用户名: 密码: 验证码:
楼宇级冷热电联供系统优化及多属性综合评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球各国能源可持续发展战略的深入推广,提高能源利用率和保护地球环境等问题日益突出,在这一背景下,作为第二代能源重要技术之一的楼宇级冷热电联供系统在世界范围内受到广泛的重视。本文以楼宇级冷热电联供系统为研究对象,以系统优化为主线,结合我国地域气候及建筑负荷特性,多角度地探索和分析了楼宇级联供系统的热力性、经济性、环境影响性及可靠性等多方面的性能,以节能、经济和环保等综合效益为目标对其进行了优化设计,并针对联供系统在我国不同气候区的不同建筑类型的应用进行了多属性综合评价,促进其在我国的发展,为实现可持续发展的能源目标服务。
     首先,本文遵循我国公共建筑节能标准,采用负荷模拟软件DeST对我国五个典型气候区(严寒地区、寒冷地区、夏热冬冷地区、温和地区和夏热冬暖地区)的四种不同类型的公共建筑(宾馆、办公楼、医院和商场)进行了冷热电全年逐时负荷动态模拟计算,并分析了其冷热电负荷特性。
     在冷热电负荷动态模拟的基础上,以传统冷热电分供系统为参照对象,提出了楼宇级“冗余”冷热电联供系统的设计思路和系统流程,分析比较了适用于冷热电联供系统的评价指标;以北京某一宾馆建筑为例,采用常规设计方法对其在联网运行和独立运行两种状态下热跟随模式和电跟随模式两种运行模式下分别进行了能耗、经济和污染物排放特性三方面的性能比较,并针对设备的技术参数、运行经济成本和排放系数等进行了敏感性分析,得到各参数对联供系统运行性能的影响潜能。
     其次,从最优化问题出发,以北京某一宾馆建筑为研究对象,建立了“冗余’冷热电联供系统优化模型,从优化变量、优化目标、约束条件及求解方法等进行了论述,利用遗传算法搜索得到联供系统的最佳容量配置了运行模式,并对优化结果的可靠性、联供系统的运行性能、全年及冬夏过渡季各个季节的运行模式、运行性能对能源价格的敏感性进行了分析,并与常规的联供系统进行了比较。
     然后,以多属性综合评价决策理论为基础,论述了联供系统多属性综合评价问题中的指标选择、标准化处理、主客观权重优化、评价及集成决策等方面内容,建立了楼宇级冷热电联供系统多属性综合评价模型,对我国五个典型气候区的四种不同建筑类型的冷热电联供系统的综合性能进行了比较,得到楼宇级冷热电联供系统在我国不同气候区不同建筑类型的应用准则。
     最后,采用马尔柯夫过程法和状态空间法分析了联供系统中各个主要设备故障率和修复率对其可靠性的影响,并建立了“冗余”与“非冗余”联供系统的可靠性分析模型,比较了冗余联供系统、常规联供系统及传统分供系统的供电、供热和供冷的可靠性。
The sustainable development is being popularized in the world and the subjects such as improving the utilization efficiency of energy and protecting the environment are increasingly prominent. Consequently, building cooling, heating and power (BCHP) system, one of the secondly generation energy technology, is broadly paid more and more attention to. This thesis combined with the climate zones and the energy demands of public buildings to deal with the BCHP system, explored and analyzed the performances including thermodynamics, economy, environmental impact and reliability, etc, optimized the structure and the operation strategy of BCHP system from the energetic, economic and environmental characteristics, and compared the integrated performance of BCHP system applied to the different buildings in different climate zones in China, which would be beneficial to its development in China and to the sustainable goals of energy system.
     Firstly, based on the design standard for energy efficiency of public buildings in China, this paper simulated the hourly cooling, heating and power loads of four different styles of building (hotel, office, hospital and mall) in five different climate zones (severe cold, cold, hot summer and cold winter, mild, and hot summer and warm winter) using the software DeST. The energy demands including cool, heat and power of the buildings were presented and analyzed.
     Secondly, a traditional separation production system to supply cool, heat and power to building was referenced and a general redundant BCHP system was proposed and designed. The evaluation criteria for BCHP system was compared and analyzed. A hotel in Beijing was selected to be a case study, and the BCHP systems which operate with the central electric grid or without the grid were constructed. Moreover, the energetic, economic and emission performances of BCHP systems following the thermal load and the electrical load were respectively analyzed and compared. Then, the sensitivity of the performance of BCHP system to the technical, economic and emission parameters was studied and the effect potential was obtained.
     Thirdly, to begin with the optimization problem, the optimization model of a redundant BCHP system for a hotel in Beijing was constructed. The variables, objective function, constraints and solving method were described. The genetic algorithm was employed to solve the optimization problem and to obtain the optimal capacity and the best operation mode. The reliability of the optimization model was verified. The operation performances including the annual performance and the seasonal performance were obtained and then compared to the performances of the traditional BCHP system. Then, the sensitivity of the performance of BCHP system to the prices of electricity and natural gas was analyzed.
     Then, there were presented the criteria selection, the normalization, the weighting methods including subjective weight, objective weight and combination weight, the evaluation method and the aggregation method during the multi-attribute evaluation of BCHP systems. The multi-attribute integrated evaluation model for BCHP systems was constructed, which was applied to the comparison between the BCHP systems for different buildings in the five climate zones in China. The application conclusions of BCHP system in China were obtained.
     Finally, the Markov model and the state space method were employed to analyze the effect of the failure rate and the repair rate of the equipments to the availability and reliability of BCHP system. The reliability analysis models including the redundant BCHP system and the traditional BCHP system were proposed respectively. The reliabilities of supplying cool, heat and power for building from the redundant BCHP system, the traditional BCHP system and the separation production system were compared.
引文
[1]International Energy Agency. World energy outlook 2000[EB/OL]. (2000). [2009-12]. http://www.iea.org/
    [2]International Energy Agency. Combined heat and power:Evaluating the benefits of greater global investment[EB/OL]. (2008). [2009-12]. http://www.iea.org/
    [3]Orlando J.A. Cogeneration Design Guide[M]. Atlanta:American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc,1996
    [4]International Energy Agency. Cogeneration and district energy[EB/OL]. (2009). [2009-12]. http://www.iea.org/
    [5]Wu D.W., Wang R.Z. Combined cooling, heating and power:A review[J], Progress in Energy and Combustion Science,2006,32(5-6):459-495
    [6]IBISWorld, Cashing in on climate change[EB/OL]. (2008). [2009-12]. http://www.ibisworld.com/
    [7]United State Environmental Protection Agency. EPA green building strategy[EB/OL]. (2008). [2009-12]. http://www.epa.gov/greenbuilding
    [8]Chwieduk D. Towards sustainable-energy buildings[J]. Applied Energy. 2003,76(1-3):211-217
    [9]Cai W.G., Wu Y., Zhong Y., et al. China building energy consumption:Situation, challenges and corresponding measures[J], Energy Policy, 2009,37(6):2054-2059
    [10]Zhou N., Lin J. The reality and future scenarios of commercial building energy consumption in China[J], Energy and Buildings.2008,40(12):2121-2127
    [11]Yi H., Hao J., Tang X. Atmospheric environmental protection in China:Current status, developmental trend and research emphasis[J], Energy Policy, 2007,35(2):907-915
    [12]Zhao Y, Wang S., Duan L., et al. Primary air pollutant emissions of coal-fired power plants in China:Current status and future prediction[J], Atmospheric Environment,2008,42(36):8442-8452
    [13]Wang Y. The analysis of the impacts of energy consumption on environment and public health in China[J], Energy,2010,35(11):4473-4479
    [14]Fang Y, Zeng Y. Balancing energy and environment:The effect and perspective of management instruments in China[J], Energy, 2007,32(12):2247-2261
    [15]胡学浩,陈斌.中国分布式冷热电联产发展现状及其并网问题[J],沈阳工程学院学报(自然科学版),2005,1(2-3):7-12
    [16]周凤起.冷热电三联供天然气利用新方向[J],建设科技(建设部),2006,(17):33-35
    [17]Clark W., Isherwood W. Distributed generation:remote power systems with advanced storage technologies[J], Energy Policy,2004,32(14):1573-1589
    [18]李莉华,高凯,迟峰.美国纽约7·17停电事故调查与分析[J],中国电力,2007,40(5):78-81
    [19]华濆.广州大学城分布式冷热电联供项目的启示[J],沈阳工程学院学报(自然科学版),2009,5(2):97-102
    [20]王志伟.微型燃气轮机冷热电联供系统的研究与优化[D].保定:华北电力大学,2006
    [21]吴大为.分布式冷热电联产系统的多目标热力学优化理论与应用研究[D].上海:上海交通大学,2008
    [22]陆伟,张士杰,肖云汉.有蓄冷器的联供系统优化运行[J],中国电机工程学报,2007,27(8):49-53
    [23]Sepehr S., Masoud Z., Maziar G. Optimal design of gas turbine CHP plant with preheater and HRSG[J], International Journal of Energy Research, 2009,33(8):766-777
    [24]李赟,黄兴华.冷热电三联供系统配置与运行策略的优化[J],动力工程,2006,26(6):894-898
    [25]Yokoyama R., Ito K. Optimal operational planning of cogeneration systems with thermal storage by the decomposition method[J], Transactions of the ASME. Journal of Energy Resources Technology,1995,117(4):337-342
    [26]Zhao H., Holst J., Arvastson L. Optimal operation of coproduction with storage[J], Energy,1998,23(10):859-866
    [27]李朝振,石玉美,黄兴华.负荷结构对冷热电联供系统优化配置的影响[J],热能动力工程,2008,23(6):606-610
    [28]Tveit T.-M., Savola T., Gebremedhin A., et al. Multi-period MINLP model for optimising operation and structural changes to CHP plants in district heating networks with long-term thermal storage[J], Energy Conversion and Management,2009,50(3):639-647
    [29]丁水汀,段伦,韩树军,等.冷热电联供系统运行模式优化[J],热科学与技术,2007,6(2):95-100
    [30]Kong X.Q., Wang R.Z., Li Y., et al. Optimal operation of a micro-combined cooling, heating and power system driven by a gas engine[J], Energy Conversion and Management,2009,50(3):530-538
    [31]Musgrove A.R. deL, Maher K.J. Optimum cogeneration strategies for a refrigeration plant[J], Energy,1988,13(1):1-8
    [32]Frangopoulos C.A. Optimal Synthesis and Operation of Thermal Systems by the Thermoeconomic Functional Approach[J], Journal of Engineering for Gas Turbines and Power,1992,114(4):707-714
    [33]Luz Silveira J., Horta Nogueira L.A. Thermoeconomic functional analysis applied in cogeneration systems associated to cellulose plants[A], Proceedings of ECOS'92 International Symposium[C]. Zaragoza, Spain,1992:381-386
    [34]Arivalagan A., Raghavendra B.G., Rao A.R.K. Integrated energy optimization model for a cogeneration based energy supply system in the process industry[J], International Journal of Electrical Power & Energy Systems, 1995,17(4):227-233
    [35]Chen B.-K., Hong C.-C. Optimum operation for a back-pressure cogeneration system under time-of-use rates[J], IEEE Transactions on Power Systems, 1996,11 (2):1074-1082
    [36]Clary A.T. Open loop optimization of a complex steam cogeneration system[A], Proceedings of American Society of Mechanical Engineers, Power Division [C].Houston, TX, USA,1996:865-875
