001,13:999-1010
    79. Inoue T, Higuchi M, Hashimoto Y et al. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature,2001,409:1060-1063
    80. Itoh H, Sasaki A, Ueguchi-Tanaka M, et al. Dissection of the phosphorylation of rice DELLA protein, SLENDER RICE1. Plant and Cell Physiology,2005,46:1392-1399
    81. Jasinski S, Piazza P, Craft J, et al. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol,2005,15: 1560-1565
    82. Jones D F. Dominance of linked factors as a means of accounting for heterosis. Proc Natl Acad Sci USA,1917,3:310-312
    83. Jones H D, Smith S J, Desikan R, et al. Heterotrimeric G proteins are implicated in gibberellin induction of a-amylase gene expression in wild oat aleurone. Plant Cell, 1998,10:245-254
    84. Kakimoto T. CKⅡ a histidine kinase homolog implicated in cytokinin signal transduction, Science,1996,274:982-985
    85. Kaneko M, Itoh H, Inukai Y, et al. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J,2003,35:104-115
    86. Kaneko M, Itoh H, Inukai Y, et al. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J,2003,35:104-115
    87. Kobayashi M, MacMillan J, Phinney B et al. Gibberellin biosynthesis:metabolic evidence for three steps in the early 13-hydroxylation pathway of rice. Phytochemistry,2000,55:317-321
    88. Kobayashi M, Yamaguchi I, Murofushi N, et al. Fluctuation and localization of endogenous gibberellins in rice. Agric Biol Chem,1988,52:1189-1194
    89. Korn M, Gartner T, Erban A, et al. Predicting Arabidopsis freezing tolerance and heterosis in freezing tolerance from metabolite composition. Mol Plant,2010,3: 224-235
    90. Kurakawa T, Ueda N, Maekawa M, et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature,2007,445:652-655
    91. Lamkey K R and Edwards J W. The quantitative genetics of heterosis. In:Coors J G and Pandey S eds., Genetics and Exploitation of Heterosis in Crops. Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America,1999,31-48
    92. Lee M, Godshalk E B, Lamkey K R, et al. Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses. Crop Sci,1989,29:1067-1071
    93. Li Z K, Luo L J, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics,2001,158:1737-1753
    94. Lippman Z B and Zamir D. Heterosis:Revisiting the magic. Trends Genet,2007,23: 60-66
    95. Livak K J and Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method. Methods,2001,25:402-408
    96. Lo S F, Yang S Y, Chen K T, et al. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell,2008,20: 2603-2618
    97. Lo S F, Yang S Y, Chen K T, et al. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell,2008,20: 2603-2618
    98. Lovegrove A and Hooley R. Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci,2000,5:102-110
    99. Luo L J, Li Z K, Mei H W, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Ⅱ. Grain yield components. Genetics,2001,158:1755-1771
    100.MacMillan J, Takahashi N. Proposed procedure for the allocation of trivial names to the gibberellins. Nature,1968,217:170-171
    101.Macmillan J. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul,2002,20:387-442
    102.Maenhout S, De Baets B and Haesaert G. Prediction of maize single-cross hybrid performance:support vector machine regression versus best linear prediction. Theor Appl Genet,2010,120:415-427
    103.Maenhout S, De Baets B, Haesaert G, et al. Support vector machine regression for the prediction of maize hybrid performance. Theor Appl Genet,2007,115:1003-1013
    104.Maroof M A S, Yang G P, Zhang Q, et al. Correlation between molecular marker distance and hybrid performance in U.S. Southern long grain rice. Crop Sci,1997,37: 145-150
    105.McCouch S R, Teytelman L, Xu Y B, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res,2002,9:199-207
    106.McGinnis K M, Thomas S G, Soule J D, et al. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell,2003,15: 1120-1130
    107.McSteen P. Hormonal regulation of branching in grasses. Plant Physiol,2009,149: 46-55
    108.Melchinger A E, Lee M, Lamkey K R, et al. Genetic diversity for restriction fragment length polymorphisms:Relation to estimated genetic effects in maize inbreds. Crop Sci,1990,30:1033-1040
