用户名: 密码: 验证码:
超(超)临界电站锅炉氧化皮生成剥落机理及其防爆关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力需求的加快增长,能源保障和环保形势日益严峻。为了满足电力需求,我国火力发电机组正向着大容量、高参数的超临界和超超临界燃煤机组发展。这使得发电设备工作环境更加恶劣,设备安全性和技术要求更高,操作控制也变得更加复杂。据现场调研可知,近年来我国在运的大型超临界和超超临界机组普遍出现了高温受热面管内氧化皮问题,有些氧化皮剥落并引发了堵塞爆管和汽轮机叶片冲蚀。高温受热面管内氧化皮问题已严重困扰火力发电机组安全运行。
     本文紧紧围绕超(超)临界锅炉高温受热面管内氧化皮的生成、剥落机理和防爆关键技术等方面展开研究。通过在现场对超(超)临界锅炉高温管道常用管材(TP347H、T91、T23)及其管内氧化皮进行样本采集,分别进行成分和结构分析,系统地研究了超(超)临界锅炉管内氧化皮的形成机理;通过对氧化皮应力、厚度和温度变化率的关系研究,揭示了变工况运行时高温管道内部氧化皮大量剥落的规律。结合电厂DCS数据库,分析了氧化皮堵塞与壁温变化的耦合关系,建立了基于数据挖掘技术的超(超)临界锅炉氧化皮堵管预警模型。从氧化皮生成、剥落、堵塞各环节系统地提出了预防超(超)临界锅炉因氧化皮剥落和防止氧化皮堵塞而引起爆管的关键技术。
     氧化皮生成与剥落机理的揭示为超临界锅炉运行优化控制与管内氧化皮堵塞监测提供了理论基础;防爆关键技术可有效地减少因氧化皮问题而带来的长期困扰大型火电机组安全运行的问题,提高了燃煤机组的可靠性。其主要研究结论如下:
     (1)通过对超(超)临界锅炉高温管道常见受热面材料成分与结构分析,得到了不同成分对材料抗氧化性能的影响。为不同温度区域的受热面材料选择及运行温度优化调整奠定了基础。
     (2)在对超(超)临界锅炉高温管道常用的TP347H、T91、T23三种代表性的管材及其产生的氧化皮进行取样和成分、结构、形貌的分析,揭示了高温蒸汽管内氧化皮的形成机理及发展过程。研究表明,在正常运行状况下,超(超)临界锅炉管内存在原生层和延伸层两层氧化皮,该状态氧化皮与金属基体结合牢固不易剥落;在高温运行状况下,基体中的铁与渗透进来的氧反应生成以FeO为主要成分的内层高温氧化层,使氧化层由原来的双层膜转变为三层膜。因内氧化层粘附性差且易分解,使氧化皮与金属基体之间产生不稳定层,在热应力的作用下易使氧化皮从内层发生剥落。通过能量色散谱仪(EDS)和PhilipsX’pertMPD型X射线衍射仪对氧化皮进行的成分和结构分析,其结果验证了该演变过程的正确性。
     (3)通过研究超(超)临界锅炉氧化皮生长增厚变化过程,揭示了氧化皮剥落规律。研究表明,超(超)临界锅炉高温蒸汽侧氧化皮生长速度与材质、管壁温度、运行时间及管内氧化气氛等因素有关。在实际运行中起主导作用的因素为管壁温度和运行时间。在各因素的作用下,氧化皮厚度不断增长,氧化膜内应力不断变化而导致失效。基于断裂力学理论,分析了基于裂纹生长机理及界面结合能的氧化皮剥落模型,提出了利用临界应力及临界温度变化率来预测氧化皮失效的方法。
     (4)提出了基于安全经济运行温度控制域的超(超)临界锅炉管内氧化皮生成速度控制技术。研究表明,超临界锅炉不同的高温受热面采用了不同的管材,不同的管材各自存在相应最高运行温度点。通过对超(超)临界锅炉不同工况点管壁温度分布情况的研究,得到了不同负荷下的安全运行温度控制线(A线)。综合考虑机组效率及管壁温度对氧化皮生成速度的影响,通过安全和经济校核,得到了超(超)临界锅炉经济运行的高温受热面的温度控制线(B线)。根据上述A、B二线所确定的区域得到超(超)临界锅炉高温受热面安全经济运行温度控制域。实践表明,上述安全经济运行温度控制域的确立,对生产现场满足经济运行,优化控制超(超)临界锅炉管内氧化皮生成速度具有明确的指导意义。
     (5)提出了基于安全运行周期的超(超)临界锅炉变工况温度变化率控制的防爆技术。研究表明,超(超)临界锅炉氧化皮随着运行时间的加长而不断增厚,呈现一定的规律,根据其规律可以得到相应运行周期可能的氧化皮厚度;再根据Armitt方法计算出一定厚度的氧化皮相应的拉、压应力的承受范围;最后根据相应氧化皮所能够承受的极限拉、压应力的大小,得到超(超)临界锅炉变工况温度变化速率的大小。经过推导计算,得到直接根据机组运行时间的长短来决定机组启停炉及变负荷时的温变速率。简化了超临界机组启停炉及变负荷时的温变速率确立的难题。实践表明,上述运行周期与机组变工况温度变化速率的大小对生产现场控制超(超)临界锅炉管内氧化皮脱落具有实际的指导意义。
     (6)设计了基于磁场强度的超临界电站锅炉高温管道氧化皮自动校准双探头探测仪。该探测仪有效地解决了氧化皮探测中的基准值问题。同时,应用该仪器研究了磁场强度探测法对不同合金管内氧化皮检测的适应性,实验研究了探头与管道的间隙、偏角、相对位置等因素对磁场强度探测结果的影响,得到了间隙小于1.07mm、角度偏离中法线25.9°内、永磁体相对氧化皮位置在26.4°内,其测量误差可控制在5%的工程误差以内,且探头与管道的间隙是影响磁场测量结果的主要因素;随着探头与管径的偏角、永磁体与管内氧化皮相对位置的增大,测量强度变化呈指数增长。现场检测得到该仪器对奥氏体不锈钢管内氧化皮的探测效果显著。实践证明该仪器对提前探测氧化皮的状况,对及时采取相应措施预防爆管十分有效。
     (7)建立了基于数据挖掘技术的超(超)临界锅炉管内氧化皮堵塞预测模型,并提出了基于该模型的吹管防爆技术。通过对超(超)临界锅炉因管内氧化皮堵塞而出现的爆管前后现场运行参数的研究,通过数据挖掘技术,揭示了超(超)临界锅炉管壁温度与管内氧化皮堵塞存在强烈的耦合关系,建立了管内氧化皮预测模型。应用该模型能够及时预测管道出现的氧化皮堵塞现象。通过研究提出了采用在线吹管技术对氧化皮进行吹扫,直到预测模型显示氧化皮已被吹净为止。实践表明,通过该模型预测和及时吹管,能有效地预测超(超)临界锅炉管内氧化皮堵塞,防止锅炉由此而出现的超温爆管事故的发生,大大地提高了机组运行的安全性和可靠性。
     超(超)临界锅炉在球范围广泛的使用,在长时间运行中出现管内氧化皮是一个普遍问题。如何应用本研究理论及技术方法准确判断超(超)临界锅炉高温管道氧化皮状况,及时开展不同管材内氧化皮探测,加强运行控制,减少超温爆管事故,是下一步需要努力的方向。该成果的推广也将为超(超)临界机组的安全运行发挥重要的指导作用。
As the demand for power is growing faster, the importance about energy security and environmental situation is increasing. The development of China's thermal power units is toward the larger capacity and higher parameter of supercritical and (ultra-)supercritical coal-fired units. With the improvement of equipment structure and thermal system technology, the equipment safety need to be improved too, and the operation and control have become more complicated. According to widely investigation, in recent years China's the large supercritical and ultra supercritical units generally appear the high temperature of heating tube oxide skin generation and spalling by blocking pipe explosion and eroding of steam turbine blades.
     This paper closely around (ultra-)supercritical boiler heating tube high temperature oxidation of generation of skin, spalling mechanism and key technology of explosion-proof aspects. Through collecting samples about (ultra-)supercritical boiler pipe commonly used pipe (T23, TP347,T91) and tube oxide skin in production field, analyze the composition and structure respectively, study the (ultra-)supercritical boiler tube the formation mechanism of the oxide skin systematically. Through study the relationship between temperature change rate and the oxide skin stress, thickness and temperature, we can reveal the spalling rule of the high temperature oxide skin when operation changes. Combined with the power plant's DCS database, analyze the coupling relationship oxide skin jam and wall temperature change, we constructed a (ultra-)supercritical boiler oxide skin blocking tube early warning model based on data mining technology. We have put forward key technology for preventing (ultra-)supercritical boiler's pipe explosion caused by oxide skin peeling from oxide skin growing, spalling, blocking every link.