    [37]Bojic M., Stojanovic B. MILP optimization of a CHP energy system[J], Energy Conversion and Management.1998,39(7):637-642
    [38]Fu L., Jiang Y. Optimal operation of a CHP plant for space heating as a peak load regulating plant[J], Energy,2000,25(3):283-298
    [39]Luz-Silveira J., Miro L.S., Grote Z.V., et al. Thermoeconomic functional analysis:an approach for optimization of a cogeneration systcm[J], Information Technology,2000,11 (4):13-18
    [40]Tsay M.T., Fu-Sheng C., Whei-Min L., et al. Operation strategy of cogeneration systems under environmental constraints[A]. Proceedings of 2000 International Conference on Power System Technology[C]. Piscataway, NJ, USA,2000:1653-1658
    [41]Tsay M.T., Lin W.M. Application of evolutionary programming to optimal operational strategy cogeneration system under time-of-use rates[J], International Journal of Electrical Power and Energy System, 2000,22(5):367-373
    [42]Lee J.B., Jeong J.H. A daily optimal operational schedule for cogeneration systems in a paper mill[A], Proceedings of 2001 Power Engineering Society Summer Meeting[C].Piscataway, NJ, USA,2001:1357-1362
    [43]Hong Y.Y., Li C.Y. Genetic algorithms based economic dispatch for cogeneration units considering multiplant multibuyer wheeling[J], IEEE Transactions on Power Systems,2002,17(1):134-140
    [44]Tsay M.T. The operation strategy of cogeneration systems using a multi-objective approach[A], Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference[C]. Yokahama, Japan, 2002:1653-1657
    [45]Tsay M.T. Applying the multi-objective approach for operation strategy of cogeneration systems under environmental constraints[J], International Journal of Electrical Power and Energy Systems,2003,25(3):219-226
    [46]Arsie I., Marano V., Rizzo G. A model for thermo-economic analysis and optimization of steam power plants for power and cogeneration[A], Proceedings of American Society of Mechanical Engineers, Power Division[C]. Baltimore, MD, United states,2004:89-98
    [47]Ashok S., Jayaraj S. Biomass based optimal cogeneration system for paper industry[J], International Journal of Power and Energy Systems, 2008,28(4):394-399
    [48]Wang J., Dai Y., Gao L. Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry[J], Applied Energy, 2009,86(6):941-948
    [49]Borglin S. Economic optimization of a cogeneration system with a back-pressure steam turbine as prime mover[J], American Society of Mechanical Engineers, International Gas Turbine Institute (Publication) IGTI, 1988,3:275-283
    [50]Sala J.M., Vian J.G. Computer program for determining optimal running conditions of a steam turbine cogeneration system[J], Heat Recovery Systems and CHP,1988,8(5):401-409
    [51]El-Nashar A.M. Optimum selection of cogeneration systems for power and desalination[J], Desalination,1989,71 (3):211-232
    [52]Choi K.B., Jeong J.H., Lee J.B. A rational operation scheduling using evolutionary algorithm on industrial cogeneration system[J], Transactions of the Korean Institute of Electrical Engineers (A),2000,49(10):494-501
    [53]Jeong J.H., Lee J.B. A development of GUI system for optimal operational scheduling on industrial cogeneration systems using evolutionary algorithms[J], Transactions of the Korean Institute of Electrical Engineers (A), 2002,51(11):544-550
    [54]Tokos H., Pintaric Z.N., Glavic P. Energy saving opportunities in heat integrated beverage plant retrofit[J], Applied Thermal Engineering, 2010,30(1):36-44
    [55]文军.宏伟热电厂热电联供经济运行方式研究[J],黑龙江电力,2005,27(03):210-212
    [56]吕泽华,赵士杭,等.抚顺石化热电厂热电联供系统的优化调度[J],石油炼制与化工,2002,33(10):36-40
    [57]JST,李义容.供热汽轮机容量优化[J],热力发电译丛,1991,(2):50-58
    [58]Riegg H.,宁哲.凝汽式汽轮机热电联产电厂供热系统设计和运行的优化[J],热力发电译丛,1992,(06):43-54
    [59]黄耀文.多站热电联产系统的最优化运行[J],金山油化纤1991,10(2):76-77
    [60]Ito K., Yokoyama R., Akagi S., et al. Influence of fuel cost on the operation of a gas turbine-waste heat boiler cogeneration plant[J], Journal of Engineering for Gas Turbines and Power,1990,112(1):122-128
    [61]Sala J.M., Vian J.G. Optimum running conditions for a gas turbine cogeneration system[J], Journal of Heat Recovery Systems and CHP, 1988,8(5):411-418
    [62]Ehmke H.J. Size optimization for cogeneration plants[J], Energy, 1990,15(1):35-44
    [63]El-nashar A.M., Khan M.S. Economic scheduling of the UAN cogeneration plant:A preliminary optimization study[J], Desalination,1991,85(1):93-127
    [64]Ito K., Yokoyama R., Shiba T. Optimal operation of a cogeneration plant in combination with electric heat pumps[A], Proceedings of 5th International Symposium and Exposition on Gas Turbines in Cogeneration, Repowering and Peak-Load Power Generation[C].New York, NY, USA,1991:371-378
    [65]Ito K., Yokoyama R. Economic feasibility study of some cogeneration plants for a local energy center[A], Proceeding of the the IFAC Energy Systems, Management and Economics[C]. Oxford, UK,1991:175-180
    [66]Matsumoto Y., Yokoyama R., Ito K. Optimal multistage expansion planning of a gas turbine cogeneration plant[A], Proceedings of American Society of Mechanical Engineers, International Gas Turbine Institute (Publication) IGTI[C]. Houston, TX, USA,1992:43-49
    [67]Blok K., Turkenburg W.C. CO2 emission reduction by means of industrial CHP in the Netherlands[J], Energy Conversion and Management,1994,35(4):317-340
    [68]Ito K., Shiba T., Yokoyama R. Optimal operation of a cogeneration plant in combination with electric heat pumps[J], Journal of Energy Resources Technology,1994,116(1):56-64
    [69]Michael R. von Spakovsky. Application of engineering functional analysis to the analysis and optimization of the CGAM problem[J], Energy, 1994,19(3):343-364
    [70]Yokoyama R., Ito K., Matsumoto Y. Optimal sizing of a gas turbine cogeneration plant in consideration of its operational strategy[J], Journal of Engineering for Gas Turbines and Power,1994,116(1):32-38
    [71]Bozza F., Senatore A., Tuccillo R. Thermal cycle analysis and component aero-design for gas turbine concept in low-range cogenerating systems[A], Proceedings of the American Society of Mechanical Engineers[C]. Vienna, Austria,1995
    [72]Gicquel R. Systemic optimization method based on the thermal process integration by extension of the pinch analysis:application to cogeneration plants with steam production[J], Revue generale de thermique,1995,34(406):579-607
    [73]Ito K., Gamou S., Yokoyama R. Comparison of economical and energy-saving characteristics between gas turbine and fuel cell cogeneration systems[A], Proceedings of American Society of Mechanical Engineers[C]. Vienna, Austria, 1995
    [74]Ito K., Yokoyama R. Operational strategy for an industrial gas turbine cogeneration plant[J], International Journal of Global Energy Issues, 1995,7(3-4):162-170
    [75]Ito K., Yokoyama R., Matsumoto Y. Optimal operation of cogeneration plants with steam-injected gas turbines[J], Journal of Engineering for Gas Turbines and Power,1995,117(1):60-66
    [76]Rozewicz J., Sheikh A. Optimisation of an industrial cogeneration plant operation[A], Proceedings of American Society of Mechanical Engineers[C]. Vienna, Austria,1995
    [77]Yokoyama R., Ito K. Multi-objective optimization in unit sizing of a gas turbine cogeneration plant[J], Journal of Engineering for Gas Turbines and Power,1995,117(1):53-59
    [78]Michael R. von Spakovsky, Curti V., Batato M. The performance optimization of a gas turbine cogeneration/heat pump facility with thermal storage[J], Journal of Engineering for Gas Turbines and Power,1995,117(1):2-9
    [79]Bozza F., Senatore A., Tuccillo R. Thermal cycle analysis and component aerodesign for gas turbine concept in low-range cogenerating systems[J], Journal of Engineering for Gas Turbines and Power,1996,118(4):792-802
    [80]Evans R.L., Zaradic A.M. Optimization of a wood-waste-fuclled, indirectly fired gas turbine cogeneration plant[J], Bioresourcc Technology, 1996,57(2):117-126
    [81]Ito K., Yokoyama R., Shimoda M. Optimal planning of a super waste incineration cogeneration plant[A], Proceedings of American Society of Mechanical Engineers[C]. Burmingham, UK,1996
    [82]Tomsic M.G., Perovic O. Sizing of a gas turbine for repowering of cogeneration power plant Ljubljana by mathematical optimisation[A], Proceedings of American Society of Mechanical Engineers[C] Burmingham, UK,1996
    [83]Gamou S., Ito K., Yokoyama R. Comparative analysis of gas turbine cogeneration systems for designated electric supply[J], Transactions of the Japan Society of Mechanical Engineers, Part B,1997,63(610):2183-2189
    [84]Ito K., Yokoyama R., Shimoda M. Optimal planning of a super waste incineration cogeneration plant[J], Journal of Engineering for Gas Turbines and Power,1997,119(4):903-908
    [85]Ito K., Yokoyama R., Matsumoto Y. Effect of steam-injected gas turbines on the unit sizing of a cogeneration plant[J], Journal of Engineering for Gas Turbines and Power,1997,119(1):131-136
    [86]Baken J.A.M., van den Haspel B. Optimised operation of steam-injected gas turbine cogeneration units[A], Proceedings of American Society of Mechanical Engineers, International Gas Turbine Institute (Publication) IGTI[C]. Amsterdam, Netherlands,1988:259-265
    [87]Yokoyama R., Ito K. Optimal operation of a gas turbine cogeneration plant in consideration of equipment startup/shutdown cost[A], Proceedings of American Society of Mechanical Engineers[C]. Orlando, FL, USA,1997
    [88]Bercsi G. Optimization of gas turbine driven cogeneration systems[A], Proceedings of the Conference on Mechanical Engineering[C]. Budapest, Hungary,1998:560-564
    [89]Francois M., Boris K. Process integration:Selection of the optimal utility system[J], Computers & Chemical Engineering,1998,22(Supplement 1):149-156
    [90]Hisazumi Y. Study on an optimized energy supply system and proposal of a new gas turbine cogeneration system based on exergy evaluation[A], Proceedings of American Society of Mechanical Engineers, Power Division[C]. Burlingame, CA, USA,1999:2
