用户名: 密码: 验证码:
环境友好型多功能缓控释肥料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对环境、健康以及自然资源可持续利用等的关注不断提高,在保证粮食产量的同时,最大限度地减少肥料损失、提高肥料利用率,是当前农业肥料科技创新的重要任务,也是实现农业可持续发展的重要保证。本学位论文着眼于开发高效、环保、低成本的多功能缓控释肥料,以无机矿物凹凸棒黏土为基质,尿素、硫酸铵、氯化铵和磷酸二氢钾等为化肥原料,海藻酸钠、瓜尔胶、淀粉及其衍生物、纤维素衍生物、腐植酸、聚丙烯酸、聚衣康酸、聚丙烯酰胺等天然高分子和合成高分子为包膜原材料,采用圆盘造粒的工艺制备了一系列多功能有机/无机复合包膜型缓控释肥料;对多功能肥料样品的养分缓控释行为、缓控释机理、对土壤的调理作用,以及包膜材料的降解性等多方面进行了系统研究,具体内容如下:
     1.将尿素、磷酸二氢钾和焦磷酸铜钾包埋于交联的海藻酸钠中,以此作为肥料内核,保水剂海藻酸钠-g-聚丙烯酸作为肥料颗粒包膜材料,制备了一种具有保水功能的多元缓释肥料。所制备的接枝聚合物SA-g-PAA作为肥料的包膜材料,既可以起到减缓肥料养分释放的作用,又可以有效降低土壤中水分的蒸发率,提高土壤的保水性。将天然高分子海藻酸钠引入到保水剂的制备中,可以改善保水剂的降解性能。合成了一种低水溶性化合物焦磷酸铜钾,具有非常好的缓释效果,可以作为一种长效铜肥使用。
     2.将尿素和磷酸二氢钾包埋于凹凸棒黏土基质中,以此作为肥料内核,海藻酸钠作为内层包膜,保水剂海藻酸钠-g-聚(丙烯酸-co-丙烯酰胺)/腐植酸作为外层包膜,制备了一种双层包膜的多功能缓释肥料。凹凸棒黏土不仅具有较强的吸附功能,而且元素含量丰富,因此,作为肥料的组成部分不仅可以起到缓释的作用,还可以提供多种营养元素。使用天然高分子海藻酸钠作为包膜材料,不仅工艺简单,而且可以对养分产生一定的缓释效果。将所制备的保水剂材料海藻酸钠-g-聚(丙烯酸-co-丙烯酰胺)/腐植酸作为外层包膜材料,不仅起到了减缓肥料养分释放速率和提高土壤持水能力的作用,而且还可以调节土壤的酸碱性。
     3.将尿素和磷酸二氢钾包埋于凹凸棒黏土基质中,以此作为肥料内核,瓜尔胶作为肥料内层包膜,保水剂瓜尔胶-g-聚(衣康酸-co-丙烯酰胺)/腐植酸作为外层包膜,制备了一种多功能有机/无机复合缓释肥料。使用环境友好型的亲水性聚合物瓜尔胶作为包膜材料,利用其较大的粘度特性来控制肥料养分的释放。在保水剂瓜尔胶-g-聚(衣康酸-co-丙烯酰胺)/腐植酸的制备中,瓜尔胶和腐植酸的引入不仅提高了产品的吸水能力,降低了成本,改善了其降解性能,而且腐植酸还是一种很好的有机肥成分。将该保水剂材料作为肥料的外层包膜,在控制肥料养分的释放、改善土壤的水分状况和pH值方面起到了较好的效果。
     4.以乙基纤维素为肥料的内层包膜,羧甲基纤维素/羟乙基纤维素复合保水剂为外层包膜制备了一种环境友好型包膜氮肥。基于乙基纤维素的疏水性和成膜性,将其作为肥料的内层包膜,起到了较好的缓释效果。此外,合成的可完全生物降解的羧甲基纤维素/羟乙基纤维素复合保水剂作为肥料的外层包膜,在其吸水溶胀的过程中也可以对营养元素进行吸附,既起到了缓释的作用又对土壤持水和保水能力的提高产生了明显的效果。
     5.以淀粉为原料合成了取代度为2.8的高取代度醋酸酯淀粉,以此作为颗粒肥料的内层疏水性包膜材料,以羧甲基淀粉和黄原胶为原料,在三偏磷酸钠交联条件下,制得一种新型的农用保水剂材料,以此作为颗粒肥料的外层包膜材料,制备了一种新型多功能缓控释肥料。通过控制包膜量和加入增塑剂来改善醋酸酯淀粉膜的性能,进而来控制肥料养分的释放速率,从而达到养分的可控释放。羧甲基淀粉/黄原胶复合保水剂作为包膜材料不仅可以提高土壤的持水能力,而且,由于该新型保水剂的组成都是天然高分子材料,降解后还可作为一种有机肥增加土壤的有机质含量,改善土壤肥力。
     6.通过包肥法在一定条件下的土壤中对所制备的几种多功能缓控释肥料的缓释性能进行研究,结果发现,使用亲水性高分子材料海藻酸钠和瓜尔胶作为肥料的内层包膜,尽管包膜工艺简单,但在缓释性能上不及疏水性的乙基纤维素和醋酸酯淀粉。将一定比例的多功能肥料施入土壤后,对土壤的持水能力和保水能力进行考察,结果发现,所制备的保水剂材料在改善土壤水分状况方面有明显的效果,但使用纤维素衍生物和淀粉衍生物所制备的羧甲基纤维素/羟乙基纤维素和羧甲基淀粉/黄原胶复合保水剂材料,由于全部采用环境友好的天然高分子作为原料,在一定程度上减轻了保水剂对石油相关产品的过分依赖,具有不污染土壤环境、成本低等优点,有望得到推广应用。
