用户名: 密码: 验证码:
工业粗硫酸铜制备电积铜粉及新型缓蚀剂应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜粉是粉末冶金工业的基础原材料之一,也是我国大量生产和消费的有色金属粉末,在现代工业生产中发挥着不可替代的作用。以粗硫酸铜为原料,采用不溶阳极电积的方法制备铜粉具有原料成本低、工艺流程短、产品应用领域广等优点。但是在实际生产过程中,所采用的粗硫酸铜中As、Sb、Bi等杂质直接造成电积铜粉中杂质含量超标;同时,在不溶阳极电积过程中所使用的阳极为铅合金阳极,阳极板质量的好坏,将直接影响铜粉中铅的含量。本论文以电积铜粉为研究目标,较为系统研究了合成工艺、材料改性、结构表征及电化学性能的研究。
     在大量文献调研的基础上,作者分别采用氧化-中和-沉淀法和氧化-中和-絮凝法净化粗硫酸铜溶液,研究了各操作参数对净化除杂效果的影响,确定了最佳工艺条件。研究表明:在氧化-中和-沉淀法除杂过程中,控制Cu2+浓度为60g/L、Fe/As(质量比)=13.5、30%的双氧水加入量为2mL/L、终点pH=4.0、氧化时间为5mmin,除杂效果为:As脱除率为98.03%,Sb脱除率为42.97%,Bi脱除率为35.36%,原液中Fe脱除率为89.42%;在氧化-中和-絮凝法除杂过程中,控制Cu2+浓度为60g/L,聚合剂加入量为3mL, H2O2加入量为20mL/L,氧化时间为10min,随后调节pH至3.8,反应时间为1h,除杂效果为:As脱除率为94.17%,Sb脱除率为45.95%,Bi脱除率为88.64%,原液中Fe脱除率为98.83%。
     系统研究了电积铜粉过程电解液组成以及工艺条件对电流效率和产品性能的影响。研究结果表明:Cu2+浓度、电解液温度、刮粉周期、异名极距的增加有利于提高电流效率;电流密度、硫酸浓度、电解液循环流量的增加有利于得到粉末粒度小的铜粉;同时,随着Cu2+浓度、硫酸浓度、电解液温度增加会降低槽电压。在最佳的工艺条件下,即Cu2+浓度15g/L,硫酸浓度140g/L,电流密度为1800A/m2,温度为35。C,刮粉周期为30min,循环流量为14L/h,极距为4.5cm时验证进行了电极铜粉试验,得到的铜粉产品质量达到了国家标准FTD2的要求,粒度分布均匀且微观形貌呈树枝状。
     采用计时电位法(CP)、循环伏安(CV)、腐蚀速率、线性电位扫描(LSV)等电化学测试手段,研究Pb-Ag-Ca, Pb-Sn-Ca, Pb-Sn-Sr, Pb-Sn-Sb-Ag, Pb-Sb合金阳极的阳极电位与耐腐蚀性能,优选出Pb-Ag-Ca为最佳阳极,为大电流密度下不溶阳极电积铜粉的工业生产提供了理论依据。
     首次采用A缓蚀剂对铜粉进行防氧化处理。A与B在结构和缓蚀机理上类似(缓蚀剂B为BTA),都在铜粉表面形成的聚合配合物膜,只是A的结构单元比B形成的配合物膜多了CH3疏水基,所以疏水性增强,缓蚀效果增加。A缓蚀剂防氧化效果明显优于B缓蚀剂,且价格便宜,无毒,对产品质量无污染,完全可以取代B作为电解铜粉的气相缓蚀剂。浓度为0.75‰的A缓蚀剂用量为常温下放置三天处理铜粉工艺的最佳用量。
     进行了连续电积铜粉工程化试验,确定了除杂工艺参数,30Kg粗硫酸铜配制成约120L溶液,按照铁砷比13.5,H202(工业级)加入量为溶液量的1/40,用NaOH调节pH至3.8,除杂效果最好。As脱除率为98.08%,Sb脱除率为85.29%,Bi脱除率为97.83%,原液中Fe脱除率为76.09%;确定了优化电积工艺参数,铜离子浓度12-14g/L,硫酸浓度135-140g/L,电流密度1600-1800A/m2,温度32-35℃,刮粉周期30mmin,循环流量30-40L/h,极距5.5cm。经过除杂处理的硫酸铜溶液,电积制备铜粉大大降低了铜粉中As、Sb、Bi、Fe、Pb等杂质的含量,铜粉各项指标均达到国家标准中FTD2中的要求。
Copper powders play vital role in modern industry, because it is not only one of the fundamental materials in powder metallurgy industry, but also has the largest production and comsumption in the non-ferrous metal powders in China. With the crude copper sulfate as the raw material, the preparation of copper powder by electrowinning has the advantages including low cost, short process, wide application of the product, and so on. However, in the actural process, using crude copper sulfate as raw materials will directly make the impurities such as As, Sb, Bi, etc. higher than the standard in the production of copper powder by electrowinning. In the meantime, the quality of the anode used in the electrowinning will directly affect the content of Pb in the copper powders, which is now Pb-Ca-Sn in use in factory. The aims of the present study were focused on the preparation processes, the modification of materials, the structural characterization and the electrochemical properties of copper powders.
     In this paper, the impurities removal from the crude copper sulfate was carried out by oxidation-neutralization-precipitation method and oxidation-neutralization-flocculation method, respectively. The results show that:In the oxidation-neutralization-precipitation process, the optimum removal conditions were obtained as follows:the removal efficiencies of As, Sb, Bi and Fe reach98.03%,42.97%,35.36%and89.42%, respectively by controlling60g/L of Cu2+concentration, mFe/mAs=13.5,2ml/L of30%H2O2, pH=4.0with5min of oxidation time; In the oxidation-neutralization-flocculation process, the optimum removal conditions were obtained as follows:the removal efficiencies of As, Sb, Bi and Fe reach94.17%,45.95%,88.64%and98.83%, respectively, by controlling60g/L of Cu2+concentration,3ml of aggregating agent,20ml/L of30%H2O2, pH=3.8with10min of oxidation time and1h for reaction time.