    [91]Yokoyama R., Ito K. Optimal operation of a cogeneration plant in consideration of equipment startup/shutdown cost[J], Journal of Energy Resources Technology,1999,121 (4):254-261
    [92]Bruno J.C., Miquel J., Castells F. Optimization of energy plants including water/lithium bromide absorption chillers[J], International Journal of Energy Research,2000,24(8):695-717
    [93]Rodriguez-Toral M.A., Morton W., Mitchell D.R. Using new packages for modelling, equation oriented simulation and optimization of a cogeneration plant[J], Computers & Chemical Engineering,2000,24(12):2667-2685
    [94]Sato K., Aoki Y., Mitsuhashi S., et al. Optimization of a cogeneration system composition[J], Ishikawajima-Harima Engineering Review,2000,40(3):88-92
    [95]Yokoyama R., Ito K. Effect of inlet air cooling by ice storage on unit sizing of a gas turbine cogeneration plant[A], Proceedings of American Society of Mechanical Engineers, International Gas Turbine Institute (Publication) IGTI[C]. Amsterdam, Netherlands,2002:335-342
    [96]Yokoyama R., Ito K. Optimal design of energy supply systems based on relative robustness criterion[J], Energy Conversion and Management, 2002,43(4):499-514
    [97]Teixeira J.C.F., Teixeira S.F.C.F., Silva A.M.E. Numerical optimization of a gas turbine cogeneration plant[J], ASME Conference Proceedings, 2003,2003(36851):699-704
    [98]Frangopoulos C.A., Dimopoulos G.G. Effect of reliability considerations on the optimal synthesis, design and operation of a cogeneration system[J], Energy, 2004,29(3):309-329
    [99]Yokoyama R., Ito K., Murata T. Robust optimal design in multistage expansion of a gas turbine cogeneration plant under uncertain energy demands[J], Journal of Engineering for Gas Turbines and Power,2004,126(4):823-830
    [100]Yokoyama R., Ito K. Optimal design of gas turbine cogeneration plants in consideration of discreteness of equipment capacities[A], Proceedings of the ASME Turbo Expo 2004[C]. Vienna, Austria,2004:593-601
    [101]Yokoyama R., Ito K. Evaluation of operational performance of gas turbine cogeneration plants using an optimization tool:OPS-operation[J], Journal of Engineering for Gas Turbines and Power,2004,126(4):831-839
    [102]Kong X.Q., Wang R.Z., Huang X.H. Energy optimization model for a CCHP system with available gas turbines[J], Applied Thermal Engineering, 2005,25(2-3):377-391
    [103]Thorin E., Brand H., Weber C. Long-term optimization of cogeneration systems in a competitive market environment[J], Applied Energy, 2005,81(2):152-169
    [104]Yokoyama R., Takeuchi S., Ito K. Thermoeconomic analysis and optimization of a gas turbine cogeneration unit by a systems approach[A], Proceedings of the ASME Turbo Expo[C]. Reno-Tahoe, NV, United states.2005:127-133
    [105]Cruz M.E., Vieira L.S., Donatelli J.L. Mathematical exergoeconomic optimization of a complex cogeneration plant aided by a professional process simulator[J], Applied Thermal Engineering,2006,26(5-6):654-662
    [106]Li H., Nalim R., Haldi P.A. Thermal-economic optimization of a distributed multi-generation energy system--A case study of Beijing[J], Applied Thermal Engineering,2006,26(7):709-719
    [107]Yilmaz T. Performance optimization of a gas turbine-based cogeneration system[J], Journal of Physics D (Applied Physics),2006,39(11):2454-2458
    [108]Yokoyama R., Ito K. Optimal design of gas turbine cogeneration plants in consideration of discreteness of equipment capabilities[J], Journal of Engineering for Gas Turbines and Power,2006,128(2):336-343
    [109]Yokoyama R., Ito K. Performance evaluation of gas turbine cogeneration plants using a design optimization tool:OPS-Design[A], Proceedings of the ASME Turbo Expo[C]. Barcelona, Spain,2006:713-722
    [110]Yokoyama R., Ito K., Matsumoto Y. Optimal multistage expansion planning of a gas turbine cogeneration plant[J], Journal of Engineering for Gas Turbines and Power,1996,118(4):803-809
    [111]Sugimoto K., Fujii T., Ohta J. An appraisal method of exergy cost minimisation for co-generation systems[J], International Journal of Exergy, 2006,3(3):255-271
    [112]陆伟,张士杰,肖云汉.燃气轮机与燃气内燃机在联供系统中的应用比较[J],工程热物理学报,2008,29(6):905-910
    [113]黄兴华,李赞.联供系统设备配置与运行策略集成优化研究[J],太阳能学报,2008,29(1):24-28
    [114]徐林德.分布式能源系统设计优化分析[J],能源工程,2007,(5):26-29
    [115]陈霖新,唐艳芬,王建.燃气冷热电三联供的能量消耗分析研究[J],燃气轮机技术,2006,19(1):43-49
    [116]方宏,曹家枞,刘M强.小区冷热电联供系统的空调期优化运行研究[J],工厂动力,2005,(1):1-6
    [117]刘凤强,曹家枞,朱冬林BCHP系统中余热锅炉结构参数的热经济学优化[J],燃气轮机技术,2005,18(2):52-56
    [118]张士杰,李宇红,叶大均.燃机热电冷联供自备电站优化配置研究[J],中国电机工程学报,2004,,24(10):183-188
    [119]陶桂生,陈林根,孙丰瑞.内可一逆回热式燃气轮机热电联产装置的(?)经济性能优化[J],工程热物理学报,2009,30(06):919-922
    [120]王政伟,袁玉梅,张俊.建筑物热电冷三联产系统的优化设计及敏感性分析[J],热力发电,2008.37(12):65-68
    [121]刘晓丹,冷热电联产系统运行优化[J],黑龙江科技信息,2007,(10S):68.
    [122]李宇红,刘祥源,叶大均,等.燃气轮机热电J冷联产系统合理配置研究[J],沈阳工程学院学报,2005.01(04):5-9
    [123]张蓓红,龙惟定,热电(冷)联产系统优化配置研究[J],暖通空调,2005,35(04):1-5
    [124]刘祥源,李宇红,叶大均,等.燃气轮机热电冷联产系统合理配置研究[J],华东电力,2004.32(01):48-50
    [125]刘祥源,李宇红,武小兵,等.燃气-蒸汽联合循环热电冷联产系统优化 运行[J],燃气轮机技术,2004,17(03):45-48
    [126]刘祥源,李宇红,武小兵,等.燃气轮机热电冷联产系统的优化设计与运行[J],中国动力工程学报,2005,25(01):22-26
    [127]朱凡,王彦佳.热电联产热力系统优化运行研究[J],宝钢技术2001,01):31-34
    [128]刘清江,韩学廷,孙尔雁.规划优化在楼宇式燃气热电冷联产系统经济评价的研究与应用[J],建筑节能,2008,36(11):7-9
    [129]Yokoyama R., Ito K. Effect of inlet air cooling by ice storage on unit sizing of a gas turbine cogeneration plant[J], Journal of Engineering for Gas Turbines and Power,2004,126(2):351-357
    [130]Yokoyama R. Optimal Configuration design of gas turbine cogeneration plants by a MILP decomposition approach[J], ASME Conference Proceedings, 2007,2007(47926):691-700
    [131]Nishino A., Yamamori H., Yokoyama R., et al. Optimal operation of a gas turbine cogeneration plant with steam injection and inlet air cooling[A], Proceedings of International Conference on Power Engineering[C]. Tokyo, Japan,2003:2-12
    [132]Cardona E., Sannino P., Piacentino A., et al. Energy saving in airports by trigeneration. Part Ⅱ:Short and long term planning for the Malpensa 2000 CHCP plant[J], Applied Thermal Engineering,2006,26(14-15):1437-1447
    [133]孔祥强,李瑛,王如竹,等.燃气轮机冷热电联供系统优化与节能经济性研究[J],暖通空调,2005,35(07):04-08
    [134]Gamou S., Ito K., Yokoyama R. Analysis of optimal unit numbers and sizes for microturbine cogeneration systems[A], Proceedings of the ASME Turbo Expo 2004[C]. Vienna, Austria,2004:665-671
    [135]Gamou S., Yokoyama R., Ito K. Parametric study on economic feasibility of microturbine cogeneration systems by an optimization approach[J], Journal of Engineering for Gas Turbines and Power,2005,127(2):389-396
    [136]Gamou S., Ito K., Yokoyama R. Optimal operational planning of cogeneration systems with microturbine and desiccant air conditioning units[J], Journal of Engineering for Gas Turbines and Power,2005,127(3):606-614
    [137]Osman A., Norman B., Ries R. Life Cycle Assessment Model:Optimization of cogeneration systems in buildings[J], HE Annual Conference.2005:1
    [138]Douglas M.E., Wagner T.C., Sahm M.K., et al. Economic optimization of a combined heat and power system for an office building[J], ASME Conference Proceedings,2007,2007(47977):267-272
    [139]Gamou S., Yokoyama R., Ito K. Economic feasibility study of microturbine cogeneration systems for various maximum energy demands by an optimization approach[J], Transactions of the Japan Society of Mechanical Engineers, Part B, 2002,68(672):2400-2407
    [140]Casisi M., Pinamonti P., Reini M. Optimal lay-out and operation of combined heat & power (CHP) distributed generation systems[J], Energy, 2009,34(12):2175-2183
    [141]魏兵,王志伟,蒋露,等.微型燃气轮机冷热电联供系统的优化运行研究[J],华北电力大学学报,2007,34(2):138-144
    [142]任禾盛,王金旺,刘宝兴.微型燃气轮机热电联供系统的热经济学最优化分析[J],上海理工大学学报,2004,26(5):443-446
    [143]Wei B., Wang Z., Jiang L., et al. Research of optimal operation on micro-turbine CCHP systems[A], Proceedings of ASME 2007 Energy Sustainability Conference[C]. Long Beach, CA, United states,2007:751-758
    [144]李赞.联供系统设备配置与运行策略集成优化研究[D].上海:上海交通大学,2007
    [145]Li C.Z., Gu J.M., Huang X.H. Influence of energy demands ratio on the optimal facility scheme and feasibility of BCHP system[J], Energy and Buildings,2008,40(10):1876-1882
    [146]张万坤.楼宇冷热电联产系统(BCHP)的配置及其最优运行分析[D].上海:上海交通大学,2003
    [147]Yokoyama R., Ito K., Matsumoto Y. Optimal sizing of a gas turbine cogeneration plant in consideration of its operational strategy[A], Proceedings of the 5th International Symposium and Exposition on Gas Turbines in Cogeneration, Repowering and Peak-Load Power Generation[C]. New York, NY, USA,1991:363-370
    [148]Ust Y, Sahin B., Yilmaz T. Optimization of a regenerative gas-turbine cogeneration system based on a new exergetic performance criterion:exergetic performance coefficient[J], Proceedings of the Institution of Mechanical Engineers,2007,221(A4):447
    [149]Yokoyama R., Ito K., Akagi S. Determining the optimal equipment capacities of cogeneration systems (1st report, optimization method and its effect)[J], Transactions of the Japan Society of Mechanical Engineers, Part C, 1990,56(522):519-526
    [150]Martyak M.S., Devgan S.S. An optimization model for the application of an integrated cogeneration-thermal energy storage system[A], IEEE Proceedings of SOUTHEASTCON'91[C]. New York, NY, USA,1991:558-562
    [151]Asano H., Sagai S., Imamura E., et al. Impacts of time-of-use rates on the optimal sizing and operation of cogeneration systems[J], IEEE Transactions on Power Systems,1992,7(4):1444-1450
    [152]Yokoyama R., Ito K. Operational strategy of a cogeneration system under a complex utility rate structure[J], Journal of Energy Resources Technology, 1996,118(4):256-262
    [153]Oh S.D., Lee H.J., Jung J.Y., et al. Optimal planning and economic evaluation of cogeneration system[J], Energy,2007,32(5):760-771
    [154]Fragaki A., Andersen A.N., Toke D. Exploration of economical sizing of gas engine and thermal store for combined heat and power plants in the UK[J], Energy,2008,33(11):1659-1670
    [155]Wakui T., Yokoyama R., Tamura I., et al. Effect of power interchange operation of multiple household gas engine cogeneration systems on energy-saving[J], Energy,2009,34(12):2092-2100
