用户名: 密码: 验证码:
阴离子支化多糖聚合物及其复合体系的流变性与驱油性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国绝大多数油田处于开发的中后期,石油产量自然递减严重,但实际上仍有近三分之二的原油地质储量残留在储层中,因此各油田均采用了强化驱油技术以提高采收率,稳定油产量,其中以部分水解聚丙烯酰胺(PHPA)为主剂的聚合物驱是应用最广泛的增产措施之一。但近期发现,经PHPA驱替一段时间后,很多油田又出现了产出液含水量急剧上升、油含量急剧下降等问题,如何进一步提高采收率是一个亟待解决的问题。另外,我国各油田都存在储量可观的高盐(矿化度高于20000ppm或20g/L)油藏,由于广泛采用的PHPA驱油体系抗盐能力较差(一般低于10000ppm),这类油藏因缺乏有效的强化采油方法或技术还很少动用,如何实现其有效开采也成为油田开发领域重要的研究课题。
     研发新型驱油体系是解决PHPA驱后进一步提高采收率和高盐油藏有效开采问题的一个重要途径。PHPA是阴离子柔性直链高分子,抗盐和抗剪切能力较差;而一些多糖类聚合物具有多支化分子结构,分子具有良好的刚性,预期具有较强的抗盐和抗剪切能力,在强化驱油领域有良好的应用前景。为此,本文系统研究了三种多糖类聚合物及其复合物溶液的流变性,包括一种深海中温菌Wangia profunda SM-A87胞外多糖(SM-A87EPS)、黄原胶(XG)和阳离子纤维素(JR400)等,考察了各种因素如pH、电解质和温度等的影响,室内模拟实验评价了其驱油效果,以期加深对聚合物溶液流变性的科学认识,为新型聚合物驱油体系的研发提供科学依据。
     本论文主要研究内容及结论如下:
     (1)研究了SM-A87EPS水溶液的流变性,考察了各种因素如浓度、pH、电解质、温度和剪切作用等的影响,探讨了影响机理。发现与PHPA溶液相比,SM-A87EPS溶液具有良好的耐盐性、抗剪切性、pH稳定性和粘弹性等,符合强化驱油体系的性能要求;建立了临界浓度(叠加浓度和交叠浓度)的简便测定方法,得出了SM-A87EPS溶液的临界雷诺数与其浓度间的幂率关系,证明了影响聚合物流体雷诺数和临界雷诺数的根本因素是其粘度等。
     (2)研究了SM-A87EPS/PHPA氢键复合物溶液的流变性,考察了各种因素如组分比、总浓度、pH和电解质等的影响,探讨了二者间的相互作用机理等。结果表明,二者复合具有降粘效应,总浓度及温度增加时,降粘效应加剧;改变电解质浓度和pH,可出现增粘作用,但效果不明显。
     (3)研究了XG/JR400静电复合物溶液的稳定性,结果表明随总浓度和组分比的变化,存在两个稳定区和一个絮凝区。在稳定区内,研究了XG/JR400复合体系的流变性,考察了组分比、pH、剪切速率、温度及电解质浓度的影响;发现二者复合可呈现增粘效应,但随剪切作用和电解质浓度的增加,其增粘效果明显降低。XG/JR400复配体系相对于同浓度XG溶液而言,其抗盐、抗剪切及抗温性能都没有得到明显改善,在强化驱油领域中的应用价值不大。
     (4)采用室内模拟驱油实验技术,评价了SM-A87EPS溶液及SM-A87EPS/PHPA氢键复合体系的驱油效果,发现SM-A87EPS溶液具有良好的驱油能力,特别是在高矿化度盐水中明显优于现场广泛应用的PHPA体系,有望成为高矿化度油藏及PHPA驱后进一步提高采收率的一个新型聚合物驱油体系。
At present, most of oilfields in our country have come into the middle or later stage and the crude oil yield decreases substantially, even though two third of crude oil reserves are still left in the formation. Thus, lots of technologies have been adopted to enhance the oil recovery and keep the oil yield constant in all the oil fields. Among them, polymer flooding with partially hydrolyzed polyacrylamide (PHPA) being the main component is one of the most widely applied technologies. However, some problems such as the abrupt increase of water cut and decrease of oil content of produced liquid arise recently after the PHPA flooding has been utilized. How to enhance the oil recovery is what needs to solve as soon as possible. In addition, all the oilfields of our country possess some oil formation with high oil content and salinity (greater than20000ppm or20g/L) which are still hardly exploited due to the weak salt resistance (less than10000ppm in general) of widely used PHPA system and lack of efficient methods or technologies for the enhanced oil recovery. How to exploit this kind of oil formations is also becoming to be a significant research issue in the field of oil exploitation.
     The development of new oil displacement systems is an important approach to further enhance the oil recovery after PHPA flooding and to exploit oil formation with high salinity. PHPA is an anionic flexible linear macromolecule with weak salt and shear resistance while some polysaccharides with branched structures possess rigid backbones and therefore are expected to show strong salt and shear resistance, having potential application value in the forced flooding field. In view of these thoughts, the rheological properties of three types of polysaccharides and/or their complex solutions were studied in this dissertation. The referred polysaccharides include an exopolysaccharide (SM-A87EPS) secreted by a deep-sea mesophilic bacterium, xanthan gum (XG) and a cationic cellulose, JR400. The influences of experimental conditions such as pH, electrolytes and temperature on the rheological properties of each system were investigated, after which their oil displacement capacity were evaluated via the lab stimulation experiments. These would enhance our scientific knowledge about rheology of polymer solutions and provide the scientific basis for the development of new polymer flooding systems.