     Oxide skin formation and spalling mechanism supply supercritical boiler operation optimization control and tube oxide skin jams monitoring for theoretical foundation Explosion-proof key technology effectively reduces the long plaguing large thermal power unit safe operation problem which is brought by the oxide skin, improves the reliability of coal-fired units. The results are as follows:
     (1) Through analyzing (ultra-)supercritical boiler high temperature pipe common heating surfaces material composition and structure, obtain the results about the different components influencing on the material oxidation resistance. It laid a foundation for choosing different temperature of heating area material, optimizing and adjusting operation temperature.
     (2) Analyzing the (ultra-)supercritical boiler pipe commonly used three high temperature representative pipe materials(such as T91, T23, TP347)and it's oxidation of the composition, structure and skin appearance, the paper reveals that the high temperature steam tube oxide skin formation mechanism and development process. Researches show that, in the normal operation conditions, it exists the original layer and extend layer oxide skin in (ultra-)supercritical boiler tube, the oxide skin and metal substrate combine firmly and is not easily spalling in this state. In high temperature operation conditions, the iron in metal matrix reacts with infiltrated oxygen atoms to generate for the inner FeO oxidation layer, so that oxide film change from the2-layer into3-layer membrane. Because the inner layer has poor adhesion and decompose easily, it leads to produce unstable layer between the oxide skin and base metal. The oxide skin spalls easily from inner under the action of thermal stress. Through using the energy dispersive spectrometer(EDS) and Philips X'pert MPD type X ray diffraction to analyze the composition and structure of oxide skin, the results show the process is correct.
     (3) Through the research the process about (ultra-)supercritical boiler oxide skin growing and thickening, this paper reveals the oxide skin spalling law. Based on this the model of the oxide skin spalling. Researches show that, the high temperature steam oxide skin growth rate of the (ultra-) supercritical boiler is related to the factors, such as, the material, wall temperature, running time and the oxidation atmosphere. In the actual operation of the factors play a dominant role for wall temperature and running time. In all the factors, the oxidation film thickness increasing and oxide skin internal stress changing lead to be failure. Based on the theory of fracture mechanics, the oxide skin spalling is established, and then propose to predict the oxide skin of criterion of failure which is use of critical stress and critical temperature alteration ratio.
     (4) Based on the safe and economic operation of the temperature control field (ultra-)supercritical boiler tube oxide skin generating speed control technology was put forward. Researches show that, different high temperature heating surfaces of supercritical boiler use different pipe material, different pipes correspondingly exist the highest operating temperature points. Through researches on the (ultra-)supercritical boiler under different conditions of temperature distribution point wall, the temperature control line (A line) of safe operation under different load is obtained. Considering the unit efficiency and wall temperature the influence on the oxide skin generating speed, through checking the security and economy, the temperature control line (B line) of high temperature heating surfaces of the (ultra-)supercritical boiler under economic operation is got. According to the areas determined by the A, B lines,(ultra-)supercritical boiler heating temperature safe and economic operation temperature control field is got. Practice shows that, establishing the above safe and economic operation temperature control field has a clear guidance significance which optimizes and controls the oxide skin formation rate of the (ultra-)supercritical boiler tube in production field.