    [156]张开翼,陈森新.燃气冷热电联供在公共建筑中的应用[J],燃气轮机技术,2007,20(02):23-27
    [157]及鹏,刘凤国,鞠睿,等.天然气冷热电联供过程热经济学优化[J],煤气与热力,2009,29(9):7-11
    [158]Palomino R.G., Nebra S.A. Energetic, exergetic and exergetic cost analysis for a cogeneration system integrated by an internal combustion engine, HRSG and an absorption refrigeration system[A], Proceedings of the 7th Biennial Conference on Engineering Systems Design and Analysis[C]. Manchester, United kingdom,2004:41-49
    [159]Frangopoulos C.A. Thermoeconomic optimization of design and operation of diesel-engine cogeneration systems[A], Proceedings of American Society of Mechanical Engineers, International Gas Turbine Institute (Publication) IGTI[C]. Nice, France,1989:431-436
    [160]Ito K., Yokoyama R., Yamaguchi T., et al. Optimal operation of a cogeneration plant including a heat storage tank[A], Proceedings of American Society of Mechanical Engineers, International Gas Turbine Institute (Publication) IGTI[C]. Nice, France,1989:437-445
    [161]Ito K., Yokoyama R., Shiba T. Optimal operation of a diesel engine cogeneration plant including a heat storage tank[J], Journal of Engineering for Gas Turbines and Power,1992,114(4):687-694
    [162]Abusoglu A., Kanoglu M. Exergoeconomic optimization of a diesel-engine-powered cogeneration plant[J], Energy and Fuels, 2009,23(4):1977-1989
    [163]郑美玲,王文CCHP系统中余热优化分析[J],上海节能,2009,(5):12-17
    [164]霍小亮,周伟国,阮应君.楼宇三联供系统设备容量与运行策略集成优化[J],天然气工业,2009,(8):119-122
    [165]郝学军,王琳,刘铜,等.北京市某大型公共建筑三联供系统的优化[J],暖通空调,2009,39(1):33-36
    [166]马原良,曹家枞.楼宇冷热电联供系统的优化设计研究[J],建筑热能通风空调,2008,27(2):77-80
    [167]黄保民,朱建章,宣芃,等.冷热电三联供系统在北京南站的应用[J],铁道标准设计,2008,S1):75-79
    [168]孔祥强,王如竹,李瑛,等.微型冷热电联供系统的优化运行[J],上海交通大学学报,2008,42(3):365-369
    [169]Cardona E., Piacentino A. Optimal design of CHCP plants in the civil sector by thermoeconomics[J], Applied Energy,2007,84(7-8):729-748
    [170]Burrel I.G., Francois P., Ben Ahmed H., et al. Optimization of a linear induction oscillatory machine in a Stirling cogeneration system[A], Piscataway, NJ, USA,2007:3302-3310
    [171]Ito K., Yokoyama R., Gamou S., et al. Analysis of electric wheeling on cooperative fuel cell cogeneration systems installed in multi-areas[J], Journal of Energy Resources Technology,1994,116(3):211-217
    [172]Matsumoto Y., Yokoyama R., Ito K. Engineering-economic optimization of a fuel cell cogeneration plant[J], Journal of Engineering for Gas Turbines and Power,1994,116(1):8-14
    [173]Ito K., Gamou S., Yokoyama R. Optimal unit sizing of fuel cell cogeneration systems in consideration of performance degradation[J], International Journal of Energy Research,1998,22(12):1075-1089
    [174]Riensche E., Stimming U., Unverzagt G. Optimization of a 200 kW SOFC cogeneration power plant:Part I:Variation of process parameters[J], Journal of Power Sources,1998,73(2):251-256
    [175]Burer M., Tanaka K., Favrat D., et al. Multi-criteria optimization of a district cogeneration plant integrating a solid oxide fuel cell-gas turbine combined cycle, heat pumps and chillers[J], Energy,2003,28(6):497-518
    [176]Entchev E. Residential fuel cell energy systems performance optimization using "soft computing" techniques[J], Journal of Power Sources, 2003,118(1-2):212-217
    [177]Gamou S., Ito K., Ida K., et al. Feasibility study of solid oxide fuel cells in cogeneration applications by a multiobjective optimization approach[J], Transactions of the Japan Society of Mechanical Engineers, Part B, 2004,70(690):551-558
    [178]Weber C., Marechal F., Favrat D., et al. Optimization of an SOFC-based decentralized polygeneration system for providing energy services in an office-building in Tokyo[J], Applied Thermal Engineering, 2006,26(13):1409-1419
    [179]Braun R.J. Techno-Economic Optimal design and application of SOFC systems for residential micro-CHP applications in the U.S[J], ASME Conference Proceedings,2008,2008(43181):509-527
    [180]于泽庭,韩吉田,苏国萍.固体氧化物燃料电池电热冷联供总能系统的分析[J],太阳能学报,2007,29(06):648-653
    [181]Saidi M.H., Ehyaei M.A., Abbasi A. Optimization of a combined heat and power PEFC by exergy analysis[J], Journal of Power Sources, 2005,143(1-2):179-184
    [182]Inada R., Sugihara H., Saeki O., et al. Evaluation of the introduction of a micro-cogeneration system into residential houses based on monitored daily-basis energy demand data[J], Electrical Engineering in Japan, 2009,166(4):20-30
    [183]Obara S.Y., E1-Sayed A.G. Compound microgrid installation operation planning of a PEFC and photovoltaics with prediction of electricity production using GA and numerical weather information[J], International Journal of Hydrogen Energy,2009,34(19):8213-8222
    [184]Gamou S., Yokoyama R., Ito K. Economic viability study of a polymer electrolyte fuel cell cogeneration system for household application by an optimization approach[J], Transactions of the Japan Society of Mechanical Engineers, Part B,2002,68(667):899-906
    [185]Oyarzabal B., Ellis M.W., von Spakovsky M.R. Development of thermodynamic, geometric, and economic models for use in the optimal synthesis/design of a PEM fuel cell cogeneration system for multi-unit residential applications [J], Journal of Energy Resources Technology, 2004,126(1):21-29
    [186]Oyarzabal B., von Spakovsky M.R., Ellis M.W. Optimal synthesis/design of a PEM fuel cell cogeneration system for multi-unit residential applications-application of a decomposition strategy[J], Transactions of the ASME. Journal of Energy Resources Technology,2004,126(1):30-39
    [187]Obara S. Operating schedule of a combined energy network system with fuel cell[J], International Journal of Energy Research,2006,30(13):1055-1073
    [188]Obara S. Dynamic operation plan of a combined fuel cell cogeneration, solar module, and geo-thermal heat pump system using genetic algorithm[J], International Journal of Energy Research,2007,31(13):1275-1291
    [189]Yokoyama R., Ito K. Feasibility study of phosphoric acid fuel cell cogeneration systems by multiobjective optimal unit sizing[A], Proceedings of 29th Intersociety Energy Conversion Engineering Conference[C]. Washington, DC, USA,1994:823-828
    [190]Maher K.J., Musgrove A.R.d. Optimisation model of a combined cycle cogeneration system[A], IFAC Symposium on Power Systems, Modelling and Control Applications[C]. Oxford, UK,1989:189-194
    [191]Frangopoulos C.A., Lygeros A.I., Markou C.T., et al. Thermoeconomic operation optimization of the Hellenic Aspropyrgos Refinery combined-cycle cogeneration plant[A], Proceedings of P American Society of Mechanical Engineers [C]. Vienna, Austria,1995
    [192]Frangopoulos C.A., Lygeros A.I., Markou C.T., et al. Thermoeconomic operation optimization of the Hellenic Aspropyrgos Refinery combined-cycle cogeneration system[J], Applied Thermal Engineering,1996,16(12):949-958
    [193]Manolas D.A., Gialamas T.P., Frangopoulos C.A., et al. A Genetic Algorithm for operation optimization of an industrial cogeneration system[J], Computers & Chemical Engineering,1996,20(Supplement 2):1107-1112
    [194]Manolas D.A., Frangopoulos C.A., Gialamas T.P., et al. Operation optimization of an industrial cogeneration system by a genetic algorithm[J], Energy Conversion and Management,1997,38(15-17):1625-1636
    [195]Ashok S., Banerjee R. Optimal operation of industrial cogeneration for load management[J], IEEE Transactions on Power Systems,2003,18(2):931-937
    [196]Yusta J.M., De Oliveira-De Jesus P.M., Khodr H.M. Optimal energy exchange of an industrial cogeneration in a day-ahead electricity market[J], Electric Power Systems Research,2008,78(10):1764-1772
    [197]Athar A., Turner W.D., Somasundaram S. System optimization of a combined cycle cogeneration facility[A], Proceedings of the 26th Intersociety Energy Conversion Engineering Conference[C]. La Grange Park,IL, USA, 1991:406-412
    [198]Athar A., Somasundaram S., Turner W.D. System optimization of the cogeneration facility at Texas AM University-present operation and load[J], Journal of Energy Resources Technology,1993,115(1):17-22
    [199]Lee J.B., Jung C.H. Optimal operation scheduling of cogeneration systems using fuzzy linear programming method[J], Transactions of the Korean Institute of Electrical Engineers,1995,44(11):1409-1416
    [200]Lee J.B., Jung C.H. Short-term operation scheduling using fuzzy theory on cogeneration systems connected with auxiliary equipments[J]. Transactions of the Korean Institute of Electrical Engineers,1995,44(9):1119-1125
    [201]Tao G., Henwood M.I., van Ooijen M. An algorithm for combined heat and power economic dispatch[J], IEEE Transactions on Power Systems, 1996,11 (4):1778-1784
    [202]Rifaat R.M. Economic dispatch of combined cycle cogeneration plants with environmental constraints[A], Proceedings of the 1998 International Conference on Energy Management and Power Delivery New York[C], NY, USA, 1998:149-153
    [203]Sudhakaran M., Mary Raja Slochanal S. Application of refined genetic algorithm to economic load dispatch of combined cycle cogeneration plants[A], Proceedings of the Universities Power Engineering Conference[C]. Stafford, United kingdom,2002:987-991
    [204]Erdil A. Exergy optimization for an irreversible combined cogeneration cycle[J], Journal of the Energy Institute,2005,78(1):27-31
    [205]Ahadi-Oskui T., Tsatsaronis G. Optimization of the design of complex energy conversion systems using mathematical programming and genetic algorithms[J], ASME Conference Proceedings,2006,2006(47640):359-366
    [206]Sarabchi K., Akbarpour R. Thermodynamic optimization of a combined cycle cogeneration plant with backpressure steam turbine[A], Proceedings of the ASME Turbo Expo[C]. Barcelona, Spain,2006:625-632
    [207]In J.S., Lee S.Y., Optimization of heat recovery steam generator through exergy analysis for combined cycle gas turbine power plants[J], International Journal of Energy Research,2008.32(9).859-869.