    109.Meyer S, Pospisil H and Scholten S. Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol,2007,63:381-391
    110.Murase K, Hirano Y, Sun T P, et al. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature,2008,456:459-463
    111.Nakajima M, Shimada A, Takashi Y, et al. Identification and characterization of Arabidopsis gibberellin receptors. Plant J,2006,46:880-889
    112.Ngo P, Ozga J A and Reinecke D M. Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea pericarp. Plant Mol Biol,2002,49:439-448
    113.Ni Z, Kim E D, Ha M, et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature,2009,457:327-331
    114.Olszewski N, Sun T P and Gubler F. Gibberellin signaling:biosynthesis, catabolism, and response pathways. Plant Cell,2002,14:S61-S80
    115.O'Neill D P and Ross J J. Auxin regulation of the gibberellin pathway in pea. Plant Physiol,2002,130:1974-1982
    116.Otomo K, Kenmoku H, Oikawa H, et al. Biological functions of ent-and syn-copalyl diphosphate synthases in rice:Key enzymes for the branch point of gibberellin and phytoalexin biosynthesis. Plant J,2004,39:886-893
    117.Ozga J A, Yu J and Reinecke D M. Pollination-, development-, and auxin-specific regulation of gibberellin 3β-hydroxylase gene expression in pea fruit and seeds Plant Physiol,2003,131:1137-1146
    118.Paterson A H, Lander E S, Hewitt J D, et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature,1988,335:721-726
    119.Peng J, Carol P, Richards D E, et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev,1997,11: 3194-3205
    120.Peng J, Richards D E, Hartley N M, et al.'Green revolution'genes encode mutant gibberellin response modulators. Nature,1999,400:256-261
    121.Pharis R P, Zhang R C, Jiang I B J et al. Progress in plant growth regulation. Proceedings of the 14th International Conference on Plant Growth Substances,1992 Amsterdam, Netherlands.
    122.Prisic S and Peters R J. Synergistic substrate inhibition of ent-copalyl diphosphate synthase:A potential feed-forward inhibition mechanism limiting gibberellin metabolism. Plant Physiol,2007,144:445-454
    123.Ravid T and Hochstrasser M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol,2008,9:679-689
    124.Reid J B, Botwright N A, Smith J J, et al. Control of gibberellin levels and gene expression during de-etiolation in pea. Plant Physiol,2002,128:734-741
    125.Riou-Khamlichi C, Huntley R, Jacqmard A et al. Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science,1999,283:1541-1544
    126.Rood S B, Buzzell R I, Mander L N, et al. Gibberellins:a phytohormonal basis for heterosis in maize. Science,1988b,241:1216-1218
    127.Rood S B, Larsen K M. Gibberellins, amylase, and the onset of heterosis in maize seedlings. JExp Bot,1988a,39:223-233
    128.Rood S B, Pharis R P, Koshioka M et al. Gibberellins and heterosis in maize. I. Endogenous gibberellin-like substances. Plant Physiol,1983,71:639-644
    129.Rood S B, Pharis R P, Major D J. Gibberellin level as a possible hormonal basis for heterosis in maize. Plant Physiol,1981,67:Supplement 148
    130.Rood S B, Witbeck T J E, Major D J, et al. Gibberellins and heterosis in sorghum. Crop Sci,1992,32:713-718
    131.Rood S B. Heterosis and the metabolism of [3H]gibberellin Al in maize. Can J Bot, 1986,64:2160-2164
    132.Rood S B. Heterosis and the metabolism of gibberellin A20 in sorghum. Plant Growth Regul,1995,16:271-278-278
    133.Rosin F M, Hart J K, Horner H T, et al. Overexpression of a Knotted-Like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiol,2003,132:106-117
    134.Ross J J, Davidson S E, Wolbang C M, et al. Developmental regulation of the gibberellin pathway in pea shoots. Funct Plant Biol,2003,30:83-89
    135.Sakamoto T, Kamiya N, Ueguchi-Tanaka M, et al. Knox homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev,2001,15:581-590
    136.Sakamoto T, Miura K, Itoh H, et al. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol,2004,134:1642-1653
    137.Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al. Green revolution:A mutant gibberellin-synthesis gene in rice. Nature,2002,416:701-702