     (5) Based on the operation cycle (ultra-)supercritical boiler temperature alteration ratio control variable condition of explosion protection technology is put forward. Researches show that, with running time increasing, the (ultra-)supercritical boiler oxide skin continuously thickening, and presents certain law. According to the rules, can get the probable thickness of oxide skin corresponding operation cycle. Again according to the Armitt method, calculate the bearing boundary of certain thickness of oxide skin corresponding pull, compressive stress. Finally, according to the ultimate tensile and compressive stress size which the corresponding oxide skin can bear, get the size of the temperature change rate of (ultra-)supercritical boiler under changing conditions. After computation, temperature change rate can been directly determined according to the unit operation time when the boiler starts up, blows out and changes load. The practice shows that, the operation cycle and the size of temperature alteration ratio control variable condition have a clear guidance significance which controls the oxide skin spalling of the (ultra-)supercritical boiler tube in production field.
     (6) Based on the magnetic field strength, designed a scanner to detect the oxide skin of heat pipe in supercritical power station boiler. Through this scanner, researches the adaptability of the method of the magnetic field strength to detect different alloy tube oxide skin. The experimental study of the clearance between probe and the pipeline, the deflection Angle, the relative position, and other factors affect the results of the magnetic field detection, get the conclusion that the clearance is less than1.07mm, the deflection angle within25.9°, the relative position of permanent magnet and scale inside26.4°, the measurement error can control under5%. And the measured results that the clearance between probe and pipeline is the main factor in which affects the magnetic field, Along with the increase of the deflection angle of probe and the pipe diameter,and the increase of relative position of Permanent magnets and scale, the increase of measuring strength variation is increased. On-site test shows that the result of the scanner to detect the oxide skin in austenitic stainless steel is obvious. As experience proves, through this scanner, detected the oxide skin ahead of time,it is effective to prevent pipe explosion by taking appropriate measures in time.
     (7) Based on data mining technique, a predicting model of the oxide scale plugging has been built for the (ultra-)supercritical boiler. Meanwhile, the technology of steam blow is proposed for preventing explosion of the tubing according to this model. The strong coupling relationship of tube wall temperature and the oxide scale plugging is revealed by the field running parameter of explosion before and after, because of the oxide scale plugging in the (ultra-)supercritical boiler. The predictive modeling of oxide scale is built. The application of the model can forecast promptly the phenomenon of oxide scale plugging. Sweeping the oxide scale by the technology of steam blow online was present through system research. Combined with the technology, the predictive modeling could display the oxide scale swept clearly. This shows that the oxide scale plugging inside the tubing could be effectively predicted through the modeling and the steam blow in time. Over-temperature, even tube explosion in the heating surface of superheater might be effectively controlled. These are very important and significant to improve the security, reliability of power station boilers.
     The (ultra-)supercritical boiler has widely operated in the world, a large number of oxide tube is a common problem in the long operation. How to apply the theory and techniques to accurately determine the super (super) critical boiler heat pipe oxide scale conditions in a timely manner different pipe oxide detection, enhance operational control, and reduce the over-temperature tube rupture is the next step is to work towards. The achievement of the promotion will play an important role in guiding for the units' safe operation.
引文
[1]匡江红,陈端雨.1000MW级火电机组锅炉发展综述[J].动力工程,2003,23(1):2127-2134.
    [2]姜成洋.超大容量超超临界燃煤发电机组的现状及发展趋势[J].锅炉制造,2006(3):46-49.
    [3]Nam-Hyuck.Lee, Sin.Kim, Byung-Hak.Choe. Failure Analysis of a Boiler tube in USC Coal Power Plant[J]. Engineering Failure Analysis,2009,16:2031-2035.
    [4]J.M.Sarver, J.M.Tanzosh. An evaluation of the steamside oxidation of candidate use materials at650℃and800℃[J]. Proceedings of the4th International Conference on Advances in Materials Technology for Fossil Power Plants,2005:1326-1340.
    [5]R. Viswanathan, W. Bakker. Materials for ultrasupercritical coal power plants—Boiler materials [J]. Journal of Materials Engineering and Performance2001,10:81-95.
    [6]R. Viswanathan, J.F.Henry, J.Tanzosh, et al. U.S.Program on Materials Technology for Ultra-Supercritical Coal Power Plants[J]. Journal of Materials Engineering and Performance,2005,14(3):281-292.
    [7]J Gabrel, C Coussement, L Verelst, et al. Superheater materials testing for USC boilers: Steam side oxidation rate of9advanced materials in industrial conditions [J]. HIGH TEMPERATURE CORROSION AND PROTECTION OF MATERIALS5,2001,369:931-938.
    [8]T.S Sidhu, S Prakash, R. D Agrawal, R Bhagat. Erosion-corrosion behaviour of Ni-based superalloy Superni-75in the real service environment of the boiler[J] SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES,2009,34:299-307.
    [9]R VISWANATHAN, K COLEMAN, U RAO. Materials for ultra-supercritical coal-fired power plant boilers[J]. International Journal of Pressure Vessel and Piping,2006,83:778-783.
    [10]R SUSTA M, B SEONG K. Supercritical and ultra-supercritical power plants[EB/OL].
    [11]史轩.超超临界电站锅炉关键材料的新进展机[J].械工程材料,2009,33(9):1-5.
    [12]Technology status report18:review of status of advanced materials for power generation[R]. London:Cleaner Coal Technology Programme Energy Unit, Department of Trade and Industry,2002.
    [13]I.G.Wright, B.A.Pint. An Assessment of the High-Temperature Oxidation Behavior of Fe-Cr Steels in Water Vapor and Steam [C]. NACE CORROSION, Denver CO,2002,4:2377.
    [14]Watanabe.Y, Yi.Y, Kondo.T, Suzuki.K, Kano.K. Steam oxidation of ferritic heat-resistant steels for ultra supercritical boilers[J]. Corrosion Engineering,2001,50:50-56.
    [15]KWAI S. CHAN. Variability of Large-Crack Fatigue-Crack-Growth Thresholds in Structural Alloys[J]. Metallurgical and materials transactions A,2004,35(12):3721-3735.