    [208]Baughman M.L., Eisner N.A., Merrill P.S. Optimizing combined cogeneration and thermal storage systems:an engineering economics approach[J], IEEE Transactions on Power Systems.1989,4(3):974-980
    [209]Ilkjaer J., Petersen P.M., Qvale B., et al. The operation of small cogeneration plants and short-term storage for district heating and public electric power[A], Proceedings of the 24th Intersociety Energy Conversion Engineering Conference[C]. New York. NY. USA,1989:1915-1921
    [210]Moslehi K., Khadem M., Bernal R., et al. Optimization of multiplant cogeneration system operation including electric and steam networks[J], IEEE Transactions on Power Systems,1991,6(2):484-490
    [211]Seeger T., Verstege J. Short term scheduling in cogeneration systems[A], Proceeding of 1991 Power Industry Computer Application Conference[C]. New York, NY, USA,1991:106-112
    [212]Groscurth H.M., Bruckner T., Kummel R. Energy, cost, and carbon dioxide optimization of disaggregated, regional energy-supply systems[J], Energy, 1993,18(12):1187-1205
    [213]Yokoyama R., Ito K. Optimal operational planning method for cogeneration systems with thermal storage[J], Transactions of the Japan Society of Mechanical Engineers, Part C.1993,59(562):1817-1823
    [214]Palsson O.P., Ravn H.F. Stochastic heat storage problem--solved by the progressive hedging algorithm[J], Energy Conversion and Management, 1994,35(12):1157-1171
    [215]Ma J.T., Lai L.L., Lee J.B. Multi-time interval scheduling for daily operation of a two-cogeneration system with genetic algorithm[A], Proceedings of the International Conference on Electrical Engineering[C]. Beijing, China, 1996:1348-1352
    [216]Jong Beom L. Optimal short-term operation scheduling using genetic algorithm on multicogeneration system connected with various auxiliary equipments[J], Transactions of the Korean Institute of Electrical Engineers, 1997,46(11):1582-1588
    [217]Lai L.L., Ma J.T., Lee J.B. Application of genetic algorithms to multi-time interval scheduling for daily operation of a cogeneration system[A], Proceedings of the Fourth International Conference on Advances in Power System Control, Operation and Management[C]. London, UK,1997:327-331
    [218]Lai L.L., Ma J.T., Lee J.B. Multitime interval scheduling for daily operation of a two-cogeneration system with evolutionary programming[J], International Journal of Electrical Power and Energy Systems,1998,20(5):305-311
    [219]Lee J.B., Jung C.H., Lyu S.H. A daily operation scheduling of cogeneration systems using fuzzy linear programming[A], Proceedings of 1999 IEEE Power Engineering Society Summer Meeting[C]. Piscataway, NJ, USA,1999:983-988
    [220]Di Bella F.A., Chamarra Iii A. Optimizing thermal energy storage for cogeneration applications:A faculty and engineering technology student collaboration using excel[A], Proceedings of ASEE Annual Conference[C]. Salt Lake City, UT, United states,2004:10761-10775
    [221]Bartelj L., Povh M., Paravan D., et al. Cogeneration power production in market environment:the impact of the heat storage[A], Proceedings of the Eighth IASTED International Conference on Power and Energy Systems[C]. Anaheim, CA, USA,2005:273-278
    [222]Brujic D., Ristic M., Thoma K. Optimal operation of distributed CHP systems for participation in electricity spot markets[A], Proceedings of The International Conference on Computer as a Tool[C]. Warsaw, Poland,2007:1463-1469
    [223]Azit A.H., Nor K.M. Optimal design of a cogeneration system for typical hospitals in malaysia[A], Proceedings of the 4th IASTED Asian Conference on Power and Energy Systems[C]. Langkawi, Malaysia,2008:13-18
    [224]Campanari S., Manzolini G., Silva P. A Multi-step optimization approach to distributed cogeneration systems with heat storage[J], ASME Conference Proceedings,2008,2008(43178):295-304
    [225]Ren H., Gao W., Ruan Y. Optimal sizing for residential CHP system[J], Applied Thermal Engineering,2008,28(5-6):514-523
    [226]Streckiene G., Martinaitis V., Andersen A.N., et al. Feasibility of CHP-plants with thermal stores in the German spot market[J], Applied Energy, 2009,86(11):2308-2316
    [227]Jung C.H., Lyu S.H., Lee J.B. Optimal operation scheduling of cogeneration systems using fuzzy linear programming[A], Proceedings of the International Conference on Electrical Engineering[C]. Beijing, China,1996:144-148
    [228]Harada T., Mori S. Cogeneration systems planning using structured genetic algorithms[J], Transactions of the Institute of Electrical Engineers of Japan, Part C,1996,116-C(8):928-935
    [229]Harada T., Mori S. Cogeneration systems planning using structured genetic algorithms[J], Electrical Engineering in Japan,1997,119(2):26-35
    [230]Wu Y.J., Rosen M.A. Assessing and optimizing the economic and environmental impacts of cogeneration/district energy systems using an energy equilibrium model[J], Applied Energy,1999,62(3):141-154
    [231]Gamou S., Yokoyama R., Ito K. Optimal unit sizing of cogeneration systems under the toleration for shortage of energy supply[J], International Journal of Energy Research,2000,24(1):61-75
    [232]Maifredi C., Puzzi L., Beretta G.P. Optimal power production scheduling in a complex cogeneration system with heat storage[A], Proceeding of the 35th Intersociety Energy Conversion Engineering Conference and Exhibit (IECEC) [C].Reston, VA, USA,2000:1004-1012
    [233]Dentice d'Accadia M. Optimal operation of a complex thermal system:a case study[J], International Journal of Refrigeration,2001,24(4):290-301
    [234]Gamou S., Yokoyama R., Ito K. Optimal unit sizing of cogeneration systems in consideration of uncertain energy demands as continuous random variables[J], Energy Conversion and Management,2002,43(9-12):1349-1361
    [235]Frankovic D., Vikovic A., Gudac G. Optimization of trigeneration plant with heating and cooling energy storages operation[A], Proceedings of the IASTED International Conference on Modeling and Simulation[C]. Marina Del Rey, CA, United states,2004:84-88
    [236]Katsuta M., Kaneko A., Yamamoto T. Actual condition evaluation of cogeneration system in an urbanized hotel, and study of the optimal operation to minimize the CO2 emission[J], Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers,2005,22(1):25-32
    [237]Kwak H.Y., Oh S.D. Optimal planning and economic evaluation of small scale cogeneration system[A], Orlando, FL, United states,2005:359-368
    [238]Cardona E., Piacentino A., Cardona F. Matching economical, energetic and environmental benefits:An analysis for hybrid CHCP-heat pump systems[J], Energy Conversion and Management,2006,47(20):3530-3542
    [239]Huang J., Yue C., Feng Z. Multi-objective optimization and performance analysis of BCHP systems using genetic algorithms[J], ASME Conference Proceedings,2006,2006(42398):877-884
    [240]Miyazaki T., Akisawa A., Kashiwagi T. The optimization of a cogeneration system for commercial buildings by the particle swarm optimization[J], Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers,2006,23(2):145-156
    [241]Zhang B., Long W. An optimal sizing method for cogeneration plants[J], Energy and Buildings,2006,38(3):189-195
    [242]Zhang Q., Cui G.M., Zhang L., et al. Energy integration and economical optimization of small scale CCHP system[A], Proceedings of International Technology and Innovation Conference[C]. Stevenage, UK,2006:6 pp.