     本学位论文选择来源广泛、价格低廉、无污染且又能保证肥料具有较好缓控释性的包膜材料,采用简单的制备工艺,制备了一系列环境友好型有机/无机复合的多功能缓控释肥料,对其多方面的性能进行了系统地评价和研究,这将为拓展包膜型缓控释肥料的种类、促进其推广应用奠定一定的理论和实际应用基础。
With the increasing public concern toward human health, environmental protection, and natural resource sustainability, there is a shift toward the development of sustainable agriculture that sustains food production with minimal fertilizer nutrient loss. This is an important task of the scientific and technological innovation of agricultural fertilizers. This thesis focuses on the development of efficient, environmentally friendly, low cost multifunctional slow/controlled release fertilizers, based on attapulgite clay as matrix, urea, ammonium sulfate, ammonium chloride, and potassium dihydrogen phosphate as fertilizer raw materials, sodium alginate, guar gum, starch and its derivatives, cellulose derivatives, humic acid, poly(acrylic acid), poly(itaconic acid), polyacrylamide, etc. as coating materials. Granulator was used to prepare a series of multifunctional organic-inorganic coated slow/controlled release fertilizers. The release behavior and mechanism of the products, the influence of the products on soil conditioning, as well as the degradation of the coating materials were determined systematically. The main results are as follows:
     1. A slow-release multielement compound fertilizer (SMCF) was prepared. The nutrients (H2NCONH2, KH2PO4, and K2Cu3(P2O7)2·3H2O) were entrapped in the alginate matrix granules, and the crosslinked sodium alginate-g-ploy(acrylic acid)(SA-g-PAA) superabsorbent polymer was used as coating. The product could significantly improve the water-holding capacity and decrease the moisture evaporation of soil. Moreover, the partially degradable superabsorbent materials used as coating can alleviate the pollution which was caused by conventional non-degradable superabsorbent polymer materials. The nutrient Cu in K2Cu3(P2O7)2·3H2O showed excellent slow-release property, which is available in the soil so as to be assimilated by plants for a long period.