    [16]KWAI S. CHAN. A Mechanics-Based Approach to Cyclic Oxidation [J]. Metallurgical and materials transactions,1997,28(2):411-422.
    [17]H.E. Evans, M.P. Taylor. Creep relaxation and the spallation of oxide layers[J]. Surface and Coatings Technology,1997,94-95:27-33.
    [18]F. Tholence, M. Norell. High Temperature Corrosion of Cast Alloys in Exhaust Environments. Ⅱ—Cast Stainless Steels [J]. Oxid Met,2008,69:37-62.
    [19]Mingcheng Sun, Xinqiang Wu, En-Hou Han and Jiancun Rao. Microstructural characteristics of oxide scales grown on stainless steel exposed to supercritical water[J]. SCRIPTA MATERIALIA,2009,61:996-999.
    [20]Hyung Suk Seo, Guangxi Jin, Jae Ho Jun, et al. Effect of reactive elements on oxidation behaviour of Fe-22Cr-0.5Mn ferritic stainless steel for a solid oxide fuel cell interconnect [J]. Journal of Power Source,2008,5:443-447.
    [21]Kofstad P. High temperature corrosion. London:Elsevier Applied Science,1988.
    [22]V. Lepingle, G.Louis, D. Allue, B. Lefebvre, B. Vandenberghe. Steam oxidation resistance of new12%Cr steels:Comparison with some other ferritic steels[J]. Corrosion Science2008,50:1011-1019.
    [23]Anette N. Hansson, Melanie Montgomery, Marcel A. J. Somers. Oxidation of X20in Water Vapour:The Effect of Temperature and Oxygen Partial Pressure [J]. Oxid Met,2009,71:201-218.
    [24]F. Tholence, M. NorellHigh. Temperature Corrosion of Cast Alloys in Exhaust Environments.Ⅱ—Cast Stainless Steels [J]. Oxid Met,2008,69:37-62.
    [25]Norinsan K. Othman, Jianqiang Zhang, David J. Young. Water Vapour Effects on Fe-Cr Alloy Oxidation [J]. Oxid Met,2010,73:337-352.
    [26]Yue Zengwu, Fu Min, Li Xingeng, Tian Xuelei. High Temperature Oxidation Behavior of TP304H Steel Coated with CeO2in Water Vapor[J]. Oxid Met,2010,74:157-165.
    [27]J. Zurek, M. Michalik, F. Schmitz, T. U. Kern, L. Singheise and W. J. Quadakkers. The Effect of Water-Vapor Content and Gas Flow Rate on the Oxidation Mechanism of a10%Cr-Ferritic Steel in Ar-H2O Mixtures[J]. Oxidation of Metals,2005,63(5/6):401-422.
    [28]H. Singh, D. Puri, S. Prakash, Rabindranath Maiti. Characterization of oxide scales to evaluate high temperature oxidation behavior of Ni-20Cr coated superalloys[J]. Materials Science and Engineering,2007, A464:110-116.
    [29]L. Tan, X.Ren, T.R.Allen. Corrosion behavior of9-12%Cr ferritic-martensitic steels in supercritical water[J]. Corrosion Science,2010,52:1520-1528.
    [30]D. Vogel, A.Hotar, A.Vogel, M.Palm, F.U.Renner. Corrosion behaviour of Fe-Al(-Ti) alloys in steam Intermetallics[J].2010,18:1375-1378.
    [31]S.R.J. Saunders, M. Monteiro, F. Rizzo. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour:A review[J]. Progress in Materials Science,2008,53:775-837.
    [32]T. Itagaki, H. Kutsumi, H. Haruyama, M. Igarashi, F. Abe. Steam oxidation of high-chromium ferritic steels containing palladium[J].2005,61:307-316.
    [33]J. Ehlers, D.J. Young, E.J. Smaardijk, et al. Enhanced oxidation of the9%Cr steel P91in water vapour containing environments [J]. Corrosion Science,2006,48:3428-3454.
    [34]F. J. Perez, M. J. Cristobal, G. Arnau, M. P. Hierro, and J. J. Saura. High-Temperature Oxidation Studies of Low-Nickel Austenitic Stainless Steel.Part Ⅰ:Isothermal Oxidation[J]. Oxidation of Metals,2001,55:105-118.
    [35]N. Hussain, G. Schanz, S. Leistikow, K. A. Shahid. High-Temperature Oxidation and Spalling Behavior of Incoloy825[J]. Oxidation of Metals,1989,32:405-531.
    [36]Bojinov Martin, Heikinheimo Liisa, Saario Timo, Tuurna Satu. Characteristion of corrosion films on steels after long-term exposure to simulated supercritical water conditions[C]. Proceedings of the American Nuclear Society-International Congress on Advances in Nuclear Power Plants,2005, ICAPP'05, v3, pp:1799-1807.
    [37]G.S. Was, P. Ampornrat, G.Gupta, et al. Corrosion and stress corrosion cracking in supercritical water [J]. JOURNAL OF NUCLEAR MATERIALS,2007,371(1-3):176-201.
    [38]Adrian S. Sabau, I. G. Wright. Influence of Oxide Growth and Metal Creep on Strain Development in the Steam-Side Oxide in Boiler Tubes [J]. Oxid Met2010,73:467-492.
    [39]J. A. Nychka, C. Pullen, M. Y. He and D. R. Clarke. Surface oxide cracking associated with oxidation-induced grain boundary sliding in the underlying alloy [J]. Acta Materialia,2004,52:1097-1105.
    [40]M. M. NAGL, W. T. EVANS. The mechanical failure of oxide scales under tensile or compressive load [J]. JOURNAL OF MATERIALS SCIENCE,1993,28:6247-6260. M. M. NAGL, W.T.EVANS.
    [41]M. Schutze, P. F. Tortorelli, I. G. Wright. Development of a Comprehensive Oxide Scale Failure Diagram [J]. Oxid Met,2010,73:389-418.
    [42]贾建民,陈吉刚,唐丽英,等.12X18H12T钢管蒸汽侧氧化皮及其剥落物的微观结构与形貌特征[J].中国电机工程学报,2008,28(17):43-48.