    [243]Arcuri P., Florio G., Fragiacomo P. A mixed integer programming model for optimal design of trigeneration in a hospital complex[J], Energy, 2007,32(8):1430-1447
    [244]Piacentino A., Cardona F. On thermoeconomics of energy systems at variable load conditions:Integrated optimization of plant design and operation[J], Energy Conversion and Management,2007,48(8):2341-2355
    [245]Cao J.C., Liu F.Q. Simulation and optimization of the performance in the air-conditioning season of a BCHP system in China[J], Energy and Buildings, 2008,40(3):185-192
    [246]Li C.Z., Shi Y.M., Huang X.H. Sensitivity analysis of energy demands on performance of CCHP system[J], Energy Conversion and Management, 2008,49(12):3491-3497
    [247]Mavrotas G., Diakoulaki D., Florios K., et al. A mathematical programming framework for energy planning in services'sector buildings under uncertainty in load demand:The case of a hospital in Afhens[J], Energy Policy, 2008,36(7):2415-2429
    [248]Rong A., Lahdelma R., Luh P.B. Lagrangian relaxation based algorithm for trigeneration planning with storages[J], European Journal of Operational Research,2008,188(1):240-257
    [249]Andreassi L., Ciminelli M.V., Feola M., et al. Innovative method for energy management:Modelling and optimal operation of energy systems[J], Energy and Buildings,2009,41 (4):436-444
    [250]Cao J. Evaluation of retrofitting gas-fired cooling and heating systems into BCHP using design optimization[J], Energy Policy,2009,37(6):2368-2374
    [251]Chicco G., Mancarella P. Matrix modelling of small-scale trigeneration systems and application to operational optimization[J], Energy, 2009,34(3):261-273
    [252]Cho H., Luck R., Eksioglu S.D., et al. Cost-optimized real-time operation of CHP systems[J], Energy and Buildings,2009,41(4):445-451
    [253]Cho H., Mago P.J., Luck R., et al. Evaluation of CCHP systems performance based on operational cost, primary energy consumption, and carbon dioxide emission by utilizing an optimal operation scheme[J], Applied Energy, 2009,86(12):2540-2549
    [254]Lozano M.A., Ramos J.C., Carvalho M., et al. Structure optimization of energy supply systems in tertiary sector buildings[J], Energy and Buildings, 2009,41 (10):1063-1075
    [255]Magnani F.S., de Melo N.R. Use of the task configuration system (TCS) for the design and on-line optimization of power plants operating with variable loads[J], Applied Thermal Engineering,2009,29(2-3):455-461
    [256]Rentizelas A.A., Tatsiopoulos I.P., Tolis A. An optimization model for multi-biomass tri-generation energy supply[J], Biomass and Bioenergy, 2009,33(2):223-233
    [257]Mago P.J., Chamra L.M. Analysis and optimization of CCHP systems based on energy, economical, and environmental considerations[J], Energy and Buildings,2009,41 (10):1099-1106
    [258]Vieira L.S., Donatelli J.L., Cruz M.E. Exergoeconomic improvement of a complex cogeneration system integrated with a professional process simulator[J], Energy Conversion and Management,2009,50(8):1955-1967
    [259]Wang J., Dai Y., Gao L., et al. A new combined cooling, heating and power system driven by solar energy[J], Renewable Energy,2009,34(12):2780-2788
    [260]Piacentino A., Cardona F. EABOT:energetic analysis as a basis for robust optimization of trigeneration systems by linear programming[J], Energy Conversion and Management,2008,49(11):3006-3016
    [261]Tsatsaronis G., Pisa J. Exergoeconomic evaluation and optimization of energy systems--application to the CGAM problem[J], Energy,1994,19(3):287-321
    [262]Valero A., Lozano M.A., Serra L., et al. CGAM problem:definition and conventional solution[J], Energy,1994,19(3):279-286
    [263]Benelmir R., Feidt M. Comparative synthesis of exergo-economic optimization:the IEEB method[A], Proceedings of American Society of Mechanical Engineers, Advanced Energy Systems Division[C] Atlanta, GA, USA,1996:445-455
    [264]Craw I.A., Foster D., Rossiter A.P. Real time optimization of in-plant cogeneration systems[J], American Institute of Chemical Engineers, National Meeting,1988
    [265]Gustafsson S.I., Karlsson B.G. Linear programming optimization in CHP networks[J], Journal of Heat Recovery Systems and CHP,1991,11(4):231-238
    [266]Benonysson A., B(?)hm B., Ravn H.F. Operational optimization in a district heating system[J], Energy Conversion and Management,1995.36(5):297-314
    [267]Honig P., Wei fonder E. Optimization of short-term scheduling of power plant units in large-scale cogeneration systems[A], Proceedings of 1FAC Symposium on Power Plants and Power Systems Control[C]. Oxford. UK.2000:287-295
    [268]Eriksen P.B. Economic and environmental dispatch of power/CHP production systems[J], Electric Power Systems Research,2001,57(1):33-39
    [269]Campanari S., Boncompagni L., Macchi E. Microturbines and trigeneration: optimization strategies and multiple engine configuration effects[J], Journal of Engineering for Gas Turbines and Power,2004,126(1):92-101
    [270]Goldbarg M.C., Goldbarg E.F.G., Medeiros Neto F.D. de. The optimal configuration of cogeneration systems based on natural gas:a parallel evolutionary approach[J], WSEAS Transactions on Systems,2004,3(1):31-36
    [271]Joao Gari da Silva Fonseca Junior, Asano H., Fujii T., et al. Effect of exergy optimisation on a cogeneration system's CO2 emissions according to different demand patterns[J], International Journal of Exergy,2008,5(3):296-308
    [272]Tanaka Y., Fukushima M. Optimal design of cogeneration systems by mathematical programming[J], Transactions of the Institute of Systems, Control and Information Engineers,2008,21(7):201-210
    [273]Farghal S.A., El-Dewieny R.M., Riad A.M. Optimum operation of cogeneration plants with energy purchase facilities[J], IEE Proceedings C (Generation, Transmission and Distribution),1987,134(5):313-319
    [274]尹洪超,崔峨.热功联供蒸汽动力系统的优化设计[J],节能,1994,(4):3-6
    [275]Lozano M.A. Optimal planning method for simple cogeneration systems[J], Information Technology,2001,12(4):53-58
    [276]Seo H., Sung J., Oh S.D., et al. Economic optimization of a cogeneration system for apartment houses in Korea[J], Energy and Buildings, 2008,40(6):961-967
    [277]Amano Y., Ito K., Yoshida S., et al. Impact analysis of carbon tax on the renewal planning of energy supply system for an office building[J], Energy, 2010,35(2):1040-1046
    [278]Lozano M.A., Ramos J.C., Serra L.M. Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints[J], Energy,2010,35(2):794-805
    [279]Vieira L.S., Donatelli J.L., Cruz M.E. Integration of an iterative methodology for exergoeconomic improvement of thermal systems with a process simulator[J], Energy Conversion and Management,2004,45(15-16):2495-2523
    [280]Rong A., Hakonen H., Lahdelma R. An efficient linear model and optimisation algorithm for multi-site combined heat and power production[J], European Journal of Operational Research,2006,168(2):612-632
    [281]Vasebi A., Fesanghary M., Bathaee S.M.T. Combined heat and power economic dispatch by harmony search algorithm[J], International Journal of Electrical Power & Energy Systems,2007,29(10):713-719
    [282]Kavvadias K.C., Maroulis Z.B. Multi-objective optimization of a trigeneration plant[J], Energy Policy,2010,38(2):945-954
    [283]Bartelj L., Paravan D., Golob R. Cogeneration market strategy with or without heat accumulator[J], Elektrotehniski Vestnik,2005,72(4):195-200
    [284]Rong A., Lahdelma R. CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization[J], European Journal of Operational Research,2007,176(3):1874-1895
    [285]Savola T., Fogelholm C.-J. MINLP optimisation model for increased power production in small-scale CHP plants[J], Applied Thermal Engineering, 2007,27(1):89-99
    [286]Rong A., Hakonen H., Lahdelma R. A dynamic regrouping based sequential dynamic programming algorithm for unit commitment of combined heat and power systems[J], Energy Conversion and Management,2009,50(4):1108-1115
    [287]Georgiades G., Chikahisa T., Hishinuma Y., et al. Computational method for determining the optimum expansion level of a cost effective cogeneration network and application results for a l.6 million cold climate city[A], Proceedings of American Society of Mechanical Engineers, Power Division[C]. Burlingame, CA, USA,1999
    [288]Hudson C.R., Badiru A.B. Nonlinear optimization in equipment size selection for distributed generation applications[A], Proceedings of ⅡE Annual Conference and Exposition 2005[C] Atlanta, GA, United states,2005
    [289]Sahoo P.K. Exergoeconomic analysis and optimization of a cogeneration system using evolutionary programming[J], Applied Thermal Engineering, 2008,28(13):1580-1588
    [290]Groscurth H.M., Kummel R., Van Gool W. Thermodynamic limits to energy optimization[J], Energy,1989,14(5):241-258
    [291]唐家裕,付林,狄洪发.不同类型供热机组负荷优化的研究[J],东北电力技术.2007,08):10-13
    [292]Roy S. An approach to configure optimal cogeneration system between existing steam headers of an industry[J], International Journal of Energy Research,1999,23(7):625-635
    [293]Wang J., Dai Y., Gao L. Parametric analysis and optimization for a combined power and refrigeration cycle[J], Applied Energy,2008,85(11):1071-1085
    [294]Dai Y., Wang J., Gao L. Exergy analysis, parametric analysis and optimization for a novel combined power and ejector refrigeration cycle[J], Applied Thermal Engineering,2009,29(10):1983-1990
    [295]Mazur V. Fuzzy thermoeconomic optimization of energy-transforming systems[J], Applied Energy,84(7-8):749-762
    [296]Gonzalez-Chapa M.A., Vega-Galaz J.R. Fuel optimization for power, heat and CHP systems constrained by emissions regulations and ambient conditions[A], Proceedings of American Society of Mechanical Engineers, Advanced Energy Systems Division[C]. Orlando, FL, United states,2005:465-470
    [297]Chikahisa T., Hishinuma Y. Basic characteristics of performance and strategy to maximize CO2 reduction extent of cogeneration systems[A], Proceeding of International Conference on Power Engineering[C]. Tokyo, Japan.2003:43-48
    [298]刘晓丹.冷热电联产系统分析与运行优化[D].大连:大连理工大学,2007