     2. A multifunctional double coated slow release fertilizer was prepared based on nutrients urea and potassium dihydrogen phosphate entrapped in the attapulgite clay matrix, sodium alginate used as an inner coating and sodium alginate-g-poly(acrylic acid-co-acrylamide)/humic acid superabsorbent polymer used as an outer coating. The introduction of APT can slow fertilizer nutrients release due to its adsorption capacity and provide abundant nutrients. Natural polymer sodium alginate as coating materials, not only made the process simple, but also can slow fertilizer nutrients release. The superabsorbent used as outer coating not only slowed down the nutrient release, improved water-holding capacity of soil, but also regulated the pH value of soil.
     3. A multifunctional slow release organic-inorganic compond fertilizer was prepared based on nutrients urea and potassium dihydrogen phosphate entrapped in the attapulgite clay matrix, guar gum used as an inner coating and guar gum-g-poly(itaconic acid-co-acrylamide)/humic acid superabsorbent polymer used as an outer coating. The use of environmentally friendly hydrophilic polymer guar gum as coating materials played a role in controlling nutrient release to some extent based on its high viscosity. The introduction of guar gum and humic acid in the preparation of the superabsorbent polymer guar gum-g-poly(itaconic acid-co-acrylamide)/humic acid not only enhanced water absorption capacities, reduced the cost, improved its degradability, but also provided a kind of organic fertilizers for plant growth. The superabsorbent used as outer coating played an important role in slowing down the nutrient release, improving water-holding capacity of soil, and regulating the pH value of soil.
     4. An environmentally friendly coated nitrogen fertilizer was prepared based on ethyl cellulose as an inner coating, carboxymethyl cellulose/hydroxyethyl cellulose composite material as an outer coating. Ethylcellulose played an important role in slowing down the nutrient release due to its hydrophobicity and excellent film-forming ability. The degradable composite absorbent material carboxymethyl cellulose/hydroxyethyl cellulose used as outer coating materials can adsorb the nutrition element in the process of absorbing water, which was helpful in retarding nutrient release, improving water-holding and water-retention capacity of soil.
     5. A controlled release fertilizer system based on starch acetate with high degree of substitution and weakly cross-linked carboxymethyl starch/xanthan gum absorbent with trisodium trimetaphosphate as coating materials was developed to improve fertilizer use efficiency. The N release can be controlled by changing the thickness of coating and the content of plasticizer. The polysaccharide based absorbent material carboxymethyl starch/xanthan gum used as a novel coating played an important role in holding water in soil. Moreover, when the absorbent material was degraded, it can be used as an organic fertilizer to increase soil organic matter content and improve soil fertility.
     6. The nutrient release behaviors of the several multifunctional slow/controlled fertilizers were determined by burying an amount of products in sealed plastic mesh bags in the soil. The results showed that although the processing is simple with the hydrophilic polymer sodium alginate and guar gum used as inner coatings, the slow release properties were compromised compared with ethyl cellulose and starch acetate. The results of the effect of the multifunctional fertilizer products on water-holding and water-retention capacity of soil showed that, the absorbent materials we prepared played an important role in holding water in soil. Moreover, the composite absorbent materials carboxymethyl cellulose/hydroxyethyl cellulose and carboxymethyl starch/xanthan gum were prepared based on environmentally friendly natural polymer, which could reduce the excessive reliance on petroleum-based products of superabsorbents to some extent. The products with the characteristics of non-polluting and low-cost could be expected to have wide applications.
     In conclusion, several kinds of environmentally friendly multifunctional slow release organic-inorganic compond fertilizer were prepared in a simple process by using the coating materials with extensive source, low cost, and non-polluting properties. The structural and chemical characteristics of the products, as well as the aspects of performance were examined. This work will lay the theoretical and practical foundation to some extent for expending the types of coated slow/controlled fertilizers and promoting the practical applications.
引文
[1]Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S. Agricultural sustainability and intensive production practices[J]. Nature.2002,418:671-677.
    [2]Khan, S., Hanjra, M.A. Footprints of water and energy inputs in food production-Global perspectives[J]. Food Policy.2009,34:130-140.
    [3]李庆逵,朱兆良,于天任中国农业持续发展中的肥料问题[M].江西科学技术出版社,江西,1998.
    [4]Trenkel, M.E., Controlled-release and stabilized fertilizers in agriculture[M]. International Fertilizer Industry Association, Paris,1997.