     The main research contents and conclusions are listed as follows:
     (1) The rheology of SM-A87EPS solution at various concentrations, pH, electrolyte concentrations, temperatures and shear rate were investigated and their corresponding mechanisms were discussed. It is found that the SM-A87EPS solution, as a new potential polymer flooding system, shows stronger salt and shear resistance, better pH stability and more obvious viscoelasticity than the PHPA solution, which meets the demand of forced flooding systems. New methods were proposed to determine the critical concentrations (overlapping and crossover concentrations) of polymer solutions. Besides, the power law relationship between critical Reynolds number and concentration of SM-A87EPS solution was confirmed and the truth that Reynolds number and critical Reynolds number of polymer fluid only depend on the fluid viscosity was proved.
     (2) Rheological properties of SM-A87EPS/PHPA complex solution were studied and emphasis was placed on the influences of composition ratio, total concentration, pH, electrolyte and temperature. Further, the interacting mechanism between SM-A87EPS and PHPA was discussed. It is found that the mixing of SM-A87EPS and PHPA causes the decrease of viscosity of solution. The higher the total concentration and temperature get, the more obvious the viscosity decrease is. With the variation of electrolyte concentration and pH of solutions, the viscosity could be enhanced after the mixing but the viscosity increase is not significant.
     (3) Stability of XG/JR400complex solution was studied. Two stable regions and one flocculation region are shown with the variation of total concentration and composition ratio. In the stable regions, rheological properties of XG/JR400mixture were investigated at different composition ratio, pH, shear rate and electrolyte concentrations. After the mixing of XG and JR400solutions, the viscosity of solution is increased obviously, but with increasing shear rate or electrolyte concentration, the viscosity increase turns weak. The salt, shear and temperature resistance of XG/JR400mixture show no enhancement comparing with that of XG solution at the same concentration, which indicates no potential application value of XG/JR400mixture in the forced flooding field.
     (4) The oil displacement capacity of SM-A87EPS solution and hydrogen-bonded SM-A87EPS/PHPA mixture were evaluated via the lab stimulation flooding experiment. It is found that the oil displacement capacity of SM-A87EPS solution is obviously stronger than that of PHPA solution in the high salinity water. The SM-A87EPS solution is expected to be applied as a new polymer flooding system in the oil formations with high salinity or after the flooding of PHPA solutions.
引文
[1]郭辽原,国外油田工程,2009,25,13-15.
    [2]汪庐山,新形势下采油技术发展方向,in:山东大学“海右”博士生学术论坛,济南,2011.
    [3]贾贺峰,申利春,化工科技市场,2006,29,3 1-34.
    [4]冯玉军,王毓,鲁智勇等,三次采油用水溶性聚合物:进展及挑战,in:全国第16届有机和精细化工中间体学术交流会,成都,2010,pp.197-201。
    [5]Littmann W., Mechanics of polymer flooding, in:Developments in petroleum science. Elsevier,1988, pp.3-9.
    [6]巢华庆,大庆油田提高采收率研究与实践,石油工业出版社,北京,2006, pp.228-229.
    [7]Sandiford B.B., Keller H.F., Secondary recovery of petroleum, US 3116791,1964.
    [8]Williams S.A., Waterflood employing viscous aqueous solutions, US 3352358,1967.
    [9]Schmitt K.D., Pennington N.J., Alkyl sulfonates of polyvinyl alcohol as viscosifiers in saline solutions, US 4529522,1985.
    [10]Sandiford B.B., Keller H.F., Secondary recovery of peteroleum, US 2827964,1958.
    [11]彭国峰,化学工程师,2005,123,36-39.
    [12]Lindblom G.P., Ortloff G.D., Patton J.T., Displacement of oil from partially depleted reservoirs, US 3305016,1967.
    [13]Sandvik E.I., Maerker J.M., Application of xanthan gum for enhanced oil recovery, in: Extracellular microbial polysaccharides, American Chemical Society,1977, pp. 242-264.
    [14]张黎明,油田化学,1997,14,166-174.
    [15]Shalaby S.W., Butler G.B., McCormick C.L., Water-soluble polymers, synthesis, solution properties, and applications, Oxford University Press, Miami Beach FL, ETATS-UNIS Cary,NC,ETATS-UNIS,1991, pp.120-129.
    [16]Byham D.E., Sheppard E.W., Chen C.S.H., Oil recovery process involving the injection of thickened water, US 4222881,1980.
    [17]夏燕敏,陈安猛,宋晓芳,广东化工, 2009,36,92-94.
    [18]Castner K.F., Injection water viscosifier for enhanced oil recovery, US 4736005, 1988.
    [19]Hietala S., Mononen P., Strandman S., et al., Polymer,2007,48,4087-4096.