    [43]李婷,赵钦新,王云刚,张知翔,邓翔.STBA24(T22)钢管蒸汽氧化的微观特征研究[J].动力工程学报,2010,30(4):293-299.
    [44]黄兴德,周新雅,游晶,等.超(超)临界锅炉高温受热面蒸汽氧化皮的生长与剥落特性[J].动力工程,2009,29(6):602-608.
    [45]朱发文,张乐福,唐睿,乔培鹏,鲍一晨.奥氏体不锈钢AL-6XN在超临界水中的腐蚀[J].腐蚀与防护,2010,31(8)595-599.
    [46]朱雪梅,王新建,刘明,张彦生.Fe-30Mn-9Al奥氏体钢高温循环氧化特征[J].腐蚀科学与防护技术,2005,17(1):31-33,38.
    [47]贾建民,Melanie Montgomer.超超临界机组锅炉用不锈钢管表面冷作硬化处理对其抗蒸汽氧化性能的影响[J].热力发电,2009,38(6):32-37.
    [48]尹黔昊,魏刚,李虎.超超临界机组锅炉蒸汽侧氧化层形成机理分析及预防措施[J].河北电力技术,2009,28(1):16-17,21.
    [49]刘乃勇,张都清,杜楠,刘光明.T91钢表面Ni和Ni/CeO2镀层的氧化行为研究[J].失效分析与预防,2010,5(2):70-75.
    [50]李辛庚,王学刚,何家文.喷丸与电泳沉积稀+薄膜复合处理提高T91钢抗水蒸气氧化性能的研究[J].中国腐蚀与防护学报,2002,22(2):101-104.
    [51]Yo-YuChang, Charng-Cheng TSaur, James C. Rock. Microstructure studies of an aluminide coating on9Cr-1Mo steel during high temperature oxidation[J] Surface&Coatings Technology,2006,200(12):6588-6593.
    [52]王志武,寇莉莉,雷燕.10CrMo910钢在高温高压水蒸气中形成的氧化膜的特征分析[J].武汉大学学报(工学版),2010,43(5):658-663.
    [53]王志武,邓芳,王玉山,雷燕,冯亿生.20G钢高温高压水蒸气氧化行为研究腐蚀科学与防护技术[J].2008,20(3):170-172.
    [54]张都清.电站9Cr-lMo-V-Nb钢高温氧化机制及防护技术研究[D].济南:山东大学,2009.
    [55]杨瑞成,靳赛特,吕学飞,赵丽美.Ni-Cr-Mo-Cu合金的氧化动力学研究[J].材料热处理学报,2009,30(1):24-27.
    [56]刘江南,束国刚,王正品.9Cr-1Mo-V-Nb-N钢管的热处理工艺的优化[J].金属热处理,2003,28(10):37-42.
    [57]张路,王正品,刘江南,要玉宏,石崇哲.回火对国产P91钢组织和性能的影响[J].铸造技术,2003,24(6):537-539.
    [58]赵玉彬,刘江南,王正品,石崇哲.回火工艺对P91钢动力强韧性的影响[J].西安工业学院学报,2003,23(2):147-151.
    [59]Dionisio Laverde, Tomas Gomez-Acebo, Francisco Castro. Continuous and cyclic oxidation of T91ferritic Steel under steam[J]. Corrosion Science,2004,46(4):613-631.
    [60]尹黔昊,魏刚,李虎,等.超超临界机组锅炉蒸汽侧氧化层形成机理分析及预防措 施[J].河北电力技术,2009,28(1):16-17,21.
    [61]金耀华,王正品,刘江南,石崇哲.T91钢在两种不同环境下的高温氧化层剥落机理研究[J].铸造技术,2005,26(11):1039-1042.
    [62]王殿仲,徐宪龙.630MW超临界锅炉高温受热面氧化皮形成及脱落原因分析[J].发电设备,2008,4:310-312,357.
    [63]张晓昱,欧阳杰,郭立峰,吴楠,闫光宗.18-8型奥氏体钢锅炉管高温运行后失效原因分析[J].热力发电,2007,9:92-94.
    [64]雷明凯,徐忠成,杨辅军,高峰.高温合金氧化膜破坏的界面断裂力学分析[J].金属学报,2004,40(10):1104-1108.
    [65]R Viswanathan, J Sarver, J.M Tanzosh. Boiler materials for ultra-supercritical coal power plants-stearnside oxidation[J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE,2006,15:255-274.
    [66]N. H Lee, S Kim, B.H Choe, K.B Yoon, D.I Kwon. Failure analysis of a boiler tube in USC coal power plant [J]. ENGINEERING FAILURE ANALYSIS,2009,16:2031-2035.
    [67]Feng Wei-zhong. Comprehensive prevention of steam oxidation and solid particle erosion for the ultra-supercritical unit [J]. Electric Power,2007,40:69-73.
    [68]黄伟,李友庆,熊蔚立,王双勇,冯斌,何军民.600MW超临界锅炉高温过热器氧化皮脱落爆管原因分析及对策[J].电站系统工程,2008,24(4):32-34.
    [69]唐海宁.大容量电站锅炉金属氧化皮问题综合分析[D].南京:东南大学,2006.
    [70]李文军,杨湘伟,冯斌.超临界锅炉奥氏体不锈钢管爆漏原因分析及预防控制措施[J].电站系统工程,2009,25(3):35-37,39.
    [71]董琨.600MW超临界锅炉安全和经济性分析[D].北京:华北电力大学,2009.
    [72]宁国睿.超临界机组过热器氧化皮的产生与防范[J].热电技术,2008,2:41-44.
    [73]李英,高增,侯君明.超临界锅炉过热器氧化皮形成和剥落机理分析及预防措[J].热力发电,2007,36(11):77-80,83.
    [74]邵天佑,刘金生,庞胜林.超超临界锅炉磁性氧化铁沉积分析与对策[J].电力技术,2009(5):33-36.
    [75]王胜.奥氏体不锈钢管内壁氧化皮脱落堵塞爆管分析及对策[J].热力发电,2006,7:56-57,60.