     The effects of compositions of electrolyte and process conditions on the current efficiency and product performance were investigated. The results show that the increases of Cu2+concentration, electrolyte temperature, scraping time and unlike electrode distances improve the current efficiency. The increase of high current density, high H2SO4 concentration and low Cu2+concentration was beneficial to obtain small particle size powders. Meanwhile, cell voltage was reduced by increasing Cu2+concentration, H2SO4concentration, electrolyte temperature. The optimum conditions were determined as follows:15g/L of Cu2+concentration,140g/L of H2SO4concentration,1800A/m2of current density,35℃of electrolyte temperature,30min of scraping time,14L/h of circulation flow and4.5cm of eletrode distance, respectively. Under the optimum conditions, the adaptability of impurities removal method were demonstrated, and high quality copper powders with normal distribution of particle size and dendritic shape were successfully obtained. All indexes could meet the national standard of FTD2.
     In order to seek for the insoluble anode with low anode potential and corrosion rate, this paper studied the electrochemistry performance of Pb-Ag-Ca, Pb-Sn-Ca, Pb-Sn-Sr, Pb-Sn-Sb-Ag, Pb-Sb by CP-Chronopotentiometry, Cyclic Voltammetry(CV), Corrosion Rate and Linear Sweep Valtammetry(LSV). Among these anodes, Pb-Ag-Ca alloy was prior to other alloy anode with lowest stable anode potential and corrosion rate for industry application of preparing copper powder under large current density.
     Corrosion inhibitor A was used to be as anti-oxidation firstly. Both A and B have the similar structure and corrosion inhibiting mechanism, which is the formation of polymeric compound film on copper powder surface. However, inhibitor A is more hydrophobic and effective than inhibitor B, which is due to the additional CH3group in inhibitor A compared to inhibitor B. The oxidation process was obviously superior to corrosion inhibitor B, and cheaper than B, non-toxic, non-polluting. And the product could completely replace B as electrolytic copper powder of gas phase inhibitors. The best condition was concentration of0.75%o per dosage of corrosion inhibitor A at normal temperature after placing three days.
     The continuous engineering-oriented experiment of electrowinning copper was carried out and the technological parameters were determined.30kg of crude copper sulfate were added into the solution approximately to120L. By controlling adding1/40total solution volume of H2O2, Fe/As=13.5and adjusting the solution final pH to3.8with NaOH, the removal efficiencies of As, Sb, Bi and Fe could reach98.08%,85.29%,97.83%, and76.09%, respectively. And then, the optimum technological parameters of electro winning copper were as follows:12-14g/L of concentration of copper ions,135-140g/L of concentration of sulphuric acid,1600-1800A/m2of current density,32-35℃of work temperature,32-30min of scraping powder cycle,30-40L/h of circulation flow,5.5cm of electrode distance. After the impurity removal, the content of As, Sb, Bi, Fe, Pb and other impurities in electrowinning copper powder prepared from copper sulfate solution was greatly reduced. All indexes can meet the national standard of FTD2.
引文
[1]王晓霞,叶红齐,苏周等.超细铜粉的制备与应用[J].材料导报,2004,18(3):140-142.
    [2]吴伟钦,何丽芳,李国明等.超细铜粉的研究现状与发展趋势[J].湖南有色金属,2006,22(1):34-37.
    [3]黄东,南海,吴鹤.纳米铜粉的制备进展[J].金属功能材料,2004,11(2):30.
    [4]王晔,李岚.我国铜粉的生产与消费现状[J].铜业工程,2003(3):48-50.
    [5]Moats M, Free M. A bright future for copper electrowinning[J]. JOM,2007, 59(10):34-36.
    [6]万新梁.全球铜及铜合金粉末的生产现状及应用发展趋势[J].新材料产业,2009(4):28-35.
    [7]田爱堂,等.超细铜粉的制备进展[J].上海有色金属,2006,27(2):38.
    [8]罗艳,周康根,肖妍艳.导电浆料用铜粉的表面改性及其性能[J].材料与冶金学报,2006,5(2):119.
    [9]Lu L,et al.Superplastic extensibility of nanocrystalline copper at room temperature[J].Science,2000,2:1463.
    [10]刘增林,张德金,于永亮,赵晶.2007年我国铁粉、铜粉生产状况分析[J].莱钢科技,2008(136):17-20.F
    [11]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002.
    [12]李森,喻建胜,蒋渝等.超声电沉积制备纳米铜粉末的机理研究[J].材料开发与应用,2004,19(3):12-15.
    [13]王菊香,赵询,潘进,尹新方.超声电解法制备超细金属粉的研究[J].材料科学与工程,2000,18(4):70-74.
    [14]何峰.制备超细金属粉末的新型电解法[J].粉末冶金技术,2001,19(2):80-82.
    [15]朱协彬,段学臣.超声电解法制备纳米铜粉的研究[J]上海有色金属,2004,25(3):36-40.
    [16]李占荣,汪礼敏,万新梁.低松装密度水雾化铜粉工艺的研究[J].粉末冶金工业,2003,13(1):5-7.
    [17]比嘉知藏.[P].特许公报,昭-37-1683.
    [18]刘志杰,赵斌,张宗涛.以抗坏血酸为还原剂的超细铜粉的制备及其热稳定性[J].华东理工大学学报,1996,22(5):548-553.
    [19]廖戎.以甲醛为还原剂制备超细铜粉的研究[J].成都理工大学学报,2003,30(4):417-421.
    [20]张志梅,韩喜江,孙森窒.纳米级铜粉的制备[J].精细化工,2000,17(2):69-71.
    [21]Zhao Bin, Liu Zhijie, Zhang Zongtao. Improvement of Oxidation Resistance of Ultrafine Copper Powders by Phosphating Treatment[J]. Journal of Chemistry,1997,30(1):157-160.
    [22]Lisiecki I, Billoudet F, Pileni M P. Syntheses of Copper Nanoparticles in Gelified Microemulsion and in Reverse Micelles[J]. J Molecular Liquids,1997, 72:251.
    [23]徐刚,徐盛明,李林艳.液相化学还原法制备单分散超细金属粉[C].中国化学会第七届全国无机化学学术会议,2007.
    [24]刘维平.采用改进型振动球磨机制备超细铜粉的研究[J].江西科学,2000,18(3):24-27.
    [25]Ding J,W F Miao, E G McCormick et al. Appl. Phys.Lett. [J],1997 (5):35-37.
    [26]谢中亚,徐建生.润滑与密封[J].2006,175(3):126-128.