    138.Sasaki A, Itoh H, Gomi K, et al. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science,2003,299:1896-1898
    139.Shull G H. The composition of a field of maize. Am Breed Assn,1908,4:298-301
    140.Sidorova K K. Genetic and physiological study of pea mutants. Genet Moskva,1993, 29:2011-2018
    141.Silverstone A L, Chang C W, Krol E, et al. Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J,1997,12:9-19
    142.Silverstone A L, Ciampaglio C N and Sun T P. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell,1998,10:155-170
    143. Silvers tone A L, Jung H S, Dill A, et al. Repressing a repressor:Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell,2001,13:1555-1566
    144.Smith O S, Smith J S C, Bowen S L, et al. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs. Theor Appl Genet,1990,80:833-840
    145.Song G S, Zhai H L, Peng Y Q et al. Comparative transcriptional profiling and preliminary study on heterosis mechanism of Super-hybrid rice. Mol Plant,2010,3: 1012-1025
    146.Springer N M and Stupar R M. Allelic variation and heterosis in maize:How do two halves make more than a whole? Genome Res,2007,17:264-275
    147.Steinfath M, Gartner T, Lisec J, et al. Prediction of hybrid biomass in Arabidopsis thaliana by selected parental SNP and metabolic markers. Theor Appl Genet,2010, 120:239-247
    148.Steinfath M, Gartner T, Lisec J, et al. Prediction of hybrid biomass in Arabidopsis thaliana by selected parental SNP and metabolic markers. Theor Appl Genet,2010, 120:239-247
    149.Stuber C W, Lincoln S E, Wolff D W, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics,1992,132:823-839
    150.Stupar R M and Springer N M. Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid. Genetics,2006, 173:2199-2210
    151.Suharsono U, Fujisawa Y, Kawasaki T, et al. The heterotrimeric G protein a subunit acts upstream of the small GTPase Rac in disease resistance of rice Proc Natl Acad Sci USA,2002,99:13307-13312
    152.Swanson-Wagner R A, Jia Y, DeCook R, et al. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci USA,2006,103:6805-6810
    153.Symons G and Reid J. Hormone levels and response during de-etiolation in pea. Planta,2003,216:422-431
    154.Tang J, Yan J, Ma X, et al. Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet, 2010,120:333-340
    155.Tibbot B K, Skadsen R W. Molecular cloning and characterization of a gibberellin-inducible, putative alpha-glucosidase gene from barley. Plant Mol Biol, 1996,30:229-241
    156.Tsaftaris A S and Kafka M. Mechanisms of heterosis in crop plants. Journal of Crop Production,1997,1:95-111
    157.Tsaftaris A S, Kafka M, Policloros A et al. Epigenetic changes in maize DNA and heterosis. In:Book of abstracts. The genetics and exploitation of heterosis in crops: An international Symposium, Mexico DF, Mexico,1997,112-113
    158.Tsaftaris A S. Molecular aspects of heterosis in plants. Physiol Plant,1995,94: 362-370
    159.Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al. GIBBERELLIN INSENSITIVE DWARF 1 encodes a soluble receptor for gibberellin. Nature,2005,437:693-698
    160.Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, et al. Rice dwarf mutant dl, which is defective in the a-subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA,2000,97:11638-11643
    161.Ueguchi-Tanaka M, Hirano K, Hasegawa Y, et al. Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradation in the gid2 mutant. Plant Cell,2008,20:2437-2446
    162.Uequchi-Tanaka M, Fujisawa Y, Kobayashi M et al. Rice dwarf mutant dl, which is defective in the alpha subunit of the heterotrimeric G protein affects gibberellin signal transdction. Proc Nalt Acad Sci UAS,2000,97:11638-11643
    163.Ullah H, Chen J G, Young J C, et al. Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science,2001,292:2066-2069
    164.Ullah H, Chen J-G, Wang S, et al. Role of G heterotrimeric g protein in regulation of Arabidopsis seed germination. Plant Physiol,2002,129:897-907
    165.Uzarowska A, Keller B, Piepho H P, et al. Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height. Plant Mol Biol,2007,63:21-34