    [76]张继文,袁燕明,廖伟辉.超临界600MW机组锅炉高温过热器爆管原因分析及预防措施[J].热力发电,2010,39:85-87,100.
    [77]鹿理春.防止630MW超临界锅炉高温受热面氧化皮脱落的对策[J].华电技术,2010,32(10):1-4.
    [78]何诚,杨守伟,樊旭.超临界锅炉高温过热器氧化皮脱落导致爆管的原因分析及对策[J].河北电力技术,2010,29(5):29-31.
    [79]金万里,郭连丰.超临界锅炉受热面管内壁氧化皮剥落堵管的原因分析及预防措施[J].内蒙古电力技术,2009,27(3):4-6.
    [80]郑世津.锅炉蒸汽侧氧化层剥落的治理[J].华东电力,2003,12:66-68.
    [81]叶善佩,王春昌.珠海发电厂锅炉高温受热面管壁超温问题试验研究及解决方案[J].热力发电,2010,39:49-51.
    [82]朱建臣,李云飞,王玉兴.奥氏体不诱钢管内壁氧化物脱落原因分析及检侧方法探讨[J].电力设备,2008,9:58-60.
    [83]胡新芳,刘蕊,付敏,等.102钢内壁氧化皮脱落原因分析[J].山东电力技术,2008(6):15-17.
    [84]耿波,刘江,赵颜芬,等.T91钢高温水蒸汽氧化层形成机理研究[J].铸造技术,2004,25(12):914-918.
    [85]刘江南,赵彦芬,耿波,王正品,要玉宏,石崇哲.T91钢高温高压水蒸汽氧化膜微观组织结构研究[J].铸造技术,2005,26(3):202-204.
    [86]A. N. Hansson, H. Danielsen, F. B. Grumsen and M. Montgomery. Microstructural investigation of the oxide formed on TP347HFG during long-term steam oxidation [J].Materials and Corrosion,2010,61(8):665-674.
    [87]F. Tholence, M. Norell. High Temperature Corrosion of Cast Alloys in Exhaust Environments. Ⅱ—Cast Stainless Steels [J]. Oxid Met,2008,69:37-62.
    [88]Gerald H. Meier, Keeyoung Jung, Nan Mu, et al. Effect of Alloy Composition and Exposure Conditions on the Selective Oxidation Behavior of Ferritic Fe-Cr and Fe-Cr-X Alloys [J]. Oxid Met2010,74:319-340.
    [89]Kuang WJ, Wu XQ, Han EH. The oxidation behaviour of304stainless steel in oxygenated high temperature water [J]. CORROSION SCIENCE,2010,52(12):4081-4087.
    [90]宋琳生.电厂金属材料[M].第三版.北京:中国电力出版社,2006.
    [91]赵钦新、朱丽慧.超临界锅炉耐热钢研究[M].机械工业出版社,2010.
    [92]吕晶.锅炉高温蒸汽氧化治理技术研究.电力技术.2009.11第11期
    [93]赵钦新、朱丽慧.超临界锅炉耐热钢研究[M].北京:机械工业出版社,2010.
    [94]张鄂婴,王向斌,陶生智,李小眉.T23钢在大型常规电站锅炉上的应用[J].热力发电.2005(3)
    [95]宁保群.T91铁素体耐热钢相变过程及强化工艺[D].天津:天津大学材料科学与工程学院,2007.
    [96]邓勇,刘盛波,彭芳芳.600MW超临界锅炉TP347H屏式过热器管高温蒸气氧化腐蚀探讨[J].腐蚀与防护.2009.30(2):124-127.
    [97]张都清.电站9Cr-1Mo-V-Nb钢高温氧化机制及防护技术研究[D].山东大学.2009.
    [98]金耀华,王正品,要玉宏,等.T91钢高温水蒸气氧化层显微组织分析[J].西安 工业大学学报.2008.28(5):435-440.
    [99]刘树涛,史志刚,陆军.等.T23高温再热器管爆管原因分析[J].理化检验一物理分册.2009.45(10):638-644.
    [100]王正品,张路,刘江南,等.电站用T22及与T91管高温蒸汽氧化的失效分析[J].铸造技术.2004.25(7):523-525.
    [101]贾建民,陈吉刚,唐丽英,王弘晶,梁锋12X18H12T钢管蒸汽侧氧化皮及其剥落物的微观结构与形貌特征[J],中国电机工程学报,2008,28(17),43-48.
    [102]王保锋.高温高压水溶液中材料腐蚀研究[D].浙江:浙江工业大学,2001.
    [103]C.T.Fujii and R.A.Meussner, Mechanism of the High-Temperature Oxidation of Iron-Chromitun Alloys in Water Vapor, Joumal of the Electrochemical Society,1964,111, PP1215.
    [104]C.T.Fujii and R.A.Meussner, Oxide Structures Produced Iron-Chromium Alloys by a Dissociative Mechanism, Journal of the Electrochemical Society,1963,110, PP.1195.
    [105]Y.Ikeda and K.Nii, Mechanism of Accelerated Oxidation on Fe-Cr Alloys in water Vapor-Containing Atmospheres, BoshokuGijutsu,1982,31, PP.156.
    [106]Y.Ikeda and K.Nii, Micro-crack Generation and its Healing in the Oxide Scale Formed on Fe-Cr Alloys, Oxidation of Metals,1978,12, PP.487
    [107]P.L.Surman and J.E.Castle. Gas Phase Transport in the oxidation of Fe and steel, Corrosion Science,1969,9, pp.771.
    [108]F.Annanet, A.Vejux and G.Beranger, High Temperature Corrosion of Pure Nickel, and Ni-Cr, Fe-Ni-Cr or Co-Cr-W-Ni Alloys:Influence of Water Vapor Contents, in I.Kirman etal,(Eds), Behavior of High Temperature Alloys in Aggressive Environments, EUR-6814, The Metals Society, London,423(1980).
    [109]A.S.Khanna, P.Kofstad In Proc.11th Inter.Corro.Congress,(Florence-Italy,2-6April,1990)P45.