    [27]M. Kobiyama, T. Inami, S. Okuda. Scripta Materialia[J],2001,44(8-9): 1547-1551.
    [28]张燕红,邱向东,赵谢群等.稀有金属[J].1997,21(6):451-454.
    [29]张燕红.邱向东。赵谢群等.稀有金属[J].1998,22(1):60-63.
    [30]Dordal.J.Alloys&Compounds[J].1996,234(L1-L3):11.
    [31]Dordal [J]. Journal of Alloys and Compounds.1996,234(L1-L3):11
    [32]顾福博.乳液体系中新型纳米材料的合成表征及其生成机理研究[D].北京:北京化工大学,2008.
    [33]徐建生,夏会芳,周红星,夏文武.微乳液法制备超细粉体[J].2008,30(2):105-107.
    [34]Lisiecki I, Billoudet F, Pileni M P. Syntheses of Copper Nanoparticles in Gelified Microemulsion and in Reverse Micelles [J]. J Molecular Liquids,1997, 72(1-3):251-252.
    [35]杨海兰.铜电解过程中的杂质走向[J].有色金属(冶炼部分).2001,(6):16-18.
    [36]Cifuentes, L., Castro, J. M., Casas, J. M., etal. Modelling a copper electro-winning cell based on reactive electro-dialysis. Applied Mathematical Modelling[J],2007,31(7):1308-1320.
    [37]易克俊.砷在铜冶炼过程的分布及其控制[J].湖南有色金属,2001,17:1-16.
    [38]吴继烈.铋在铜冶炼过程中的分配及脱除[J].有色冶炼,2000,29(1):6-11.
    [39]张源,高大银,张胜树,等.金隆铜业公司阴极铜杂质分布的调查[J].矿冶,1999(3):45-48.
    [40]鲁道荣,林建新.铋对阴极铜沉积微观结构的影响[J].合肥工业大学学报(自然科学版),1997,20(6):72-76.
    [41]郑金旺.铜电解精炼过程中砷、锑、铋的危害及脱除方式的进展[J].铜业工程,2002(2):17-20.
    [42]曹应科.高砷锑粗铜电解沉积物的表面质量控制[J].湖南有色金属,2005,21(4):14-54.
    [43]Zhu Zeng-Wei, Zhu Di, Qu Ning-Song. Synthesis of smooth copper deposits by simultaneous electroforming and polishing process[J]. Materials Letters, 2008(62):1283-1286.
    [44]鲁道容,李学良,何健波,等.杂质离子对铜沉积微观结构的影响[J].哈尔滨工业大学学报,2003,35(10):1205-1208.
    [45]T. A. Kravchenko, M. Yu. Chayka, D. V. Konev, L. N. Polyanskiy, etal. The influence of the ion-exchange groups nature and the degree of chemical activation by silver on the process of copper electrodeposition into the ion exchanger. Electrochimica Acta[J],2007 (53):330-336.
    [46]L. Cifuentes, M. Grageda, G. Crisostomo. Electrowinning of copper in two-and three-compartment reactive electrodialysis cells[J]. Chemical Engineering Science,2006 (61):3623-3631.
    [47]郑金旺.铜电解精炼时砷、锑、铋的分配行为及其应用研究[D].长沙:中南大学,2005.
    [48]王学文.铜电解过程砷锑酸的形成及作用机理研究[D].长沙:中南大学,2003.
    [49]E. N., Petkova. Mechanisms of floating slime formation and its removal with the help of sulphur dioxide during the electrorefining of anode copper[J]. Hydrometallurgy[J],1997 (46):277-286.
    [50]Wang Xue-Wen, Chen Qi-Yuan, Yin Zhou-Lan, et al. Identification of arsenato antimonates in copper anode slimes[J]. Hydrometallurgy,2006(84): 211-217.
    [51]鲁道荣.杂质在铜电解精炼中的电化学行为[J].有色金属,2002,54(4):51-62.
    [52]陈少华,鲁道荣.As3+浓度对阴极铜稳态极化曲线平衡电位的影响[J].安徽化工,2005(6):39-40.
    [53]陈白珍,仇勇海,梅显芝.铜电积过程中砷的电化学行为[J].中南工业大学学报,1997,28(4):347-350.
    [54]陈白珍,仇勇海,梅显芝.电积法脱铜脱砷的现状与进展[J].有色金属(冶炼部分),1998(3):29-31.
    [55]仇勇海,陈白珍.砷化氢的毒性及在铜净液中的防治[J].有色冶炼,2001(2):36-38.
    [56]仇勇海,唐仁衡,陈白珍.砷化氢析出电势的探讨[J].中国有色金属学报,2000,10(1):101-104.
    [57]丁昆,华宏全.铜电解净液过程中砷的脱除[J].有色冶炼,2003,(5):30-61.
    [58]姚素平.诱导法脱砷技术在铜电解液净化系统中的应用[J].有色金属(冶炼部分),1996(1):11-16.
    [59]Matthew J. DeMarco, Arup K. SenGupta, John E. Greenleaf. Arsenic removal using a polymeric/inorganic hybrid sorbent[J]. Water Research,2003, (37):164-176.
    [60]P. Navarro, F. J. Alguacil. Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon[J]. Hydrometallurgy,2002 (66): 101-105.
    [61]Wang Xuewen, Chen Qiyuan, Yin Zhoulan, et al. Removal of impurities from copper electrolyte with adsorbent containing antimony[J]. Hydrometallurgy,2003 (69):39-44.
    [62]仇勇海,陈白珍,梅显芝,等.控制阴极电势电积法新工艺及其应用[J].中南工业大学学报,1999,30(5):501-504.
    [63]左永伟,余守明.金昌冶炼厂电解液净化系统的改造[J].中国有色冶金,2004(3):12-25.
    [64]Navarro P., Alguacil F. J.. Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon[J]. Hydrometallurgy,2002, 66(1-3):101-105.
    [65]Wang X W, Chen Q Y, Yin Z L, etal. Removal of impurities from copper electrolyte with adsorbent containing antimony[J]. Hydrometallurgy,2003, 69(1-3):39-44.
    [66]陈启元,王学文,尹周澜.砷锑酸盐在铜电解液净化中的应用[A].中国有色金属学会第五届学术年会论文集,北京:中国有色金属学会,2003.156-180.
    [67]陈永康.铜电解液还原净化脱砷工艺研究[J].有色金属(冶炼部分),1998(1):8-12.