    [299]Rong A., Lahdelma R. An efficient linear programming model and optimization algorithm for trigeneration[J], Applied Energy,2005,82(1):40-63
    [300]Rong A., Lahdelma R. An efficient model and specialized algorithms for cogeneration planning[A], Proceedings of Series on Energy and Power Systems[C]. Krabi, Thailand,2005:1-7
    [301]Tibi N.A., Arman H. A linear programming model to optimize the decision-making to managing cogeneration system[J], Clean Technologies and Environmental Policy,2007,9(3):235-240
    [302]Iversen F.K., Nielsen M.P., Grue J., et al. Optimal operation in CHP systems-Using mathematical programming and heuristic rules[J], American Society of Mechanical Engineers, Advanced Energy Systems Division (Publication) AES, 2000,40:405-411
    [303]Tsukada T., Tamura T., Kitagawa S., et al. Optimal operational planning for cogeneration system using particle swarm optimization[A], Proceedings of the 2003 IEEE Swarm Intelligence Symposium[C]. Piscataway, NJ, USA, 2003:138-143
    [304]Kitagawa S., Nakazawa C., Fukuyama Y. Particle swarm optimization for optimal operational planning of a cogeneration system[A], Proceedings of the IASTED International Conference on Modelling, Simulation, and Optimization[C]. Kauai, HI, United states,2004:43-48
    [305]Ishida T., Mori S., Douwaki K. A development of the decision support system for the optimum cogeneration planning under the constraints of the economic efficiency and partial load properties for the commercial building[J], Transactions of the Institute of Electrical Engineers of Japan, Part B, 2005,125-B(4):373-380
    [306]Toffolo A., Lazzaretto A. Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design[J], Energy, 2002,27(6):549-567
    [307]Rong A., Hakonen H., Lahdelma R. A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems[J], European Journal of Operational Research,2008,190(3):741-755
    [308]Gonzalez Chapa M.A., Vega Galaz J.R. An economic dispatch algorithm for cogeneration systems[A], Proceedings of 2004 IEEE Power Engineering Society General Meeting[C]. Piscataway, NJ, USA,2004:989-994
    [309]Salgado F., Pedrero P. Short-term operation planning on cogeneration systems: A survey[J], Electric Power Systems Research,2008,78(5):835-848
    [310]Ooka R., Komamura K. Optimal design method for building energy systems using genetic algorithms[J], Building and Environment,2009,44(7):1538-1544
    [311]Tsay M.T., Lin W.M., Lee J.L. Application of evolutionary programming for economic dispatch of cogeneration systems under emission constraints[J], International Journal of Electrical Power and Energy Systems, 2001,23(8):805-812
    [312]Sayyaadi H. Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system[J], Applied Energy,2009,86(6):867-879
    [313]Wong K.P., Algie C. Evolutionary programming approach for combined heat and power dispatch[J], Electric Power Systems Research,2002,61 (3):227-232
    [314]Widiyanto A., Kato S., Maruyama N., et al. Environmental impact of fossil fuel fired co-generation plants using a numerically standardized LCA scheme[J], Journal of Energy Resources Technology,2003,125(1):9-16
    315] Rong A., Lahdelma R. An efficient envelope-based Branch and Bound algorithm for non-convex combined heat and power production planning[J], European Journal of Operational Research,2007,183(1):412-431
    [316]Fukuyama Y., Nishida H., Todaka Y., Particle swarm optimization for optimal operational planning of energy plants[J]. Innovations in Swarm Intelligence, 2009,159-173
    [317]Jung C.H., Lee S.H., Lee J.B. Optimal operation scheduling of cogeneration systems using fuzzy linear programming[A], Proceedings of the International Conference on Electrical Engineering[C]. Beijing, China,1996:144-148
    [318]Griffin P.R., Elmasri M. Economically optimized loading of a combined heat and power facility[A], Proceedings of American Society of Mechanical Engineers[C]. Orlando, FL, USA,1997:ASME
    [319]Dinca C., Badea A., Rousseaux P., et al. A multi-criteria approach to evaluate the natural gas energy systems[J], Energy Policy,2007,35(11):5754-5765
    [320]Afgan N.H., Carvalho M.G. Multi-criteria assessment of new and renewable energy power plants[J], Energy,2002,27(8):739-755
    [321]Doukas H.C., Andreas B.M., Psarras J.E. Multi-criteria decision aid for the formulation of sustainable technological energy priorities using linguistic variables[J], European Journal of Operational Research,2007,182(2):844-855
    [322]Afgan N.H., Carvalho M.G. Sustainability assessment of hydrogen energy systems[J], International Journal of Hydrogen Energy,2004,29(13):1327-1342
    [323]Afgan N.H., Carvalho M.G. Sustainability assessment of a hybrid energy system[J], Energy Policy,2008,36(8):2903-2910
    [324]Begic F., Afgan N.H. Sustainability assessment tool for the decision making in selection of energy system--Bosnian case[J], Energy,2007,32(10):1979-1985
    [325]Jovanovic M., Afgan N., Radovanovic P., et al. Sustainable development of the Belgrade energy system[J], Energy,2009,34(5):532-539
    [326]Mamlook R., Akash B.A., Nijmeh S. Fuzzy sets programming to perform evaluation of solar systems in Jordan[J], Energy Conversion and Management, 2001,42(14):1717-1726
    [327]Mamlook R., Akash B.A., Mohsen M.S. A neuro-fuzzy program approach for evaluating electric power generation systems[J], Energy,2001,26(6):619-632
    [328]Akash B.A., Mamlook R., Mohsen M.S. Multi-criteria selection of electric power plants using analytical hierarchy process[J], Electric Power Systems Research,1999,52(1):29-35
    [329]Mohsen M.S., Akash B.A. Evaluation of domestic solar water heating system in Jordan using analytic hierarchy process[J], Energy Conversion and Management,1997,38(18):1815-1822
    [330]Chatzimouratidis A.I., Pilavachi P. A. Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process[J], Energy Policy,2009,37(3):778-787
    [331]Pilavachi P.A., Roumpeas C.P., Minett S., et al. Multi-criteria evaluation for CHP system options[J], Energy Conversion and Management, 2006,47(20):3519-3529
    [332]Wang J.J., Jing Y.Y., Zhan C.F. Weighting methodologies in multi-criteria evaluations of combined heat and power systems[J], International Journal of Energy Research,2009,33(212):1023-1039
    [333]Pilavachi P.A., Stephanidis S.D., Pappas V.A., et al. Multi-criteria evaluation of hydrogen and natural gas fuelled power plant technologies[J], Applied Thermal Engineering,2009,29(11-12):2228-2234
    [334]Wang J.J., Jing Y.Y., Zhang C.F., et al. A fuzzy multi-criteria decision-making model for trigeneration system[J], Energy Policy,2008,36(10):3823-3832
    [335]Wang J.J., Jing Y.Y., Zhang C.F., et al. Integrated evaluation of distributed triple-generation systems using improved grey incidence approach[J], Energy, 2008,33(9):1427-1437
    [336]Beccali M., Cellura M., Mistretta M. Decision-making in energy planning. Application of the Electre method at regional level for the diffusion of renewable energy technology[J], Renewable Energy,2003,28(13):2063-2087
    [337]皇甫艺,吴静怡,王如竹,等.冷热电联产CCHP综合评价模型的研究[J],工程热物理学报,2005,26(z1):13-16
    [338]Diakoulaki D., Karangelis F. Multi-criteria decision analysis and cost-benefit analysis of alternative scenarios for the power generation sector in Greece[J], Renewable and Sustainable Energy Reviews,2007,11(4):716-727
    [339]Madlener R., Kowalski K., Stagl S. New ways for the integrated appraisal of national energy scenarios:The case of renewable energy use in Austria[J], Energy Policy,2007,35(12):6060-6074
    [340]Chatzimouratidis A.I., Pilavachi P.A. Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process[J], Energy Policy,2008,36(3):1074-1089
    [341]Chatzimouratidis A.I., Pilavachi P.A. Sensitivity analysis of the evaluation of power plants impact on the living standard using the analytic hierarchy process[J], Energy Conversion and Management,2008,49(12):3599-3611
    [342]Cavallaro F., Ciraolo L. A multicriteria approach to evaluate wind energy plants on an Italian island[J], Energy Policy,2005,33(2):235-244
    [343]Burton J., Hubacek K. Is small beautiful? A multicriteria assessment of small-scale energy technology applications in local governments[J], Energy Policy,2007,35(12):6402-6412
    [344]Liposcak M., Afgan N.H., Duic N., et al. Sustainability assessment of cogeneration sector development in Croatia[J], Energy,2006,31(13):2276-2284
    [345]Chattopadhyay D., Ramanathan R. A new approach to evaluate generation capacity bids[J], IEEE Transactions on Power Systems,1998,13(4):1232-1237
    [346]Loken E., Botterud A., Holen A.T. Use of the equivalent attribute technique in multi-criteria planning of local energy systems[J], European Journal of Operational Research,2009,197(3):1075-1083
    [347]Papadopoulos A., Karagiannidis A. Application of the multi-criteria analysis method Electre III for the optimisation of decentralised energy systems[J], Omega,2008,36(5):766-776
    [348]Goumas M.G., Lygerou V.A., Papayannakis L.E. Computational methods for planning and evaluating geothermal energy projects[J], Energy Policy, 1999,27(3):147-154
    [349]Haralambopoulos D.A., Polatidis H. Renewable energy projects:structuring a multi-criteria group decision-making framework[J], Renewable Energy, 2003,28(6):961-973
    [350]Alanne K., Salo A., Saari A., et al. Multi-criteria evaluation of residential energy supply systems[J], Energy and Buildings,2007,39(12):1218-1226
    [351]Chatzimouratidis A.I., Pilavachi P.A. Objective and subjective evaluation of power plants and their non-radioactive emissions using the analytic hierarchy process[J], Energy Policy,2007,35(8):4027-4038
    [352]Kablan M.M. Decision support for energy conservation promotion::an analytic hierarchy process approach[J], Energy Policy,2004,32(10):1151-1158
    [353]Aras H., Erdogmus S., Ko E. Multi-criteria selection for a wind observation station location using analytic hierarchy process[J], Renewable Energy, 2004,29(8):1383-1392