    [5]Stewart, W.M., Dibb, D.W., Johnston, A.E., Smyth, T.J. The contribution of commercial fertilizer nutrients to food production[J]. Agron J.2005,97:1-6.
    [6]谷洁,高华提高化肥利用率技术创新展望[J].农业工程学报.2000,2:17-20.
    [7]Matson, P.A., Naylor, R., Ortiz-Monasterio, I. Integration of environmental, agronomic, and economic aspects of fertilizer management [J]. Science.1998, 280:112-115.
    [8]李文华生态农业-中国可持续农业的理论与实践[M].化学工业出版社,北京,2003.
    [9]中国农村统计年鉴[M].中国统计出版社,北京,1997.
    [10]杨青林,桑利民,孙吉茹,季志强,袁文利,郭玉炜,盖颜欣我国肥料利用现状及提高化肥利用率的方法[J].山西农业科学.2011,39:690-692.
    [11]孙昌禹,贾永国,王淑芬氮肥施用对生态系统的影响及措施的研究[J].河北农业科学.2009,13:60-63.
    [12]Ayoub, A.T. Fertilizers and the environment[J]. Nutr. Cycl. Agroecosys.1999,55: 117-121.
    [13]Chien, S., Prochnow, L., Tu, S., Snyder, C. Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility:an update review[J]. Nutr. Cycl. Agroecosys.2011,89,229-255.
    [14]杜昌文,周健民控释肥料的研制及其进展[J].土壤.2002,3:127-133.
    [15]许秀成,李药萍,王好斌包裹型缓释/控制释放肥料专题报告[J].磷肥与复肥.2001,16:4-8.
    [16]于克伟,陈冠雄,杨思几种旱地农作物在农田N2O释放中的作用及环境因素的影响[J].应用生态学报.1995,3:387-391.
    [17]朱景双,毕旭红氮肥与环境污染[J].黑龙江水利科技.2004,1:84-85.
    [18]陈润,张文辉包膜型缓控释肥料的研究综述[J].化学工程与装备.2010,10:126-128.
    [19]李迎春,林而达,熊伟中国农业氧化亚氮排放情景研究[J].地理科学进展.2009,28:636-642.
    [20]黄绍文,金继运,杨俐苹分区平衡施肥技术对氮肥利用率和土壤养分平衡的影响[J].土壤肥料.2002,6:3-7.
    [21]刘丽琴,江志阳大力发展有机肥、有机无机复合(混)肥[J].辽宁化工.2011,40:179-182.
    [22]陈绍荣,王美华,姚振领,孙玲丽发展腐植酸类有机肥提高化肥利用率[J].磷肥与复肥.2009,24:5-7.
    [23]韩晓日新型缓/控释肥料研究现状与展望[J].沈阳农业大学学报.2006,37:3-8.
    [24]任军,阎晓燕我国化肥的施用现状及发展趋势[J].吉林农业科学.1997,1:64-67.
    [25]翟军海,高亚军,周建斌控释缓释肥料研究概述[J].干旱地区农业研究.2002,20:45-48.
    [26]张民,杨越超,宋付朋,史衍玺包膜控释肥料研究与产业化开发[J].化肥工业.2005,32:7-13.
    [27]王亮,秦玉波,于阁杰,石元亮新型缓控释肥的研究现状及展望[J].吉林农业科学.2008,33:38-42.
    [28]刘宁,孙振涛,韩晓日,战秀梅,杨劲峰缓/控释肥料的研究进展及存在问题[J].土壤通报.2010,41:1005-1008.
    [29]Park, M., Kim, J.S., Choi, C.L., Kim, J.-E., Heo, N.H., Komarneni, S., Choi, J. Characteristics of nitrogen release from synthetic zeolite Na-P1 occluding NH4NO3[J]. J. Controlled Release.2005,106:44-50.
    [30]谢佳贵,王立春,尹彩侠,张国辉,侯云鹏我国缓、控肥料发展现状及对策[J].吉林农业科学.2006,31:50-52.