    [68]王学文,肖炳瑞,张帆.铜电解液碳酸钡脱铋新工艺[J].中国有色金属学报,2006,16(7):1296-1299.
    [69]Xiao Fa-xin, Zheng Ya-jie, Wang Yong, et al. Novel technology of purification of copper electrolyte[J]. Transactions of Nonferrous Metals Society of China,2007 (17):1067-1074.
    [70]曾振欧,曾颖如,吴鸿儒雅,等.镍电解阳极液直接电解净化除铜研究[J].华南理工大学学报,1994,22(5):32-38.
    [71]马红梅,朱志良,张荣华,等.弱碱性环氧阴离子交换树脂去除水中铜的动力学研究[J].离子交换与吸附,2006,22(6):519-526.
    [72]陈爱良,孙培梅,赵中伟,等.用离子交换树脂从镍电解阳极液中除铜的研究[J].矿冶工程,2005,25(6):51-54.
    [73]赵中伟,陈爱良,孙培梅,等.镍电解阳极液深度除铜[J].中国有色金属学报,2009,19(4):749-753.
    [74]何万年,赵旺盛,何思郏.交换吸附法净化铜电解液中的锑和铋研究[J].有色金属(冶炼部分),1998(3):26-35.
    [75]徐瑞东,盘茂森,郭忠诚.锌电积用惰性阳极材料的研究现状[J].电镀与环保,2005,25(1):4-7.
    [76]D. R. Sadoway. A Materials Systems Approach to Celection and Testing of Nonconsumable Anode for the Hall Cell[J]. Light Metals,1990:403-407.
    [77]张招贤,赵国鹏,胡耀红.应用电极学[M].北京:冶金工业出版社,2005,146-326.
    [78]梁镇海,王森,张彦平等.硫酸中Pb/PbO2:阳极的电催化性能[J].有色金属,1996,48(1):42-48.
    [79]张冬,郭忠诚.锌电积用惰性阳极材料的研究现状[J].云南冶金,2008,37(6):48-53.
    [80]潘君益,郭忠诚.锌电积用惰性阳极材料的研究现状[J].云南冶金,2004,33(6):31-35.
    [81]付运康.钛基DSA阳极在锌电积上的应用研讨[J].有色金属(冶炼部分), 2004(3):19-26.
    [82]康斌.锌电积阳极板材的研究发展现状[J].四川冶金,2008,30(2):14-19.
    [83]Newnham R H. Corrosion Rates of Lead Based Anodes for Zinc Electro winning at High Current Densities[J]. J Appl Electrcchem,1992, 22(2):116.
    [84]单维林.锌电解能耗分析及节能对策[J].有色金属,1989(6):29-32.
    [85]赵天从.重金属冶金学(下)[M].北京:冶金工业出版社,1981:201-205
    [86]张玉萍.锌电积用阳极的研究与发展[J].湿法冶金,2001,20(4):169-171
    [87]Felder A, Prengaman R D. Lead Alloys for permanent anode in the nonferrous metals industry [J]. JOM,2006,10:28-31.
    [88]陈康宁.金属阳极[M].上海:华东师范大学出版社,1989,195-991.
    [89]朱军,刘漫博,陈超,赵亮.电锌阳极板材料的研究现状[J].有色矿冶,2007,23(6):36-38.
    [90]王一建,黄本元,王余高,张康夫.金属大气腐蚀与暂时性保护[J].化学工业出版社.2007,67-69.
    [91]杨耀东.铜及铜合金线的氧化及防止[J].电线电缆,2000,1:29-32.
    [92]D.DeNardis, D.Rosales-Yeomans, etc. Characterization of copper-hydrogen peroxide film growth kinetics[J]. Thin Solid Films,2006,513:311-318.
    [93]吴荫顺,郑家荣.电化学保护和缓蚀剂应用技术[M].北京:化学工业出版社,2006,583.
    [94]赵国权,贺家齐,王碧文,张希忠.铜回收、再生与加工技术[M].北京:化学工业出版社,2007,156.
    [95]朱日彰,何业东,齐慧滨.高温腐蚀及高温耐腐蚀材料[M].上海:上海科学技术出版社,1995:99-103,116-126。
    [96]K.Fueki, J.B.wagner. studies of the Oxidation of Nickel in the Temperature Range of 900℃ to 1400℃[J]. Journal of the Electrochemical Society,1965, 112(4):384-388.
    [97]J.E.Stroud, w.C. Tripp, J.M. Wjmmer. Defect Structrue of Ta2O5[J]. Journal of the American Ceramic Society,1974,57(4):172-175.
    [98]Z.Han, L.Lu, H.W.zhang, Z.Q.Yang, F.H.wang, K.Lu. Comparison of the oxidation behavior of nanocrystalline and coarse-grain copper[J]. Oxidation of Metals,2005,63(516):261-275.
    [99]T.P.Hoar, L.E.Price. Trans[J]. Faraday Soc.,1938,34:867.
    [100]W.Jost. Diffusion in Solids, Liquids and Gases, New York[J]. Academic Press,1952.
    [101]倪星云,沈军,张志华.纳米材料的理化特性与应用[M].北京:化学工业出版社,2006,43.
    [102]沈海军.纳米科技概论[J].北京:国防科技出版社,2007,45-49.
    [103]李风生,崔平,杨毅,姜炜.微纳米粉体后处理技术及应用[J].北京:国防工业出版社,2005,17,224.
    [104]蒋红梅.铜一银金属粉抗氧化性分析[J].沈阳农业大学学报,2002,33(3):234-235.
    [105]战凤昌,李悦良.专用涂料[M].北京:化学工业出版,1988,270.
    [106]林栋梁.晶体缺陷[M].上海:上海交通大学出版社,1996,52.
    [107]钱苗根,姚寿山,张少宗.现代表面技术[M].北京:机械上业出版社,1994.
    [108]陈锦宏,李玮.电磁屏蔽导电涂料[J].广州化学,2002,27(1):44-47.
    [109]夏宗锐,张蕾,磷化工艺研究[J].电镀与精饰,1995,17(1):17-20.
    [110]刘忠杰,赵斌,张宗涛,胡黎明.超细铜粉表面磷化及抗氧化性能研究[J].无机化学学报,1996,12(2):193-196.
    [111]李金桂.防腐蚀表面工程技术[M].北京:化学工业出版社,2003,55-59.