    [20]罗健辉,卜若颍,白凤鸾等, 一种梳型抗盐聚合物增稠剂,CN 1414057A,2003.
    [21]梁伟,赵修太,韩有祥等,特种油气藏,2010,17,11-14
    [22]Zhong C., Jiang L., Peng X.,J. Polym. Sci. Polym. Chem.,2010,48,1241-1250.
    [23]Bezzaoucha F., Lochon P., Jonquieres A., ct al., Enr. Polym.J.,2007,43,4440-4452.
    [24]Sohn E.H., Kim B.G., Chung J.S., et al., J. Colloid Interface Sci.,2011,354,650-661.
    [25]韩玉贵,西南石油大学学报(自然科学版),2011,33,149-153.
    [26]罗文利,韩冬,韦莉等,石油勘探与开发,2010,37,477-482.
    [27]祝仰文,罗平亚,李振泉等,油田化学,2011,28,62-64.
    [28]Delpeux S., Beguin F., Manolova N., et al., Soluble star-like polymers with a C-60 core, Electrochemical Society Inc, Pennington,1998.
    [29]Pavlov G.M., Nazarova O.V., Ebel C., et al., Rus. J. Appl. Chem.,2005,78,130-136.
    [30]Li J., Xiao H., Shin K.Y., et al., J. Polym. Sci. Polym. Chem.,2005,43,6345-6354.
    [31]陈锡荣,黄凤兴,石油化工, 2009,38,1132-1137.
    [32]曹亚,张熙,李惠林等,油田化学,2003,20,94-98.
    [331 Borchardt J.K., Viscosity behavior and oil recovery properties of interacting polymers, in:Water-soluble polymers, American Chemical Society,1991, pp.446-465.
    [34]Latimer W.M., Rodebush W.H.,J. Am. Chem. Soc.,1920,42.1419-1433.
    [35]Tsuchida E., Abe K., Interactions between macromolecules in solution and intermacromolecular complexes, Springer-Verlag, Berlin and New York,1982, pp.8.
    [36]Steiner T., Angew. Chem. Int. Edit.,2002,41,48-76.
    [37]Rainaldi I., Cristallini C., Ciardelli G., et al., Macromol. Chem. Phys.,2000,201, 2424-2431.
    [38]Hao J., Yuan G., He W., et al., Macromolecules,2010,43,2002-2008.
    [39]Sotiropoulou M., Oberdisse J., Staikos G., Macromolecules,2006,39,3065-3070.
    [40]Sotiropoulou M., Bokias G., Staikos G.,Macromolecules,2003,36,1349-1354.
    [41]Ivopoulos P., Sotiropoulou M., Bokias G., et al., Langmuir,2006,22,9181-9186.
    [42]Sotiropoulou M., Bossard F., Balnois E., et al., Langmuir,2007,23,11252-11258.
    [43]Iliopoulos I., Audebert R., Polym. Bull.,1985,13,171-178.
    [44]Bumbu G.G., Vasile C., Eckelt J., et al, Macromol. Chem. Phys.,2004,205, 1869-1876.
    [45]Khutoryanskiy V.V., Mun G.A., Nurkeeva Z.S., et al., Polym. Int.,2004,53, 1382-1387.
    [46]Khutoryanskiy V.V, Int. J. Pharm.,2007,334,15-26.
    [47]Bell C., Peppas N., Biomedical membranes from hydrogels and interpolymer complexes, in:N. Peppas, R. Langer (Eds.) Biopolymers Ⅱ, Springer. Berlin/ Heidelberg,1995, pp.125-175.
    [48]Mathur A.M., Drescher B., Scranton A.B., et al., Nature,1998,392,367-370.
    [49]Mun G.A., Khutoryanskiy V.V., Nurkeeva Z.S., et al.,J. Polym. Sci. Polym. Phys., 2004,42,2625-2632.
    [50]Shulga G., Rekner F., Varslavan J., J. Agr. Eng. Res.,2001,78,309-316.
    [51]Orazzhanova L.K., Yashkarova M.G., Bimendina L.A., et al., J. Appl. Polym. Sci., 2003,87,759-764.
    [52]DeLongchamp D.M., Hammond P.T., Langmuir,2004,20,5403-5411.
    [53]Rivas B.L., Moreno-Villoslada I.,Macromol. Chem. Phys.,1998,199,1153-1160.
    154] Thunemann A.F., Muller M., Dautzenberg H., et al., Polyelectrolyte complexes, in:M. Schmidt (Ed.) Polyelectrolytes with defined molecular architecture Ⅱ, Springer, Berlin/Heidelberg,2004, pp.19-33.
    [55]Philipp B., Dautzenberg H., Linow K.J., et al., Polyelectrolyte complexes:recent developments and open problems, Elsevier, Kidlington, ROYAUME-UNI,1989.
    [56]Michaels A.S., Ind. Eng. Chem.,1965,57,32-40.
    [57]Tsuchida E., Abe K., Interactions between macromolecules in solution and intermacromolecular complexes, in:E. Tsuchida, K. Abe (Eds.) Interactions between macromolecules in solution and intermacromolecular complexes. Springer Berlin/Heidelberg,1982,pp.1-119.