    [110]张受谦.化工手册.山东科学技术出版社,1986.
    [111]T.Ericsson:Oxidation of Metals,2(1970)173.
    [112]张建勇,耐热不锈钢在高温高压水蒸气中的氧化及传热分析,国防科技大学硕士论文
    [113]N.伯克斯,G.H迈耶著,赵公台、赵克清译.金属高温氧化导论.冶金工业出版社,1989:114-117.
    [114]S.R.J. Saunders, M. Monteiro, F. Rizzo. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour:A review[J], PROGRESS IN MATERIALS SCIENCE, Vol.53No.5:Page775-837.
    [115]G.S. Was, P. Ampornrat, G. Gupta, et al. Pister.Corrosion and stress corrosion cracking in supercritical water[J]. JOURNAL OF NUCLEAR MATERIALS.2007.
    [116]黄兴德,周新雅,赵泓.超(超)临界锅炉高温受热面蒸汽氧化皮的生长与剥落特性[J].动力工程.2009.29(6):602-608.
    [117]张都清.电站9Cr-1Mo-V-Nb钢高温氧化机制及防护技术研究[D].山东大学:材料加工工程,2009.
    [118]刘江南,翟芳婷,王正品,金耀华,石崇哲.蒸汽温度对T91钢氧化动力学的影响[J].西安工业大学学报,2007(1):42-45.
    [119]王定.大容量超临界锅炉金属氧化皮问题综合分析[D].上海交通大学,机械与动力工程学院,2010.
    [120]赵国群,张都清.电站9Cr_1Mo_V_Nb钢高温氧化机制及防护技术研究,山东大学博士论文
    [121]彭欣,李友庆,曾劲松,王双勇,任建文.基于新型无损检测仪的奥氏体锅炉管内壁氧化皮堵塞爆管探析,湘潭发电有限责任公司(线膨胀系数)
    [122]M. Schutze, P. F. Tortorelli, I. G. Wright. Development of a Comprehensive Oxide Scale Failure Diagram[R]. Oxidation of Metals389-418,73(2010).
    [123]J. Armitt, R. Holmes, M. I. Manning, D. B. Meadowcroft, and E. Metcalfe, The Spalling of Steam-Grown Oxide from Superheater and Reheater Tube Steels. EPRI report FP-686(Electric Power Research Institute, Palo Alto,1978).
    [124]W. Christl, A. Rahmel, and M. Schutze, Oxidation of Metals31,35(1989).
    [125]P. Hancock, in Proc. TMS-AIME Fall Meeting, ed. J. V. Cathcart (TMS-AIME, New York1974),p.155.
    [126]M. Schutze, in High Temperature Corrosion of Advanced Materials and Protective Coatings, eds.Y. Saito et al.(North Holland Publ., Amsterdam,1992), p.29.
    [127]S.Baleix, G.Bernhart, P.Lours.Oxidation and Oxide Spallation of Heat Resistant Caststeels for Superplastic Forming Dies[J]. Materials Science and Engineering A327(2002)155-166
    [128]唐海宁.大容量电站锅炉金属氧化皮问题综合分析[D].东南大学,2006:19-22,38-51
    [129]雷明凯,徐忠成,杨辅军,高峰.高温合金氧化膜破坏的界面断裂力学分析[J].金属学报,2004,(10)
    [130]黄兴德;周新雅;游晶;赵泓;.超(超)临界锅炉高温受热面蒸汽氧化皮的生长与剥落特性[J].动力工程,2009,29(6):602-608
    [131]钱余海,李美栓,张亚明.氧化膜开裂和剥落行为[J].腐蚀科学与防护技术,2003,(02)
    [132]K.Yoshikawa. Scale Plugging Trouble of Superheater Tubes and ItsPrevention, Central Research Laboratory Report, Sumitomo Metals Industries Limited, August1974
    [133]H.Matsuo, Y.Nishiyama, T. Yamadera. Steam Oxidation of Fine-Grain Steels, Advances in Materials Technology for Fossil Power Plants, R.Viswanathan, D.Gandy, and K.Coleman, Ed., ASM Inter-national,2005,441-451
    [134]J.M.Sarver, as cited by S.I.Goodstine and J.C.Nava, USC on Surface Modification of Alloys for Ultra Supercritical Coal-fired Boilers, Advances in Materials Technology for Fossil Power Plants, R. Viswanathan, D.Gandy, and K.Coleman, ASM International,2005
    [135]ASME Boiler and Pressure Vessel Code, Section Ⅱ Part D, Table TE-1(2001)
    [136]I.G.Wrigh, M.Schutze, S.R.Paterson, et al."PROGRESS IN PREDICTION AND CONTROL OF SCALE EXFOLIATION ON SUPERHEATER AND REHEATER ALLOYS", For presentation at the EPRI International Conference on Boiler Tube and HRSG Tube Failures and Inspections,2-5November2004, San Diego
    [137]DingPing Liu, ZhiHu Ai, JianChen Hu. An Assessment of Mechanism for Oxidation Corrosion of Alloy T91Tubes in Supercritical Boilers[J]. Advanced Materials Research,2011,239-242:3171-3175.
    [138]丁克勤,赵娜.电站锅炉不锈钢管氧化皮检测技术[J].无损检测,2010,32(8):601-604.Ding Ke-qin, Zhao Na.The Oxide-Scale Detection Technique for Stainless Steel Pipe in Boiler of Power Plant[J]. Nondestructive Testing,2010,32(8):601-604.
    [139]林俊滨.超(超)临界锅炉高温管内氧化皮形成机理及堵塞规律研究[D].广州:华南理工大学,2010.Lin Jun-bin. Study of Forming Mechanism and Blockage Discipline of Oxide Skin in High-trmperature Tube of Supercritical Boiler[D].Guangzhou:South China University of Technoiogy,2010.
    [140]龙会国.锅炉用奥氏体不锈钢弯管内部氧化皮检测的新方法[J].动力工程学报,2010,30(7):554-558.Long Hui-guo. A New Detection Method for Oxidation Scales on Inner Surface of Austenitic Stainless Steel Tube Bends for Boilers[J]. Journal of Chinese Society o f Pow er Engineering,2010,30(7):554-558.