    166.Virmani S S. Heterosis and Hybrid Rice Breading. Germany:Springer-Verlag,1994, 1-4
    167.Vuylsteke M, van Eeuwijk F, Van Hummelen P, et al. Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics,2005,171:1267-1275
    168.Wang H, Caruso L V, Downie A B, et al. The embryo MADS domain protein AGAMOUS-Like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism. Plant Cell,2004,16:1206-1219
    169.Wareing P F, Phillips I D J. Growth and differentiation in plants.3rd ed. Oxford: Perganom Press,1981,168-170
    170.Wareing P F, Phillips I D J. Growth and differentiation in plants. Ed 3. Oxford: Perganom Press,1981,67-69
    171.Wei G, Tao Y, Liu G, et al. A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc Natl Acad Sci U S A,2009,106:7695-7701
    172.Weston D E, Elliott R C, Lester D R, et al. The pea DELLA proteins LA and CRY are important regulators of gibberellin synthesis and root growth. Plant Physiol,2008, 147:199-205
    173.Wittkopp P J, Haerum B K and Clark A G. Evolutionary changes in cis and trans gene regulation. Nature,2004,430:85-88
    174.Woll K, Dressel A, Sakai H, et al. ZmGrp3:identification of a novel marker for root initiation in maize and development of a robust assay to quantify allele-specific contribution to gene expression in hybrids. Theor Appl Genet,2006,113:1305-1315
    175.Xiao J, Li J, Yuan L, et al. Dominance is the major genetic basis of heterosis in rice as revealed by qtl analysis using molecular markers. Genetics,1995,140:745-754
    176.Xiao J, Li J, Yuan L, et al. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor Appl Genet,1996,92:637-643
    177.Xing Y and Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010,61:421-442
    178.Xiong L Z, Xu C G, Zhang Q. Patterns of cytosine methylation in parents and F1 of an elite hybrid detected by methylation sensitive amplification. Mol Gen Genet,1999, 261:439-446
    179.Yamaguchi S, Sun T P, Kawaide H, et al. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellin biosynthesis. Plant Physiol,1998,116: 1271-1278
    180.Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol,2008, 59:225-251
    181.Yamamoto T, Yonemaru J and Yano M. Towards the understanding of complex traits in rice:substantially or superficially? DNA Res,2009,16:141-154
    182.Yanai O, Shani E, Dolezal K, et al. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol,2005,15:1566-1571
    183.Yasumura Y, Crumpton-Taylor M, Fuentes S, et al. Step-by-step acquisition of the gibberellin-DELLA growth-regulatory mechanism during land-plant evolution. Curr Biol,2007,17:1225-1230
    184. You N S, Lei J C, Huang L X et al. Cytoplasmic effects of KV type sterile lines in rice. Chinese J Rice Sci,1998,12:181-184
    185.Yu S B, Li J X, Xu C G, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA,1997,94:9226-9231
    186.Zhang H Y, He H, Chen L B, et al. A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. Mol Plant,2008,1:720-731
    187.Zhang H Y, He H, Chen L B, et al. A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. Mol Plant,2008,1:720-731
    188.Zhang Q, Gao Y J, Maroof M A S, et al. Molecular divergence and hybrid performance in rice. Mol Breed,1995,1:133-142
    189.Zhang Q, Gao Y J, Yang S H, et al. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Theor Appl Genet,1994,89:185-192-192
    190.Zhang Q, Zhou Z, Yang G, et al. Molecular marker heterozygosity and hybrid performance in indica and japonica rice. Theor Appl Genet,1996,93:1218-1224
    191.Zhao M F, Li X H, Yang J B, et al. Relationship between molecular marker heterozygosity and hybrid performance in intra-and inter-subspecific crosses of rice. Plant Breed,1999,118:139-144
    192.Zhao X Y, Yu X H, Liu X M, et al. Light regulation of gibberellins metabolism in seedling development. JIntegr Plant Biol,2007,49:21-27
    193.Zhu Y, Nomura T, Xu Y, et al. Elongated uppermost internode encodes a cy to chrome p450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell,2006,18:442-456

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700