    [31]张夫道,王玉军我国缓/控释肥料的现状和发展方向[J].中国土壤与肥料.2008,4:1-4.
    [32]Tomaszewska, M., Jarosiewicz, A., Karakulski, K. Physical and chemical characteristics of polymer coatings in CRF formulation [J]. Desalination.2002, 146:319-323.
    [33]Du, C.W., Zhou, J.M., Shaviv, A. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers[J]. J. Polym. Environ. 2006,14:223-230.
    [34]Tomaszewska, M., Jarosiewicz, A. Encapsulation of mineral fertilizer by polysulfone using a spraying method[J]. Desalination.2006,198:346-352.
    [35]Liang, R., Liu, M.Z. Preparation and properties of a double-coated slow-release and water-retention urea fertilizer[J]. J. Agric. Food. Chem.2006,54: 1392-1398.
    [36]杜昌文,周健民,王火焰聚合物包膜肥料研究进展[J].长江流域资源与环境.2005,14:725-730.
    [37]陈强,张文清,吕伟娇,邓修,金鑫荣可生物降解的壳聚糖肥料包膜材料的研究[J].高分子材料科学与工程.2005,21:290-293.
    [38]郭会仙,唐辉一,王亚明,袁新兵天然产物在缓/控释肥料中的应用[J].化工科技.2006,14:40-43.
    [39]Jarosiewicz, A., Tomaszewska, M. Controlled-release NPK fertilizer encapsulated by polymeric membranes[J]. J. Agric. Food. Chem.2003,51: 413-417.
    [40]Perez-Garcia, S., Fernandez-Perez, M., Villafranca-Sanchez, M., Gonzalez-Pradas, E., Flores-Cespedes, F. Controlled release of ammonium nitrate from ethylcellulose coated formulations [J]. Ind. Eng. Chem. Res.2007, 46:3304-3311.
    [41]Shaviv, A., Mikkelsen, R. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation-A review[J]. Nutr. Cycl. Agroecosys.1993,35:1-12.
    [42]王恩飞,崔智多,何璐,肖传绪,莫海涛,张小勇我国缓/控释肥研究现状和发展趋势[J].安徽农业科学.2011,39:12762-12764.
    [43]武志杰,陈利军缓释/控释肥料原理与应用[M].科学出版社,北京,2003.
    [44]孙秀廷新型化肥及其施用[M].农业出版社,北京,1989.
    [45]陆建刚,周莺国内外新型肥料的开发[J].化肥工业.1994,3:8-11.
    [46]王光华,张秋英日本覆膜控释肥料的开发及应用[J].世界农业.2002,278:46-47.
    [47]Tomaszewska, M., Jarosiewicz, A. Use of polysulfone in controlled-release NPK fertilizer formulations[J]. J. Agric. Food. Chem.2002,50:4634-4639.
    [48]Tomaszewska, M., Jarosiewicz, A. Polysulfone coating with starch addition in CRF formulation[J]. Desalination.2004,163:247-252.
    [49]冯元琦控制缓释碳铵肥料[J].化工进展.1995,2:37-40.
    [50]王新民,介晓磊,侯彦林中国控释肥料的研究现状与发展前景[J].土壤通报.2003,34:572-575.
    [51]许秀成,李菂萍,王好斌包裹型缓释/控制释放肥料专题报告[J].磷肥与复肥.2001,16:4-8.
    [52]廖宗文,刘可星,王德汉,宋波发展有中国特色的控释肥[J].中国农业科技导报.2001,3:71-75.
    [53]刘可星,廖宗文平衡施肥概念的发展及其技术开发[J].磷肥与复肥.1997,12:64-65.
    [54]吴春华,安鑫南淀粉基缓释肥料的研制[J].南京林业大学学报.2002,26:21-23.
    [55]张民,杨越超,宋付朋包膜控释肥料研究与产业化开发[J].化肥工业.2005,32:7-12.
    [56]詹发禄,柳明珠具有缓释肥功能高吸水性聚合物树脂研究[J].兰州大学学 报.2003,39:62-66.
    [57]Wu, L., Liu, M.Z., Liang R. Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention[J]. Bioresour. Technol.2008,99:547-554.