    [354]Georgopoulou E., Lalas D., Papagiannakis L. A multicriteria decision aid approach for energy planning problems:The case of renewable energy option[J], European Journal of Operational Research,1997,103(1):38-54
    [355]Wang J.J., Zhang C.F., Jing Y.Y., et al. Using the fuzzy multi-criteria model to select the optimal cool storage system for air conditioning[J], Energy and Buildings,2008,40(11):2059-2066
    [356]Afgan N.H., Pilavachi P.A., Carvalho M.G. Multi-criteria evaluation of natural gas resources[J], Energy Policy,2007,35(1):704-713
    [357]Goumas M., Lygerou V. An extension of the PROMETHEE method for decision making in fuzzy environment:Ranking of alternative energy exploitation projects[J]. European Journal of Operational Research, 2000,123(3):606-613
    [358]Renn O. Social assessment of waste energy utilization scenarios[J], Energy, 2003,28(13):1345-1357
    [359]Patlitzianas K.D., Ntotas K., Doukas H., et al. Assessing the renewable energy producers'environment in EU accession member states[J], Energy Conversion and Management,2007,48(3):890-897
    [360]Ramanathan R., Ganesh L.S. Energy resource allocation incorporating quantitative and qualitative criteria:an integrated model using goal programming and AHP[J], Socio Economic Planning Sciences, 1995,29(3):197-218
    [361]Ramanathan R., Ganesh L.S. A multi-objective programming approach to energy resource allocation problems[J], International Journal of Energy Research,1990,17(2):105-119
    [362]Hobbs B.F., Horn G.T.F. Building public confidence in energy planning:a multi-method MCDM approach to demand side planning at BC gas[J], Energy Policy,1997,25(3):357-375
    [363]Ben Salah C., Chaabene M., Ben Ammar M. Multi-criteria fuzzy algorithm for energy management of a domestic photovoltaic panel[J], Renewable Energy, 2008,33(5):993-1001
    [364]Jaber J.O., Jaber Q.M., Sawalha S.A., et al. Evaluation of conventional and renewable energy sources for space heating in the household sector[J], Renewable and Sustainable Energy Reviews,2008,12(1):278-289
    [365]Lee S.K., Mogi G., Kim J.W., et al. A fuzzy analytic hierarchy process approach for assessing national competitiveness in the hydrogen technology sector[J], International Journal of Hydrogen Energy,2008,33(23):6840-6848
    [366]黄飞,何明.灰色系统关联模式对热电冷三联供方案的综合评价[J],热电技术,2000,1):35-37
    [367]Neves L.P., Martins A.G., Antunes C.H., et al. A multi-criteria decision approach to sorting actions for promoting energy efficiency[J], Energy Policy, 2008,36(7):2351-2363
    [368]Madlener R., Antunes C.H., Dias L.C. Assessing the performance of biogas plants with multi-criteria and data envelopment analysis[J], European Journal of Operational Research,2009,197(3):1084-1094
    [369]Barda O.H., Dupluis J., Lencoini P. Multicriteria location of thermal power plants[J], European Journal of Operations Research,1990,45(2-3):332-346
    [370]Blondeau P., Sperandio M., Allard F. Multicriteria analysis of ventilation in summer period[J], Building and Environment,2002,37(2):165-176
    [371]Roulet C.A., Flourentzou F., Labben H.H., et al. ORME:A multicriteria rating methodology for buildings[J], Building and Environment,2002,37(6):579-586
    [372]Saaty T.L. Modeling unstructured decision problems:a theory of analytical hierarchies[A], Proceedings of the first International Conference on Mathematical Modeling[C]. University of Missoure Rolla,1977
    [373]Saaty T.L. The analytic hierarchy process[M]. New York, NY, USA: McGraw-Hill,1980
    [374]Zadeh L.A. Fuzzy sets[J], Information and Control,1965,8(3):338-353
    [375]Bellman R., Zadeh L.A. Decision making in a fuzzy environment[J], Management Science,1970,17B(4):141-164
    [376]魏世孝,周献中.多属性决策理论方法及其在C3I系统中的应用[M].北京:国防工业出版社,1998
    [377]Cengiz K. Fuzzy Multi-criteria Decision Making[M]. Springer,2008
    [378]Deng J.L. Control problems of grey system[J], Systems and Control Letters, 1982,1(5):288-294
    [379]Benayoun R., Roy B., Sussman N. Manual de reference du programme electre[M]. Pairs:Direction Scientifiques SEMA,1966
    [380]Roy B. Classement et choix en presence de points de vue multiples:La methode ELECTRE[J], Revue Francaise d'Informatique et de Recherche Operationally 1968,(8):57-75
    [381]Roy B. ELECTRE Ⅲ:Un algorithme de classements fonde sur une representation floue des preference en presence de criteres multiples[J], Cahiers de CERO,1978,20(1):3-24
    [382]Roy B., Bertier P. La methode ELECTRE Ⅱ:Une methode au media-planning.[M]. Amsterdam:North-Holland,1973
    [383]Brans J.P. (Ed.), Operational Research'84[M]. North-Holland, Amsterdam, 1984
    [384]Takahashi K., Ishizaka T. Application of information theory for the analysis of cogeneration-system performance[J], Applied Energy,1998,61 (3):147-162
    [385]付祥钊,肖益民.建筑节能原理与技术术[M].重庆:重庆大学出版社,2008
    [386]GB 50178-93建筑气候区划标准[S].北京:中国建筑工业出版社,1993
    [387]GB 50176-93民用建筑热工设计规范[S].北京:中国计划出版社,1993
    [388]GB 50189-2005公共建筑节能设计标准[S].北京:中国建筑工业出版社,2005
    [389]Medrano M., Brouwer J., McDonell V., et al. Integration of distributed generation systems into generic types of commercial buildings in California[J], Energy and Buildings,2008,40(4):537-548
    [390]Fumo N., Mago P.J., Chamra L.M. Cooling, heating, and power energy performance for system feasibility[J], Journal of Power and Energy, 2008,222(3):347-354
    [391]Morvay Z.K., Gvozdenac D.D. Applied industrial energy and environmental management[M]. Chicbester:John Wiley & Sons Ltd,2008
    [392]冯志兵,金红光.冷热电联产系统的评价准则[J],工程热物理学报,2005,26(5):725-728
    [393]Dincer I. Environmental impacts of energy[J], Energy Policy, 1999,27(14):845-854
    [394]GBC. Green Building Challenge 2000[M]. Stokholm:The Swedish Council for Building Research,2000
    [395]Department for Environment Food and Rural Affairs, Department of Energy and Climate Change (DECC),2009 Guidelines to Defra/DECC's GHG Conversion Factors for Company Reporting[EB/OL]. (Sep.2009). [2009-12]. http://www.defra.gov.uk/environment/business/reporting/conversion-factors.htm
    [396]Co-operative Financial Services, Co-operative Financial Services Sustainability Report 2003[EB/OL]. (2003). [2009-12]. http://www.cfs.co.uk/sustainability2003/ecological/conversions.htm.
    [397]Ravishankara A.R., Daniel J.S., Portmann R.W. Nitrous Oxide (N:O):The Dominant Ozone-Depleting Substance Emitted in the 21st Century[J], Science, 2009,326(5849):123-125
    [398]The engineering toolbox, Refrigerants-environmental properties[EB/OL]. [2009-12] http://www.engineeringtoolbox.com/
    [399]Mago P.J., Fumo N., Chamra L.M. Performance analysis of CCHP and CHP systems operating following the thermal and electric load[J], International Journal of Energy Research,2009,33(9):852-864
    [400]Mancarella P., Chicco G. Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II:Analysis techniques and application cases[J], Energy,2008,33(3):418-430
    [401]Piacentino A., Cardona F. An original multi-objective criterion for the design of small-scale polygeneration systems based on realistic operating conditions[J], Applied Thermal Engineering,2008,28(17-18):2391-2404
    [402]Fumo N., Mago P.J., Chamra L.M. Emission operational strategy for combined cooling, heating, and power systems[J], Applied Energy, 2009,86(11):2344-2350
    [403]Chang N.B., Parvathinathan G., Breeden J.B. Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region[J], Journal of Environmental Management,2008,87(1):139-153
    [404]Qin X.S., Huang G.H., Chakma A., et al. A MCDM-based expert system for climate-change impact assessment and adaptation planning-A case study for the Georgia Basin, Canada[J], Expert Systems with Applications, 2008,34(3):2164-2179
    [405]Chou C.-C. A fuzzy MCDM method for solving marine transshipment container port selection problems[J], Applied Mathematics and Computation, 2007,186(1):435-444
    [406]Farahani R.Z., Asgari N. Combination of MCDM and covering techniques in a hierarchical model for facility location:A case study[J], European Journal of Operational Research,2007,176(3):1839-1858
    [407]Kwak N.K., Lee C.W., Kim J.H. An MCDM model for media selection in the dual consumer/industrial market[J]. European Journal of Operational Research, 2005,166(1):255-265
    [408]Ehrgott M.. Klamroth K., Schwehm C. An MCDM approach to portfolio optimization[J], European Journal of Operational Research, 2004,155(3):752-770
    [409]Ozelkan E.C., Duckstein L. Analysing Water Resources Alternatives and Handling Criteria by Multi Criterion Decision Techniques[J], Journal of Environmental Management,1996,48(1):69-96
    [410]牛秀敏,郑少智.几种常规综合评价方法的比较[J],统计与决策,2006,209(3):142-143
    [411]Ustinovichius L., Zavadskas E.K., Podvezko V. Application of a quantitative multiple criteria decision making (MCDM-1) approach to the analysis of investments in construction[J], Control and Cybernetics,2007,36(1):251-268
    [412]田蕾.建筑环境性能综合评价体系研究[M].南京:东南大学出版社,2009
    [413]叶义成,柯丽华,黄德育.系统综合评价技术及其应用[M].北京:冶金工业出版社,2006
    [414]李荣钧.模糊多准则决策理论与应用[M].北京:科学出版社,2002
    [415]徐玖平,吴巍.多属性决策的理论与方法[M].北京:清华大学出版社,2006
    [416]Saaty T.L. A scaling method for priorities in hierarchical structures[J], Journal of Mathematical Psychology,1978,1(1):57-68
    [417]Howard C. Effect of lubricating oil contamination on condensation in refrigerant R22[J], International Journal of Energy Research, 1992,16(4):327-340
    [418]魏巍贤,冯佳.多目标权系数的组合赋值方法研究[J],系统工程与电子技术,1 998,20(2):14-16
    [419]梁杰,侯志伟.AHP法专家调查法与神经网络相结合的综合定权方法[J],系统工程理论与实践,2001,21(3):59-63
    [420]陶菊春,吴建民.综合加权评分法的综合全值确定新探[J],系统工程理论与实践,2001,21(8):43-48
    [421]汪泽焱,顾红芳,益晓新,等.一种基于熵的线性组合赋权法[J],系统工程理沦与实践,2003,3):112-116
    [422]陈华友,多属性决策中的一种最优组合赋权方法研究[J],运筹与管理,2003,12(2):6-10
    [423]郭亚军.综合评价理论、方法及应用[M].北京:科学出版社,2007
    [424]GB 3187-82可靠性基本名词术语及定义[S].北京:中国标准出版社,1982
    [426]郭永基.可靠性工程原理[M].北京:清华大学出版社,2002
    [426]谭芙蓉,汪志斌,白同朔.大型发电机组早期故障率的统计分析[J], 上海交通大学学报,2005,39(12):2093-2096
    [427]Marquez A.C., Heguedas A.S.n., lung B. Monte Carlo-based assessment of system availability. A case study for cogeneration plants[J], Reliability Engineering and System Safety,2005,88(3):273-289

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700