    [58]Kabanov A.V., Kabanov V.A., Adv. Drug Deliver. Rev.,1998,30,49-60.
    [59]Kotz J.,Kosmella S., Beitz T., Prog. Polym. Sci.,2001,26,1199-1232.
    [60]Al-Jamal K.T., Ramaswamy C. Florence A.T., Adv. Drug Deliver. Rev.,2005,57, 2238-2270.
    [61]Kabanov V.A., Rus. Chem. Rev.,2005,74,3-20.
    [62]Philipp B., Dawydoff W., Linow K.J., Zeitschrift fur Chemie,1982,22,1-13.
    [63]Kananov V.A., Zezin A.B., Pure Appl. Chem.,1984,56,343-354.
    [64]Tsuchida E., Osada Y., Sanada K., J. Polym. Sci. Polym. Chem.,1972,10,3397-3404.
    [65]Liu R.C.W., Morishima Y.; Winnik F.M., Macromolecules,2001,34,9117-9124.
    [66]Tsianou M., Kj(?)niksen A.L., Thuresson K., et al., Macromolecules,1999,32, 2974-2982.
    [67]Rodriguez R., Alvarez-Lorenzo C., Concheiro A., Biomacromolecules,2001,2, 886-893.
    [68]Liu R.C.W., Morishima Y., Winnik F.M., Macromolecules,2003,36,4967-4975.
    [69]Liu R.C.W., Morishima Y., Winnik F.M., Polym. J.,2002,34,340-346.
    [70]Kabanov A.V., Bromch T.K., Kabanov V.A., et al., Macromolecules,1996,29. 6797-6802.
    [71]Gohy J.F., Varshncy S.K., Antoun S.; et al., Macromolecules,2000,33,9298-9305.
    [72]Ankerfors C., Ondaral S., Wagberg L., et al., J. Colloid Interface Sci.,2010,351, 88-95.
    [73]Schatz C., Bionaz A., Lucas J.M., et al., Biomacromolecules,2005,6,1642-1647.
    [74]Schild H.G., Prog. Polym. Sci.,1992,17,163-249.
    [75]Dautzenberg H., Gao Y., Hahn M., Langmuir,2000,16,9070-9081.
    [76]Choi S.W., Kano A., Maruyama A., Nucleic. Acids. Res.,2008,36,342-351.
    [77]Thuresson K., Nilsson S., Lindman B., Langmuir,1996,12,530-537.
    [78]Moreno-Villoslada I., Gonzalez F., Rivera L., et al.,J. Phys. Chem. B,2007,111, 6146-6150.
    [79]Galant C., Amiel C., Auvray L.,J. Phys. Chem. B,2004,108,19218-19227.
    [80]Burckbuchler V., Boutant V., Wintgens V., et al., Biomacromolecules,2006,7, 2890-2900.
    [81]Nam J.P., Choi C., Jang M.K., et al.,Macromol. Res.,2010,18,630-635.
    [82]Rodriguez R., Alvarez-Lorenzo C., Concheiro A., Eur. J. Pharm. Sci.,2003,20, 429-438.
    [83]Meng X., Tian F., Yang J., et al., J. Mater. Sci. Mater. M.,2010,21,1751-1759.
    [84]Xiao C., Fang F.,J. Appl. Polym. Sci.,2009,112,2255-2260.
    [85]Sato A., Choi S.W., Hirai M., et al., J. Control. Release,2007,122,209-216.
    [86| Lee S.H., Kim S.H., Park T.G., Biochem. Bioph. Res. Co.,2007,357,511-516.
    187] Fayazpour F., Lucas B.,Alvarez-Lorenzo C., ct al., Biomacromolecules,2006,7, 2856-2862.
    [88]Harada A., Kataoka K., Macromolecules,1998,31,288-294.
    [89]Park M.R., Chun C.J., Cho C.S., et al., Eur. J. Pharm. Biopharm.,2010,76,179-188.
    (90] Gencke M., Liebert T., Heinze T., J. Am. Chem. Soc.,2009,131,13220-13221.
    [91]De Koker S., De Geest B.G., Cuvelier C., et al., Adv. Fund. Mater.,2007,17, 3754-3763.
    [92]Petzold G., Schwarz S., Buchhammer H.M., et al., Die Angew. Makromol. Chem., 1997,253,1-15.
    [93]Oertel U., Buchhammer H.M., Muller M., et al., Macromol. Symp.,1999,145,39-47.
    [94]Kylstra J., Reihs K., Klamt A., Colloid Surf. A,2002,206,521-529.
    [95]Reihs T., Muller M., Lunkwitz K., Colloid Surf. A,2003,212,79-95.
    [96]Bertrand P., Jonas A., Laschewsky A., et al., Macromol. Rapid. Comm.,2000,21, 319-348.
    [97]Zhao Q., An Q., Sun Z., et al., J. Phys. Chem. B,2010,114,8100-8106.
    [98]Zhang G., Gao X., Ji S., et al.,Mat. Sci. Eng. C:Bio. S.,2009,29,1877-1884.
    [99| MaX.H., Xu Z.L., Ji C.Q.,et al.,J.Appl. Polym. Sci.,2011,120,1017-1026.