    [112]高保娇,蒋红梅,张忠兴.用银氨溶液对微米级铜粉镀银反应机理的研究[J].无机化学学报,2000,1 6(4):669-674.
    [113]程原,高保娇,梁浩.微米级镀银铜粉复合导电涂层的导电性研究[J].应用基础与工程科学学报。2001,9(223):184-190.
    [114]高保娇,高建峰,蒋红梅,等.微米级铜,银双金属粉镀层结构及其抗氧化性[J].物理化学学报,2000,16(4):366-369.
    [115]吴秀华,赵斌,邵佳敏.不同形貌Cu-Ag双金属粉的制备及性能[J].华东理工大学学报,2002,28(4):402-405.
    [116]解芳,梁浩,高保娇.微米级镀银铜粉常温抗氧化性能的表征方法[J].太原理工大学学报,2002,33(1):109-111.
    [117]刘志杰,赵斌,张宗涛,等.超细核壳铜-银双金属粉的制备[J].无机化学学报,1996,12(1):30-34.
    [118]廖辉伟,李翔,彭汝芳,等.包覆型纳米铜.银双金属粉研究[J].无机化学学报,2003,19(12):1327-1330.
    [119]Li C M, Lei H, Tang YJ, etc.Production of copper nanoparticles by the flow levitation method[J].Nanotechnology,2004,15(12):1866-1869.
    [120]竹岛锐树,佐藤止树,家口佳久,等.微细粒状合金粉末的の制造方法[J],日,特开平12139710,1989.6.1
    [121]Xinru Xu, Xiaojun Luo, Hanrui Zhuang, Wenlan Li, Baolin Zhang.Electroless silver coating on fine copper powder and its effects on oxidation resistance[J]. Materials Letters,2003,57:3987-3991.
    [122]钟莲云,吴伯麟,贺立勇.导电涂料用片状镀银铜粉的研制[J].涂料丁业,2003,33(9):12-15.
    [123]罗江山,刘伟,黎军,雷海乐,唐永建,吴卫东.直接置换法制备包覆型纳米铜.银双金属粉末[J].强激光与粒子束,2006,18(4):591-594.
    [124]李哲男,董星龙,王威娜.铜系导电涂料中纳米铜粉抗氧化问题的研究[J].四川大学学报(自然科学版),2005,42(2):220-224.
    [125]李步春.防止铜粉在高温下氧化的研究[J].有机硅材料及应用,1998,4:16-18.
    [126]何益艳,范修涛,陆瑞卿,杜仕国.铜粉表面包覆硅烷偶联剂改性研究[J].腐蚀与防护,2006,27(2):69-71.
    [127]F.Zucchi, V.Grassi, A.frignani, G.Trabanelli. Inhibition of copper corrosion by silane coating[J]. Corrosion Science,2004,46:2853-2865.
    [128]A.M.Beccaria, C.Bertolotto.Inhibitory action of 3-trimethoxysilylpropanethiol-1 on copper corrosion in NaCl solutions[J]. Electrochimica Acta,1997,42:1361-1371.
    [129]R. Tremont, H. De Jesus-Cardona, J. Garcia-Orozco, R.J. Castro, C.R. Cabrera.3-Mercaptopropyltrimethoxysilane as a Cu corrosion inhibitor in KCl solutions[J]. Journal of Applied Electrochemistry,2000,30:737-743.
    [130]R.Haneda, H.Nishihara, K. Aramaki. Chemical modification of an alkanethiol self-assembled layer to prevent corrosion of copper[J]. Journal of the Electrochemical Society,1997,144:1215-1221.
    [131]普文.硅烷偶联剂在无机填料表面处理上的应用[J].化工物资,1992,5:21-23,30.
    [132]周全法,蒋萍萍,朱雯,赵德建.抗氧化纳米铜粉的制备及表征[J].稀有金属材料与工程,2004,33(2):179-182.
    [133]郑水林.粉体表面改性[M].北京:中国建材工业出版社,2003,72.
    [134]Houyi Ma, Shenhao Chen, Bingsheng Yin, Xianqian Liu. Impedance spectroscopic study of corrosion inhibition of copper by surfactants in the acidic solutions. Corrosion inhibition of copper by surfactants in the acidic solutions[J]. Corrosion science,2003,45:867-882.
    [135]庄丽宏,吕振波,田彦文,赵杉林.铜腐蚀及其缓蚀技术应用研究现状[J].腐 蚀科学与防护技术,2005,17(6):418-421.
    [136]张天胜.缓蚀剂[M].北京:化学丁业出版社,2002,277,290-294.
    [137]吴三毛.凝汽器铜管硫酸弧铁造膜防腐处理介绍[J].江西电力,2001,25(3):13-16.
    [138]范工业.防止铜合金热交换器腐蚀的技术改进[J].全面腐蚀控制,2006,20(5):43-45.
    [139]史昌明.凝汽器铜管强化造膜新工艺的应用[J].材料保护,2007,40(5):64-66.
    [140]喻亚非,朱兴宝,鲁进,周钦堂.凝汽器铜管腐蚀原因分析及处理[J].湖北电力,2001,25(2):21-23.
    [141]刘艳泉.凝汽器铜管的腐蚀与防护[J].工业水处理,2000,20(6):41-42.
    [142]L.Tommesani, G.Blllnoro, A. Frignani, C.Monticelli, M.Dalcolle. On the protective action of 1,2,3-benzotriazole derivative films against copper corrosion[J]. Corrosion Science,1997,39(7):1221-1237.
    [143]Brusic V, Frisch M A, Eldridge B N et al. Copper corrosion inhibitions[J]. Journal of the Electrochemical Society,1991,138(8):2253-2258.
    [144]R.walker.Triazole, benzotriazole and naphthotriazole as corrosion inhibitors for copper[J]. Corrosion,1975,31:97-100.
    [145]G.W.Poling, T.Notoya.Corrosion pretreatments for copper-zine allous[J]. Corrosion,1979,35:33-38.
    [146]LC.G Ogle, G.W.Polillg. Corrosion inhibition of copper with benzotriazole[J]. Canadian Metallurgical Quarterly,1975,14:37-46.
    [147]D.Jope, J.Sell, H.W.Pickering and K.G Weil.Application of a quartz crystal microbalance to the study of copper corrosion in acid solution inhibited by triazole-iodide protective films[J]. Journal of the Electrochemical Society,1995, 142:2170-2173.