    [58]Wu, L., Liu, M.Z. Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention[J]. Carbohydr. Polym.2008, 72:240-247.
    [59]Liang, R., Liu, M.Z. Preparation and properties of coated nitrogen fertilizer with slow release and water retention[J]. Ind. Eng. Chem. Res.2006,45:8610-8616.
    [60]Guo, M.Y., Liu, M.Z., Zhan, F.L., Wu, L. Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent and moisture preservation[J]. Ind. Eng. Chem. Res.2005,44:4206-4211.
    [61]Guo, M.Y., Liu, M.Z., Liang, R., Niu, A.Z. Granular urea-formaldehyde slow-release fertilizer with superabsorbent and moisture preservation[J]. J. Appl. Polym. Sci.2006,99:3230-3235.
    [62]Liu, M.Z., Liang, R., Zhan, F.L., Liu, Z., Niu, A.Z. Preparation of superabsorbent slow release nitrogen fertilizer by inverse suspension polymerization[J]. Polym. Int.2007,56:729-737.
    [63]Husby, C.E., Niemiera, A.X., Harris, J.R., Wright, R.D. Influence of diurnal temperature on nutrient release patterns of three polymer-coated fertilizers[J]. HortScience.2003,38:387-389.
    [64]Tlustos, P., Blackmer, A.M. Release of nitrogen from ureaform fractions as influenced by soil pH[J]. Soil Sci. Soc. Am. J.1992,56:1807-1810.
    [65]Lunt, O.R., Oertli, J.J. Controlled release of fertilizer minerals by incapsulating membranes:II. Efficiency of recovery, influence of soil moisture, mode of application, and other considerations related to use[J]. Soil Sci. Soc. Am. J.1962, 26:584-587.
    [66]Jarrell, W.M., Boersma, L. Model for the release of urea by granules of sulfur-coated urea applied to soil[J]. Soil Sci. Soc. Am. J.1979,43:1044-1050.
    [67]Jarrell, W.M., Boersma, L. Release of urea by granules of sulfur-coated urea[J]. Soil Sci. Soc. Am. J.1980,40:418-422.
    [68]张宝林新型缓释性复合肥料-包裹型复合肥[J].化肥工业.1995,22:329-336.
    [69]李药萍,王好斌,许秀成乐喜施控制释放肥料与国外同类产品的比较[J].磷肥与复肥.1998,13:59-60.
    [70]Shaviv, A., Raban, S., Zaidel, E. Modeling controlled nutrient release from polymer coated fertilizers:diffusion release from single granules[J]. Environ. Sci. Technol.2003,37:2251-2256.
    [71]Shaviv, A., Raban, S., Zaidel, E. Modeling controlled nutrient release from a population of polymer coated fertilizers:statistically based model for diffusion release[J]. Environ. Sci. Technol.2003,37:2257-2261.
    [72]Shaviv, A. Advances in controlled-release fertilizers[J]. Adv. Agron.2001,71: 1-49.
    [73]Lu, S.M., Lee, S.F. Slow release of urea through latex film[J]. J. Controlled Release.1992,18:171-180.
    [74]Kochba, M., Gambash, S., Avnimelech, Y. Studies on slow release fertilizers:1. Effects of temperature, soil moisture, and water vapor pressure[J]. Soil Science. 1990,149:339-343.
    [75]Kochba, M., Ayalon, O., Avnimelech, Y. Slow release rate:Individual granules and population behaviour [J]. Nutr. Cycl. Agroecosys.1994,39:39-42.
    [76]Gandeza, A.T., Shoji, S., Yamada, I. Simulation of crop response to polyoiefin-coated urea, I. Field dissolution. [J]. Soil Sci. Soc. Am. J.1991, 1462-1467.
    [77]Du, C.W., Zhou, J.M., Shaviv, A., Wang, H. Mathematical model for potassium release from polymer-coated fertiliser [J]. Biosys. Eng.2004,88:395-400.
    [78]郑圣先,肖剑,易国英控释肥料养分释放动力学及其机理研究第1报温度对包膜型控释肥料养分释放的影响[J].磷肥与复肥.2002,4:14-17.