    [100]Jiang H., Zuo Y., Cheng L., et al.,J Mater. Sci. Mater. M.,2011,22,289-297.
    [101]Wan A.C.A., Tai B.C.U., Schumacher K.M., et al., Langmuir,2008,24,2611-2617.
    [102]Harada A., Kataoka K., Science,1999,283,65-67.
    [103]Dinu I.A., Mihai M., Dragan E.S., Chem. Eng.J.,2010,160:115-121.
    [104]Coimbra P., Ferreira P., de Sousa H.C., et al., Int. J. Biol. Macromol.,2011,48, 112-118.
    [105]Steffe J.F., Rheological methods in food process engineering, Freeman Press, USA, 1996, pp.1-428.
    1106] Barnes HA, J. Non-newton. Fluid.,1999,81,133-178.
    [107]Barnes H.A., Walters K., Rheol. Acta,1985,24,323-326.
    [108]Moller P., Fall A., Bonn D., Europhys. Lett.,2009,87,38004.
    [109]Moller P., Fall A., Chikkadi V., et al.,Philos. T. Roy. Soc.A,2009,367,5139-5155.
    [110]Cheng D.C.H., Rheol. Acta,1986,25,542-554.
    [111]Moller P.C.F., Mewis J., Bonn D., Soft Matter,2006,2,274-283.
    [112]Demi M.M., Bonn D., Rheol. Acta,2011,50,307-315.
    [113]Gebhard S.,实用流变测量学,石油工业出版社,北京,2009, pp.1-186.
    [114]Schalek E., Szegvari A.,Kolloid Z.,1923,32,318.
    [115]Peterfi T., Arch. Entwicklungsmech. Organ.,1927,112,680-686.
    [116]Freundlich H., Thixotropy, Hermann, Paris,1935.
    [117]Barnes H.A.,J. Non-newton. Fluid,1997,70,1-33.
    [118]Mewis J., Wagner N.J.,Adv. Colloid Interface Sci., 2009,147-148, 214-227.
    [119]Crane J., Schiffer D, J. Polym. Sci., 1957, 23, 93-97.
    [120]Hou W.G., Sun D.J., Han S.H., et al., Colloid Polym. Sci., 1998, 276. 274-277.
    [121]Li Y., Bi H., Shen S., Chin. J. Chem., 2011, 29, 1101-1106.
    [122]Wang B., Li D., Wang L.J., et al., Carbohydr. Polym., 2010, 79, 1130-1139.
    [123]Dolz M., Gonzalez F., Delegido J, et al., J. Pharm. Sci., 2000, 89, 790-797.
    [124]Mewis J.T J. Non-newton. Fluid., 1979, 6, 1-20.
    [125]Li S.P., Hou W.G., Jia C.X., et al., Colloid Surf. A, 2003, 224, 149-156.
    [126]Razavi S.M.A., Karazhiyan H., FoodHydrocolloid, 2009, 23, 908-912.
    [127]陈宗淇,辛寅昌,李孝增等,化学学报,1989,47,152-157
    [128]Li Y., Hou W.G., Zhu W.Q., J. Colloid Interface Sci., 2007, 313, 305-314.
    [129]Graessley W.W.. Polymer, 1980, 21, 258-262.
    [130]Adam M., Delsanti M., Jannink G, J. Physique Lett., 1976, 37, 53-56.
    [131]Roots J.,Nystvom B, Eur Polym. J., 1979,15, 1127-1131.
    [132]Ying Q.C., Chu B., Macromolecules, 1987, 20, 362-366.
    [133]Benchabane A., Bekkour K., Colloid Polym. Sci., 2008T 286, 1173-1180.
    [134]Rodd A.B., Dunstan D.E., Boger D.V., Carbohydr. Polym. 2000,42. 159-174.
    [1]Qin Q.L., Zhao D.L., Wang J., et al., FEMSMicrobiol. Lett.,2007,271,53-58.
    [2]Zhou W.Z., Wang J., Shen B.L., et al., Colloid Surf. B,2009,72,295-302.
    [3]Merkle R.K., Poppe I., Method. Enzymol.,1994,230,1-15.
    [4]York W.S., Darvill A.G., McNeil M., et al., Method. Enzymol.,1986,118,3-40
    [5]Nicholls C., Analysis of available data on validation of bitumen tests. Conference Name, Conference Location,2006.
    [6]Chen Z.Q., Xin Y.C., Li X.Z., et al., Acta Chim. Sinica.,1989,47,152-157.
    [7]Li Y., Hou W.G., Zhu W.Q., J. Colloid Interface Sci.,2007,313,305-314.
    [8]Benchabane A., Bekkour K., Colloid Polym. Sci.,2008,286,1173-1180.
    [9]Biro S., Gandhi T., Amirkhanian S., Constr. Build Mater,2009,23,2080-2086.
    [10]Candau F., Regalado E.J., Selb J.,Macromolecules,1998,31,5550-5552.
    [11]Ebagninin K.W., Benchabane A., Bekkour K., J. Colloid Interface Sci.,2009,336, 360-367.
    [12]Rodd A.B., Dunstan D.E., Boger D.V., Carbohydr. Polym.,2000,42,159-174.