    [148]R.Youda, H.Nishihara and K.Aramaki. Sers study on inhibition mechanisms of benzotriazole and its derivatives for copper corrosion in sulphate solutions[J]. Corrsion Science,1988,28:87-96.
    [149]A.Frignani, L.Tommesani, G.Brunoro, C. Monticelli, M.Fogagnolo. Influence of the alkyl chain in the protective effects of 1,2,3-benzotrizaole towards copper corrosion[Part 1] inhibition of the anodic and cathodic Reactions[J]. Corrosion Science,1999,41:1205-1215.
    [150]A. M. Fenelon, C.B. Breslin.An electrochemical study of the formation of benzotriazole surface films on copper, zinc and a copper-zine alloy[J]. Journal of Applied Electrochemistry,2001,31:509-516.
    [151]卢小梅,徐艳萍,晏贡全.BTA及其衍生物在3%NaCl溶液中对铜的缓蚀作用[J].江西电力职业技术学院学报,2004,17(3):8-10.
    [152]T.Notoya, G. W. Poling.Topographies of thick Cu-Benzotriazolate films on copper[J]. Corrosion,1976,32:216-223.
    [153]D.Tromans, R.Sun, Anodic polarization behavior of copper in aqueous chloride/benzotriazole solutions[J]. Journal of the Electrochemical Society, 1991,138:3235-3244.
    [154]G.W.Poling.Reflection infra-res studies of films formed by benzotriazole on Cu[J]. Corrosion Science,1970,10:359-370.
    [155]N.Huynh a, S.E. Bottle a, T. Notoya b, D.P. Schweinsberg. Inhibition of copper corrosion by coatings of alkyl esters of carboxybenzotriazole[J]. Corrosion Science,2002,44:2583-2596.
    [156]姚思童,吴晓艺,孙雅茹.铜缓蚀剂的研究及发展现状[J].沈阳工业大学学报,2000,22:173-174.
    [157]旷亚非,陈曙,林志成BTA.MBT协同缓蚀作用机理探讨[J].材料保护,1994,27(8):11-16.
    [158]R.M.Souto,V.Fox,M.M.Laz,M.Perez,S.Gonzalez.Some experiments regarding the corrosion inhibition of copper by benzotriazole and potassium ethyl xanthate[J]. Journal of Electroanalytical Chemistry,1996,411:161-165.
    [159]张大全,高立新.3%NaCI溶液中咪唑和苯并三唑对Cu缓蚀协同作用的研究[J].腐蚀科学与防护技术,2001,13(3):136.138.
    [160]张大全,高立新,周国定.苯并三唑和8-羟基喹啉对铜的缓蚀协同作用[J].物理化学学报,2002,18(1):74-78.
    [161]张人全,高立新.苯并三氮唑和8-羟基喹啉对铜缓蚀作用的研究[J].材料保护,2002,35(4):10-11.
    [162]龚洵洁.热力设备的腐蚀与防护[M].北京:水利电力出版社.1998.
    [163]G.P.Cicileo, Bo M.Rosales, F.E.Varela and J.R.Vilche.Inhibitory action of 8-hydfoxyquinoline on the copper corrosion process[J]. Corrosion Science, 1998,40(11):1915-1926.
    [164]扬文治.腐蚀与保护全书(缓蚀剂)[M].北京:化学工业出版社,1989.
    [165]M.Ohsawa and W. Suetalca.Spectro-electrochemical studies of tile corrosion inhibition of copper by mercaptobenzomiazole[J]. Corrosion Science,1979,19: 709-722.
    [166]严川伟,何毓番,林海潮,曹楚南,郭黎平.2-巯基苯并恶唑(MBO)在铜表面缓蚀膜研究[J].中国腐蚀与防护学报,1999,19(6):367.371.
    [167]C.W.Yan, H.C.Lin, C.N.Cao. Investigation of inhibition of 2-mercaptobenzoxazole for copper corrosion[J]. Electrochimica Acta,2000,45: 2815-2821.
    [168]M.Fleischmann, G. Mengoli, M.M.Musialli, C.Pagura.An electrochemical and Raman spectroscopic investigation of synergetic effects in the corrosion inhibition of copper[J]. Electrochimica Acta,1985,30:1591-1602.
    [169]M.M.Musiani, G. Mergoli, M.Fleischmann, R.Lowry. An electrochemical and SERS investigation of influence of pH on effectiveness of some corrosion inhibition of copper[J]. Journal of Electroanalytical Chemisty,1987,217(1):187-202.
    [170]G. Traballelli, F.Zuccbi, G Brunoro, V. Carassiti, inhibition of copper corrosion in chloride solutions by heterocyclic compounds [J]. Werkstoffe and Korrosion,1973,24:602-606.
    [171]Da-quan Zhang, Li-xin Gao, Guo-ding Zhou.Inhibition of copper corrosion in aerated hydrochloric acid solution by heterocyclic compounds containting a mercapto group[J]. Corrosion Science,2004,46:3031-3040.
    [172]张大全,高立新,周国定,龚琼,陆柱.HCI溶液中2-巯基苯并咪唑和1-苯基-5 巯基-四氮唑对铜的缓蚀作用[J].华东理工大学学报,2002,28(4):429-432.
    [173]E.Geler.D.S.Azambuja.Corrosion inhibition of copper in chloride solutions by pyrazole[J]. Corrosion Science,2000,42:631-643.
    [174]S.Ramesh, S.Rajeswari, S.Maruthamuthul.Corrosion inhibition of copper by new triazole phosphonate derivatives[J]. Applied Surface Science,2004,229: 214-225.
    [175]L.Valek, S.Martinez.Copper corrosion inhibition by Azadirachta indica leaves extract in 0.5 M sulphuric acid[J]. Materials Letters,2007,61(1):148-151.
    [176]A.Bhattacharya, A.De, S.Dast.Electrochemical preparation and study of transport properties of polypyrrole doped with unsaturated organic sulfonates[J]. Polymer,1996,37(19):4375-4382.
    [177]Anna M.Fenelon, Carmel B.Breslin.The electropolymerization of pyrrole at a CuNi electrode:corrosion protection properties[J].Corrosion Science,2003, 45:2837-2850.
    [178]江建明,戚慰先,仲蕾兰,方柏容.化学氧化聚吡咯的结构及导电性的研究[J].高分子材料科学与工程,1991,5(5):94-98.