    [79]郑圣先,肖剑,易国英控释肥料养分释放动力学及其机理研究第2报水 蒸气压对包膜型控释肥料养分释放的影响[J].磷肥与复肥.2002,5:22-25.
    [80]肖剑,郑圣先,易国英控释肥料养分释放动力学及其机理研究第3报土壤水分压对包膜型控释肥料养分释放的影响(续完)[J].磷肥与复肥.2002,6:9-12.
    [81]熊又升,陈明亮包膜控释肥料养分释放速率测定方法的研究[J].华中农业大学学报.2000,19:442-445.
    [82]陈剑慧,曹一平有机高聚物包膜控释肥氮释放特性的测定与农业评价[J].植物营养与肥料学报.2002,8:44-47.
    [83]山添文雄,越野正义,藤井国博肥料分析方法详解[M].化学工业出版社,北京,1983.
    [84]Savant, N.K., Clemmons, J.R., James, A.F. A technique for predicting urea release from coated urea in wetland soil[J]. Commun. Soil Sci. Plant Anal.1982, 13:793-802.
    [85]杜建军,廖宗文,宋波,朱兆华包膜控释肥养分释放特性评价方法的研究进展[J].植物营养与肥料学报.2002,1:16-21.
    [86]Gambsh, S., Kochba, M., Avnnelech, Y. Studies on slow-release fertilizers:Ⅱ. A method for evaluation of nutrient release rate from slow-releasing fertilizers[J]. Soil Science.1990,150:446-450.
    [87]Cartagena, M.C., Vallejo, A. Evaluation and classification of coated slow-release nitrogen fertilizers by means of electroultrafiltration in an integrated system[J]. Agricoltura Mediterranea.1993,123:122-127.
    [88]Shoji, S., Kanno, H. Use of polyolefin-coated fertilizers for increasing fertilizer efficiency and reducing nitrate leaching and nitrous oxide emissions[J]. Nutr. Cycl. Agroecosys.1994,39:147-152.
    [89]Tilman, D. Global environmental impacts of agricultural expansion:The need for sustainable and efficient practices[J]. Proc. Natl. Acad. Sci. USA.1999,96: 5995-6000.
    [90]Ju, X.T., Xing, G.X., Chen, X.P., Zhang, S.L., Zhang, L.J., Liu, X.J., Cui, Z.L., Yin, B., Christie, P., Zhu, Z.L., Zhang, F.S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proc. Natl. Acad. Sci. U. S. A.2009,106:3041-3046.
    [1]Khan, S., Hanjra, M.A. Footprints of water and energy inputs in food production-global perspectives[J]. Food Policy.2009,34:130-140.
    [2]Al-Zahrani, S.M. Utilization of polyethylene and paraffin waxes as controlled delivery systems for different fertilizers[J]. Ind. Eng. Chem. Res.2000,39: 367-371.
    [3]Guo, M.Y., Liu, M.Z., Liang, R., Niu, A.Z. Granular urea-formaldehyde slow-release fertilizer with superabsorbent and moisture preservation[J]. J. Appl. Polym. Sci.2006,99:3230-3235.
    [4]Shaviv, A., Mikkelsen, R. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation-A review[J]. Nutr. Cycl. Agroecosys.1993,35:1-12.
    [5]Wu, L., Liu, M.Z., Liang, R. Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention[J]. Bioresour. Technol.2008,99:547-554.
    [6]Chen, L., Xie, Z.G., Zhuang, X.L., Chen, X.S., Jing, X.B. Controlled release of urea encapsulated by starch-g-poly(L-lactide)[J]. Carbohydr. Polym.2008,72: 342-348.
    [7]Entry, J.A., Sojka, R.E. Matrix based fertilizers reduce nitrogen and phosphorus leaching in three soils[J]. J. Environ. Manage.2008,87:364-372.
    [8]Chatzoudis, G.K., Rigas, F. Macroreticular hydrogel effects on dissolution rate of controlled-release fertilizers [J]. J. Agric. Food. Chem.1998,46:2830-2833.