    [141]万永,武天真,方威Cr_Ni含量对Fe Cr Ni不锈永磁合金磁性能的影响[J].金属制品,1998,24(6):16-19.
    [142]黄伟,李友庆等.600MW超临界锅炉高温过热器氧化皮脱落爆管原因分析及对策[J].电站系统过程,2008,24(4):32-34
    [143王殿仲,徐宪龙.600MW超临界锅炉高温受热面氧化皮形成与脱落原因分析及其改进措施[J].电力设备,2008.3,9(3):45-47
    [144]王殿仲,徐宪龙.630MW超临界锅炉高温受热面氧化皮形成及脱落原因分析[J].发电设备,2008,(4):310-312
    [145]杨湘伟,焦庆丰等.超临界机组奥氏体不锈钢管内壁氧化膜剥落问题分析[J].湖南电力,2008,28(3):37-40
    [146]沈敏光.探讨防止和减缓氧化层生成和剥落的方法[J].电力建设,2003,(9):18-19.
    [147]金耀华,王正品,刘江南等.T91钢在两种不同环境下的高温氧化层剥落机理研究[J].铸造技术,2005,(11):1039-1041.
    [148]尹黔昊,魏刚等.超超临界机组锅炉蒸汽侧氧化层形成机理分析及预防措施[J].河北电力技术,2009,28(1):16-17
    [149]郑世津.锅炉蒸汽侧氧化层剥落的治理[J].华东电力,2003,(12):66-67
    [150]J. Han, M. Kamber. Data Mining:Concepts and Techniques. New York:Morgan Kaufmann,2001.
    [151]M.R. Henzinger, P. Raghavan, S. Rajagopalan. Computing on Data Streams. Technical Note1998-011. Digital systems research center:Palo Alto, California,1998.
    [152]L.O'Callaghan, N.Mishra, A.Meyerson, S.Guha, R.Motwani. Streaming-data Algorithms for High Quality Clustering. Proceedings of18th International Conference on Data Engineering,2002.
    [153]C. Aggarwal, J. Han, J.Wang, P.S.Yu. A Framework for Clustering Evolving Data Streams. Proceedings of the29th VLDB Conference, Berlin, Germany,2003.
    [154]C. Aggarwal, J. Han, J.Wang, P.S.Yu. A Framework for Projected Clustering of High Dimensional Data Streams. Proceedings of the30th VLDB Conference, Toronto, Canada.2004.
    [155]M.M.Gaber, A.Zaslavsky, S.Krishnaswamy. Mining Data Streams:A Review. SIGMOD Record, Vol.34, No.2, June2005.
    [156]B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom. Models and Issues in Data Stream Systems. In Proceedings of PODS,2002.
    [157]P. Domingos, G. Hulten. Mining High-Speed Data Streams. In Proceedings of the Association for Computing Machinery Sixth International Conference on Knowledge Discovery and Data Mining,2000.
    [158]G. Hulten, L.Spencer, P. Domingos. Mining Time-Change Data Steams. T he ACM Int '1Conf on Know ledge Discovery and Data Mining, San Francisco,2001.
    [159]C. Giannella, J. Han, J. Pei, X. Yan, P.S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In:H. Kargupta, A. Joshi, K.Sivakumar, and Y. Yesha (eds.), Next Generation Data Mining, AAAI/MIT,2003.
    [160]G. S. Manku, R. Motwani. Approximate Frequency Counts over Data Streams. In Proceedings of the28th International Conference on Very Large Data Bases, Hong Kong, China, August2002.
    [161]R. Zhu, P. Wang, M. Liu. Algorithm Based on Counting for Mining Frequent Items over Data Stream. Journal of Computer Research and Development,2011,48(10):1803-1811(in Chinese).
    [162]H.Liu, Y.Lin, J.Han. Methods for Mining Frequent Items in Data Streams:An overview. Knowledge and Information Systems,2011,26(1):1-30.
    [163]S.Ramaswamy, R.Rastogi, K.Shim, Efficient Algorithms for Mining Outliers from Large Data Sets. In:Proc. of ACM SIGMOD Int. Conf. on Management of Data,2000, pp.427-438.
    [164]J.Jiang, L.Zhang, Y.Wang et al. Association rules analysis of human factor events based on statistics method in digital nuclear power plant. Safety Science,2011, pp.946-950.
    [165]唐晓萍.数据挖掘与知识发现综述[J].电脑开发与应用,2002,4:31-32
    [166]徐光宪,刘建辉,黄素芬.电信行业中数据挖掘的应用研究[J].现代管理科学,2004,12:8-9
    [167]朱晶,李石君.基于数据挖掘的金融数据分析[J].电脑知识与技术,2010,1:18-19
    [168]叶孝明,黄祖庆.基于数据挖掘的零售业客户细分研究[J].现代管理科学,2006,06:63-64
    [169]唐晓萍.数据挖掘技术及其在指挥控制系统中的应用[J].火力与指挥控制,2002,2:35-38
    [170]苏新宁,杨建林.数据挖掘理论与技术[M].科学技术文献出版社,2003:132-134
    [171]李硕.人工神经网络介绍[J].科技传播,2011,7:111
    [172]赵丹群.数据挖掘:原理、方法及其应用[J].现代图书情报技术,2000,06:41-44
    [173]王建伟,张璞.k-近邻分类算法的研究及实现[J].黑龙江科技信息,2009,17:45
    [174]朱明.《数据挖掘第2版》[M].中国科学技术大学出版社,2008:111-116
    [175]郑世津.锅炉蒸汽侧氧化层剥落的治理[J].华东电力,2003,12:66-67
    [176李德林,毛克伟,陈浩然.超临界压力锅炉蒸汽吹管技术的探讨[J].安徽电力,2006,23(3):1-3
    [177]宁献武,孙伟,李亚江.超超临界1000MW机组锅炉蒸汽吹管[J].东北电力技术,2009,4:20-22
    [178]杨文贵,超超临界锅炉的吹管方案[J].信息技术,2010,(3):139-141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700