    [13]Adam M., Delsanti M, Jannink G.,J. Physique Lett.,1976,37,53-56.
    [14]Clasen C., Kulicke W.M., Prog. Polym. Sci.,2001,26,1839-1919.
    [15]Grigorescu G., Kulicke W.M., Prediction of viscoelastic properties and shear stability of polymers in solution, in:Viscoelasticity. Atomistic Models. Statistical Chemistry, Springer Berlin/Heidelberg,2000, pp.1-40.
    [16]Morris E.R., Cutler A.N., Ross-Murphy S.B., et al., Carbohydr. Polym.,1981,1,5-21.
    [17]Ellis H.S., Ring S.G., Carbohydr. Polym.,1985,5,201-213.
    [18]Sabatie J., Choplin L., Doublier J.L., et al., Carbohydr Polym.,1988,9,287-299.
    [19]Doublier J.L., Launay B., J. Texture. Stud,1981,12,151-172.
    [20]Gravanis G., Milas M., Rinaudo M., et al., Carbohydr. Res.,1987,160,259-265.
    [21]Izydorczyk M.S., Biliadens C.G., Carbohydr. Polym.,1992,17,237-247.
    [22]Papanagopoulos D., Pierri E., Dondos A., Polymer,1998,39,2195-2199.
    [23]Dolz M., Hernandez M.J., Pellicer J., et al., J Pharm. Sci.,1995.84,728-732.
    [24]Banchathanakij R., Suphanthanka M., Food Chem.,2009,114,5-14.
    [251 Cheng D.C.H., Rheol. Acta,1986,25,542-554.
    [26]Yang F., Bick A., Shandalov S., et al., J. Membrane. Sci.,2009,334,83-90.
    [27]Liu W.H., Yu T.L., Lin H.L., Polymer,2007,48,4152-4165.
    [28]Dunstan D.E., Hill E.K., Wei Y., Polymer,2004,45,1261-1266.
    [29]Chronakis L.S., Alexandridis P., Macromolecules,2001,34,5005-5018.
    [30]Xu X.J., Liu W., Zhang L.N., Food Hydrocolloid,2006,20,723-729.
    [31]Lue A., Zhang L., Macromol. Biosci.,2009,9,488-496.
    [32]Cox W.P., Merz E.H.,J. Polym. Sci.,1958,28,619-622.
    [33]Rao M.A., Cooley H.J., J. Texture. Stud.,1992,23,415-425.
    [34]Doraiswamy D., Mujumdar A.N., Tsao I., et al., J. Rheol.,1991,35,647-685.
    [35]Jacon S.A., Rao M.A., Cooley H.J., et al., Carbohydr. Polym.,1993,20,35-41.
    [36]Nwokocha L.M., Williams P.A., Food Hydrocolloid,2009,23,1394-1397.
    [37]Yoo D., Yoo B., Starch-starke,2005,57,254-261.
    [38]Achi O.K., Okolo N.I., Int. J. Food Sci. Tech.,2004,39,431-436.
    [39]Chen H.H., Xu S.Y., Wang Z., J. Food Eng.,2006,77,295-303.
    [40]Cui W., Mazza G., Biliadens C.G., J. Agr. Food Chem.,1994,42,1891-1895.
    [41]Deasy P.B., Quigley K.J., Int. J. Pharm.,1991,73,117-123.
    [42]Isobe Y., Endo K., Kawai H., Biosci. Biotech. Bioch,1992,56,636-639.
    [43]Wang Y.L., Li Z.H., Wei Y., J. Cen. South. Univ. T.,2008,15,516-519.
    [44]Zakaria M.B., Rahman Z.A., Carbohydr. Polym.,1996,29,25-27.
    [45]Lopez M.J., Vargas-Garcia M.C., Suarez-Estrella F., et al., J. Food Eng.,2004,63, 111-115.
    [46]de Bnto A.C.F., Sierakowski M.R., Reicher F., et al.. Food Hydrocolloid,2005,19, 861-867.
    [47]Bu H., Kjoniksen A.L., Nystrom B., Eur. Polym. J.,2005,41,1708-1717.
    [48]Goh K.K.T., Haisman D.R., Singh H., Food Hydrocolloid,2006,20,176-183.
    [491 Guetta O., Milas M., Rinaudo M., Biomacromolecules,2003,4,1372-1379.
    [50]Kaur L., Singh J., Singh H., J. Food Sci.,2009,74, E328-E332.
    [51]Stang Holst P., Kjoniksen A.L., Bu H., et al., Polym. Bull.,2006,56,239-246.
    [52]Miyoshi E., Takaya T., Nishinari K., Food Hydrocolloid,1994,8,505-527.
    [53]Moreno J., Vargas M.A., Madiedo J.M., et al., Biotechnol. Bioeng.,2000,67, 283-290.
    [54]Norziah M., Foo S., Karim A.A., Food Hydrocolloid,2006,20,204-217.
    [55]Vinod V.T.P., Sashidhar R.B., Sarma V.U.M., et al.,J. Agr. Food Chent.,2008,56, 2199-2207.
    [56]Yoshimura M., Nishinari K., Food Hydrocolloid,1999,13,227-233.