    [179]徐友龙,季锐,王飞.影响掺杂聚吡咯(PPy)导电性能的因素[J].电子原件与材料.2000,19(5):17-19.
    [180]陈祥宝.聚吡咯导电复合材料结构和特性研究[J].高分子材料科学与工程,1995,11(1):132-134.
    [181]王长松,黎前跃,周本濂,邱晴.聚吡咯导电复合膜的研制[J].功能高分子学报,1998,11(2):167-171.
    [182]尹五生.聚吡咯导电材料合成方法的进展[J].功能材料,1996,27(2):97-102.
    [183]祝伟,祝海峰.聚吡咯的化学氧化合成[J].河南化工,1995,6:10-12.
    [184]Tunc Tuken, birgol Yazlcl, mehmet Erbil.The electrochemical synthesis and corrosion performance of polypyrrole on brass and copper[J]. Progress in Organic Coatings,2004,51:152-160
    [185]李永舫.导电聚吡咯的研究[J].高分子通报,2005,4:51-57.
    [186]Wang Chang-song, Gu Ya-xin, Liu Gang, Shi Hang. Study and preparation of soluble polypyrrole composit (PPY/PMMA) film[J]. Journal of Shenyang institute of Chemical Technology,2001,15(4):241-244.
    [187]张卓,唐洪,吴旭峰,梁晓,石高全.一种耐高温聚噻吩膜的电化学合成[J].高分子学报,2005,6:943-947.
    [188]胡碉,刘彦军.导电高分子聚噻吩及其衍生物的研究进展[J].材料导报,2006,20(1):64-68.
    [189]闻荻江,万影,陈刚.具有共轭结构的导电聚合物及其应用[J].物理,2000,29(1):28-32.
    [190]甘正浩,毛志远,沈复初,郦剑,叶必光.铜的气体表面渗硅新工艺研究[J].材料科学与工程,1996,14(4):38-42.
    [191]彭容秋.铜冶金[M].长沙:中南大学出版社,2004.
    [192]粱保安.铜精矿生产硫酸铜[J].化学世界,1997,25(1):24-26.
    [193]刘本发,向兴凯.冶炼硫酸铜由工业级提纯为饲料级的工艺研究[J].湖南冶金,1997,25(4):19-21.
    [194]吴西.用工业硫酸铜制取高纯硫酸铜的试验研究[J].湿法冶金,1999,18(3):44-46.
    [195]夏兆泉,陈礼运.试剂硫酸铜生产中除铁的研究[J].湖南冶金,1997,25(4):14-17.
    [196]肖远泉.饲料级五水硫酸铜的生产[J].无机盐工业,1994,26(2):25-27.
    [197]龚竹青,李景升,杨喜云.硫酸铜脱除砷、铁的工艺研究[J].中南工业大学学报(自然科学版),2000,31(3):222-224.
    [198]杨喜云,李景升,龚竹青等.硫酸铜杂质脱除工艺[J].中南工业大学学报(自然科学版),2001,32(4):376-378.
    [199]钟云波,梅光贵,钟竹前.硫化法脱除铜电解废液中As、Sb、Bi的试验[J].中南工业大学学报,1997,28(4):336-339.
    [200]聂静.硫酸生产中含砷废水处理方法[J].水处理技术,2005,31(12):5-7.
    [201]姚允斌.物理化学手册[M].上海:上海科学技术出版社,1985.
    [202]王学文.铜电解液自净化机理及工艺研究.[中南大学博士学位论文][C].长沙,中南大学,2003.
    [203]刘春鹏.铜的湿法冶金物理化学[M].北京:中国科学技术出版社,1991.
    [204]朱元保等.电化学数据手册[M].长沙:湖南科学技术出版社,1985.
    [205]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M].长沙:中南工业大学出版社,1986.
    [206]D.C. Mcphail. Thermodynamic properties of aqueous tellurium species between 25 and 350℃[J]. Geochimica et Cosmochimica Acta.1995, 59(5):851-866.
    [207]Yinian Zhu, Broder J.M. The Dissolution and Solubility of Scorodite, FeAsO4-2H2O Evaluation and Simulation with PHREEQC2[J]. Wiss.Mitt. Inst. fur Geologie, TU Bergakedemie Freiberg, Germany,2001,18:1-12.
    [208]V.G. Chukhlantsev. Solubility producs of arsenates[J]. Journal of Inorganic Chemistry,1956,1:1975-1982.
    [209]T. Nishimura, K. Tozawa. On the solubility products of ferric, calcium and magnesium arsenates[J]. Bulletin of the Research,1978,34:20-26.
    [210]M. Z. Makhmetov, A. K. Sagadieva. Solubility of Iron Arsenate[J]. Journal of Applied Chemistry,1981,54:823-824.
    [211]R.G. Robins. The solubility of scorodite, FeAsO4·2H2O[J]. American Mineralogist,1985,70:838-844.
    [212]M.P. Dove, J.D. Rimstide. The solubility of scorodite, FeAsO4·2H2O[J]. American Mineralogist,1987,72:842-844.
    [213]E. Krause, V.A. Ettel. The solubility of scorodite, FeAsO4·2H2O:New data and further discussion[J]. American Mineralogist,1988,73:850-854.
    [214]MaksimoviC VM, PavloviC LjJ, PavloviC MG, etc. Characterization of copper powder particles obtained by electrodeposition as function of different current densities[J]. J Appl Electrochem,2009,39(12):2545-2552.
    [215]李坚,王达建,樊雪萍.铜电解液物理化学性质之三:电解液的电导率[J].有色矿冶,2003,19(5):30-33.
    [216]Gladysz O, Los P, Krzyzak E. Influence of concentrations of copper, leveling agents and temperature on the diffusion coefficient of cupric ions in industrial electro-refining electrolytes [J]. J Appl Electrochem,2007,37(10):1093-1097.
    [217]中华人民共和国国家技术监督局.GB/T 5246-2007.中华人民共和国国家标准-电解铜粉.北京:中国标准出版社,2007-11-01
    [218]李宁,黎德育,翟淑芳,仓知三夫,周德瑞.铅阳极的制造方法与性能[J].材料工程,2000,10:36-41
    [219]纪存朋,于建生.铜电积技术的发展现状及应用前景[J].湿法冶金,2009,28(2):77-83
    [220]苏向东,罗宏,李鹏,等.电积铜用惰性Pb基合金阳极的工业试验[J].有色金属(冶炼部分),2002,54(4):43-45.