    [57]Bemiller J.N., ACSSymp. Ser.,1986,310,2-12.
    [58]Wyatt N.B., Liberatore M.W.,J. Appl. Polym. Sci.,2009,114,4076-4084.
    [59]Katsurava K., Okuyama K.; Hatanaka K., et al., Carbohydr. Polym.,2003,53, 183-189.
    [60]Koocheki A., Razavi S.M.A., Food Biophysics,2009.4,353-364.
    [61]Razavi S.M.A., Karazhiyan H., Food Hydrocolloid,2009,23,908-912.
    [62]Jang J.H., Bae S.K., Lim D.J., ct al., Biotechnol. Lett.,2002,24,297-301.
    [63]Calvo C., Ferrer M.R., Martinezcheca F., et al., Appl. Biochem. Biotech,1995,55, 45-54.
    [64]Medina-Torres L., Brito-De La Fuente E., Torrestiana-Sanchez B., et al., Food Hydrocolloid,2000,14,417-424.
    [65]van den Berg D., Robijn G., Janssen A., et al., Appl. Environ. Microbiol.,1995,61, 2840-2844.
    [66]Thrimawithana T., Young S., Dunstan D., et al., Carbohydr. Polym.,2010,82,69-77.
    [67]Saadatabadi A.R., Nourani M., Emadi M.A., Iran. Polym. J.,2010,19,105-113.
    [68]Tam K., Tiu C., Colloid Polym. Sci.,1990,268,911-920.
    [69]Dekker E., J. Appl. Physiol.,1961,16,1060-1064.
    [70]Saffman P., J. Fluid Mech,1962,13,120-128.
    [71]Taylor G.I., Philos. T. Roy. Soc. A,1923,223,289-343.
    [721 Lim T.T., Tan K.S., Phys. Fluids.,2004,16,140-144.
    [73]Lucptow R., Scholarpedia,2009,4,6389.
    [74]Lathrop D.P., Fineberg J., Swinney H.L., Phys. Rev. A,1992,46,6390-6405.
    [75]Lewis G.S., Swinney H.L., Phys. Rev. E,1999,59,5457-5467.
    [76]Gebhard S.,实用流变测量学,石油工业出版社,北京,2009.
    [77]张祝新,于雷,齐中华,润滑与密封.2001,1,65-71.
    [78]汪大鹏,吴宪平,夏卿坤,传动技术,2006,20,4.
    [79]Freitas F., Alves V.D., Carvalheira M., et al., Carbohydr. Polym.,2009,78,549-556.
    [1]Mansri A., Tennouga L., Desbrieres J., Eur. Polym. J.,2007,43,540-549.
    [2]Maltesh C., Somasundaran P., Pradip, et al.,Macromolecules,1991,24,5775-5778.
    [3]Xiao C.B., Lu Y.S., Jing Z.Z., et al., J. Appl. Polym. Sci.,2002,83,949-955.
    [4]Iliopoulos I., Halary J.L., Audebert R., J. Polym. Sci. Polym. Chem.,1988,26, 275-284.
    [5]Ivopoulos P., Sotiropoulou M., Bokias G., et al., Langmuir,2006,22,9181-9186.
    [6]Sotiropoulou M., Bokias G., Staikos G.,Macromolecules,2003,36,1349-1354.
    [7]Iliopoulos I., Audebert R.,Macromolecules,1991,24,2566-2575.
    [8]Bailey F.E., Lundberg R.D., Callard R.W.,J. Polym. Sci. Polym. Chem.,1964,2, 845-851.
    [9]Prevysh V.A., Wang B.C., Spontak R.J., Colloid Polym. Sci.,1996,274,532-539.
    [10]Bumbu G.G., Vasile C., Chitanu G.C., et al., Macromol. Chem. Phys.,2005,206; 540-546.
    [11]Steiner T., Angew. Chem. Int. Edit.,2002,41,48-76.
    [12]Shuai X., He Y., Asakawa N., et al., J. Appl. Polym. Sci.,2001,81,762-772.
    113] Kalagasidis Krusic M., Eur. Polym. J.,2004,40,793-798.
    [14]Lawal O.S., Lechner M.D., Kulicke W.M., Polym. Degrad. Stabil.,2008,93, 1520-1528.
    [15]Vasile C., Bumbu G.G., Mylonas Y., et al., Polym. Int.,2003,52,1887-1891.
    [16]Eustace D.J., Siano D.B., Drake E.N., J. Appl. Polym. Sci.,1988,35,707-716.
    [17]Katime I., Parada L.G., Meaurio E., et al., Polymer,2000,41,1369-1375.
    [18]Cui L., Yeh J.T., Wang K, et al., J. Polym. Sci. Polym. Phys.,2008,46,1360-1368.
    [19]Huang H., Hu Y., Zhang J.M., et al., J. Phys. Chem. B,2005,109,19175-19183.
    [20]Mbareck C., Nguyen Q.T., J. Appl. Polym. Sci.,2009,112,3395-3401.
    [21]Bian F., Eur. Polym. J.,2003,39,1867-1874.
    [22]Mun G.A., Nurkeeva Z.S., Khutoryanskiy V.V., et al., Eur. Polym. J.,2003,39, 1687-1691.