    [221]衷水平.锌电积用铅基多孔节能阳极的制备、表征与工程化试验[D].长沙:中南大学.2009.
    [222]赵天从.重金属冶金学(下)[M].北京:冶金工业出版社,1981:201-205.
    [223]Cai W B, Liu H T, Zhou W F. Analysis of the oxidation process of anodic Pb(Ⅱ) films on lead in sulfuric acid solution[J]. Journal of Power Sources, 1996,63(1):131-135.
    [224]张玉萍.锌电积用阳极的研究与发展[J].湿法冶金,2001,20(4):169-171.
    [225]Guo Y L, Niu L, Zhang S Y, etal. The electrochemical behavior of PbSO4 with different structures on Pb[J]. Journal of Power Sources,2000,85(1): 38-43.
    [226]周彦葆,马敏,张新华等.铅铋合金上生长的阳极Pb(Ⅱ)膜的性质[J].电源技术,2003,27(6):528-531.
    [227]Liu H T, Wang Q Z, Zhou W F. Reconsideration of some fundamental aspects of anodic Pb(Ⅱ) films on lead and its alloys in sulfuric acid solution[J]. Journal of Power Sources.1999,84(1):107-113.
    [228]陈体衔.实验电化学[M].厦门:厦门大学出版社,1993.
    [229]衷水平,赖延清,蒋良兴等.锌电积用Pb-Ag-Bi P日极的电化学行为[J].过程工程学报,2008,8(z1):289-293
    [230]廖平婴,尹周澜.盐酸体系萃取分离砷的研究[J].中南矿冶学院学报,1990,21(6):673.
    [231]姚允斌.物理化学手册[M].上海:上海科学技术出版社,1985.
    [232]天津化工研究院.无机盐工业手册:下册[M].北京:化学工业出版社,1993.
    [233]傅崇说.冶金溶液热力学原理与计算[M].北京:冶金工业出版社,1987.
    [234]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M].长沙:中南工业大学出版社,1986.
    [235]Hou-Tian Liu, Qun-Zhou Wang, Wei-Fang Zhou. Reconsideration of some fundamental aspects of anodic Pb(II) films on lead and its alloys in sulfuric acid solution[J]. Journal of Power Sources,1999,84:107-113.
    [236](日)间宫富士雄等著.腐蚀抑制剂及其应用技术(陈允中等译)[M].北京:石油工业出版社,1987:6-14.
    [237]刘永辉,张佩芬,金属腐蚀学原理[M],北京:航空工业出版社,1993.
    [238]姚允斌,解涛,高英敏,物理化学手册[M],上海:上海科学技术出版社,1985.
    [239]曾庆衡.物理化学[M].长沙:中南工业大学出版社,1992.
    [240]E·马特松(著),黄建中,钟积礼(译).腐蚀基础[M],北京:冶金工业出版社,1990.
    [241]中国腐蚀与防护学会.自然环境的腐蚀与保护-大气·海中·土壤[M],北京:化学工业出版社,1997.
    [242]陈鸿海.金属腐蚀学[M],北京:北京理工大学出版社,1995.
    [243]朱涉瑶,赵振国.界面化学基础[M].北京:化学工业出版社,1996.
    [244]章燕豪.吸附作用[M].上海:上海科学技术文献出版社,1989.
    [245]中国腐蚀与防护学会《金属腐蚀手册》编辑委员会.金属腐蚀手册[M].上海:上海科学技术出版社,1987.
    [246]李金挂,赵闰彦.腐蚀和腐蚀控制手册[M].北京:国防工业出版社,1988.
    [247]S. Zakipour. Atmospheric Corrosion Effects of SO2 and O3 on Laboratory-Exposed Copper[J]. J.Electrochem.Soc,1995,142(3):757-763.
    [248]P. Eriksson, Lars-Gunnar Johansson and H. Strandberg. Initial Stages of Copper Corrosion in Humid Air Containing SO2 and NO2[J]. J.Electrochem.Soc,1993,140(1):53-59.
    [249]I. Odnevall and C. Leygraf. Atmospheric Corrosion of Copper in a Rural Atmosphere[J].J.Electrochem.Soc,1995,142(11):3682-3691.
    [250]R. E. Lobnig, R. P. Frankenthal, D. J. Siconolfi, J. D. Sinclair and M. Stratmann. Mechanism of Atmospheric Corrosion of Copper in the Presence of Submicron Ammonium Sulfate Particles at 300 and 373 K[J]. J.Electrochem.Soc,1994,141(11):2935-2961.
    [251]R. E. Lobnig, R. P. Frankenthal, D. J. Siconolfi and J. D. Sinclair. The Effect of Submicron Ammonium Sulfate Particles on the Corrosion of Copper[J]. J.Electrochem.Soc,1993,140(7):1902-1908.
    [252]R.E.lobnig and C.A.Jankoski. Atmospheric Corrosion of Copper in the Presence of Acid Ammonium Sulfate Particles[J]. J.Electrochem.Soc,1998, 145(3):946-952.
    [253]H. Srtandberg and Lars-Gunnar Johansson. Some Aspects of the Atmospheric Corrosion of Copper in the Presence of Sodium Chloride[J]. J.Electrochem.Soc,1998,145(4):1093-1111.
    [254]王盘鑫,粉术冶金学[M],北京:冶金工业出版社,1997.
    [255]吴荫顺.金属腐蚀研究方法[M].北京:冶金工业出版社,1993,174-175.
    [256]中国腐蚀与防护学会主编.化学转化膜[M].北京:化学工业出版社,1988,29-32.
    [257]孙志华,刘明辉,李家柱等.大气腐蚀电化学测定研究[J].航空材料学报.2000,20(3):120-123.
    [258]杨熙珍,杨武.金属电腐蚀电化学热力学[M].化学工业出版社1991.118-122.
    [259]李恒达.我国大气腐蚀电化学研究方法进展[J].松辽学刊(自然科学版)2000(4):75-79.
    [260]于福洲.腐蚀与防护手册[M].北京:化学工业出版社,1987.5-12
    [261]肖纪美编著.腐蚀总论:材料的腐蚀及其控制方法[M].北京:化学工业出版社,1994,19-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700