    [1]Shobha M.S., Tharanathan R.N., Food Hydrocolloid,2009,23,749-754.
    [2]Krstonosic V., Dokic L., Milanovic J., Food Hydrocolloid,2011,25,361-367.
    [3]Southwick J.G., Lee H., Jamieson A.M., et al., Carbohydr. Res.,1980,84,287-295.
    [4]Pai V., Srinivasarao M., Khan S.A., Macromolecules,2002,35,1699-1707.
    [5]Argin-Soysal S., Kofinas P., Lo Y.M., Food Hydrocolloid, 2009; 23, 202-209.
    [6]Shen D., Wan C., Gao S., J. Polym. Sci. Polym. Phys., 2010, 48, 313-321.
    [7]Chaisawang M., Suphantharika M., Carbohydr. Polym., 2005, 61, 288-295.
    [8]Lii C.Y., Liaw S.C., Lai V.M.F., et al., Eur. Polym. J., 2002, 38, 1377-1381.
    [9]Liu R.C.W., Monshima Y., Winnik F.M., Macromolecules, 2001, 34, 9117-9124.
    [10]Liu R.C.W., Monshima Y., Winnik F.M., Polym.,J., 2002, 34, 340-346.
    [11]Dan A., Ghosh S., Moulik S.P., Carbohydr. Polym., 2010, 80, 44-52.
    [12]Liu X.M., Gao W., Maziarz E.P., et al., J. Chromatogr. A, 2006,1104, 145-153.
    [13]Sloneker J.H., Orentas D.G., Nature, 1962, 194, 478-479.
    [14]McComb E.A., McCready R.M., Anal. Chem., 1957, 29, 819-821.
    [15]Thuresson K., Nilsson S., Lindman B., Langmuir, 1996, 12, 530-537.
    [16]Tsianou M., Kjoniksen A.L.,Thuresson K., et al., Macromolecules, 1999, 32, 2974-2982.
    [17]Tsianou M., Kjoniksen A.L., Thuresson K., et al., Macromolecules, 1999, 32, 2974-2982.
    [18]Liu R.C.W., Monshima Y., Winnik F.M., Macromolecules, 2003, 36, 4967-4975.
    [19]Antuncs F.E., Lindman B., Miguel M.G., Langmuir, 2005, 21, 10188-10196.
    [20]Drcval' V., Vasil'ev G., Lihnanovich E., et al., Polym. Sci. Ser. A, 2008, 50, 751-756.
    [21]Sterner T., Angew. Chem. Int. Edit., 2002, 41, 48-76.
    [22]Habi A., Djadoun S., Thermochim. Acia, 2008, 469, 1-7.
    [23]Xiao C., Lu Y., Zhang L.,J. Appl. Polym. Sci., 2001, 81, 882-888.
    [24]Chen S., Liu M., Jin S., et al., Polym. Int., 2007. 56, 1305-1312.
    [25]Vasile C., Bumbu G.G., Mylonas Y., et al., Polym. Int., 2003, 52, 1887-1891.
    [26]Marguerite R., Int. J. Biol. Macromol, 2008, 43, 444-450.
    [27]Schorsch C., Gamier C., Doublier J.-L., Carbohydr. Polym., 1997, 34, 165-175.
    [28]Tarn K.C., Jenkins R.D., Winnik M.A., et al., Macromolecules, 1998, 31, 4149-4159.
    [29]Thiinemann A.F., Miiller M., Dautzenberg H., et al., Poly electrolyte complexes, in: M. Schmidt (Ed.) Poly electrolytes with defined molecular architecture Ⅱ, Springer, Berlin/Heidelberg, 2004, pp.19-33.
    [30]Zakana M.B., Rahman Z.A., Carbohydr. Polym., 1996, 29, 25-27.
    [31]Yang J., Chen S., Fang Y., Carbohydr Polym., 2009, 75, 333-337.
    [32]Wyatt N.B., Liberatore M.W., J. Appl. Polym. Sci., 2009, 114,4076-4084.
    [33]Xu Y.; Xiong S., Li Y., et al.,J. Food Eng., 2008, 86, 10-16.
    [34]Wu M., Li D., Wang L.J., et al., J. Food Eng., 2010, 98, 480-491.
    [35]Achi O.K., Okolo N.I., Int. J. Food Sci. Tech., 2004, 39, 431-436.
    [36]Liou S., Chen S., Liu D., Bwmatenals. 2003, 24, 3981-3988.
    [37]Chen H.L., Morawctz H., Eur. Polym.J., 1983. 19. 923-928.
    [38]Rodriguez R., Alvarez-Lorenzo C, Concheiro A., Biomacromolecules,2001,2, 886-893.
    [39]Smith I., Symes K., Lawson C., et al., Int. J. Biol. Macromol.,1981,3,129-134.
    [1]陈洪,翟中军,张三辉等,西石油学院学报,2004,26,61-64.
    [2]王金兰,任鲲,林梅钦等,应用化工,2004,33,12-16.
    [3]赖南君,叶仲斌,周扬帆等,油气地质与采收率,2005,12,63-65.
    [4]吴文祥,张玉丰,胡锦强等,大庆石油学院院报,2005,29,98-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700