    [9]Bouranis, D.L., Theodoropoulos, A.G., Drossopoulos, J.B. Designing synthetic polymers as soil conditioners[J]. Commun. Soil Sci. Plan.1995,26:1455-1480.
    [10]El-Rehim, H.A.A., Hegazy, E.S.A., El-Mohdy, H.L.A. Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance[J]. J. Appl. Polym. Sci.2004,93:1360-1371.
    [11]Kikuchi, A., Kawabuchi, M., Watanabe, A., Sugihara, M., Sakurai, Y., Okano, T. Effect of Ca2+-alginate gel dissolution on release of dextran with different molecular weights[J]. J. Controlled Release.1999,58:21-28.
    [12]Glicklis, R., Shapiro, L., Agbaria, R., Merchuk, J.C., Cohen, S. Hepatocyte behavior within three-dimensional porous alginate scaffolds [J]. Biotechnol. Bioeng.2000,67:344-353.
    [13]Lee, K.Y., Bouhadir, K.H., Mooney, D.J. Evaluation of chain stiffness of partially oxidized polyguluronate[J]. Biomacromolecules.2002,3:1129-1134.
    [14]Shapiro, L., Cohen, S. Novel alginate sponges for cell culture and transplantation[J]. Biomaterials.1997,18:583-590.
    [15]Fageria, N.K., Baligar, C., Clark, R.B. Micronutrients in crop production[M]. Advances in Agronomy, Academic Press,2002.
    [16]Ciopec, M., Muntean, C., Negrea, A., Lupa, L., Negrea, P., Barvinschi, P. Synthesis and thermal behavior of double copper and potassium pyrophosphate[J]. Thermochim. Acta.2009,488:10-16.
    [17]Mahdavinia, G.R., Pourjavadi, A., Hosseinzadeh, H., Zohuriaan, M.J. Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties[J]. Eur. Polym. J. 2004,40:1399-1407.
    [18]Flory, P.J., Principles of polymer chemistryp[M]. Cornell University Press, Ithaca, New York,1953.
    [19]Finkenstadt, V.L., Willett, J.L. Reactive extrusion of starch-polyacrylamide graft copolymers:Effects of monomer/starch ratio and moisture content[J]. Macromol. Chem. Phys.2005,206:1648-1652.
    [20]Zhang, J.P., Chen, H., Wang, A.Q. Study on superabsorbent composite. Ⅲ. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite[J]. Eur. Polym. J.2005,41:2434-2442.
    [21]Castel, D. Ricard, A. Audebert, R. Swelling of anionic and cationic starch-based superabsorbents in water and saline solution[J]. J. Appl. Polym. Sci.1990,39: 11-29.
    [22]Liang, R., Liu, M.Z. Preparation and properties of a double-coated slow-release and water-retention urea fertilizer[J]. J. Agric. Food. Chem.2006,54: 1392-1398.
    [23]Chen, P., Zhang, W.A., Luo, W., Fang, Y.E. Synthesis of superabsorbent polymers by irradiation and their applications in agriculture [J]. J. Appl. Polym. Sci.2004,93:1748-1755.
    [24]Bakass, M., Mokhlisse, A., Lallemant, M. Absorption and desorption of liquid water by a superabsorbent polymer:Effect of polymer in the drying of the soil and the quality of certain plants[J]. J. Appl. Polym. Sci.2002,83:234-243.
    [25]Ding, S.D., Zheng, G.C., Zeng, J.B., Zhang, L., Li, Y.D., Wang, Y.Z. Preparation, characterization and hydrolytic degradation of poly[p-dioxanone-(butylene succinate)] multiblockcopolymer[J]. Eur. Polym. J.2009,45:3043-3057.
    [26]Lee, S.Y., Tae, G. Formulation and in vitro characterization of an in situ gelable, photo-polymerizable Pluronic hydrogel suitable for injection[J]. J. Controlled Release.2007,119:313-319.
    [27]Kelner, A., Schacht, E.H. Tailor-made polymers for local drug delivery:release of macromolecular model drugs from biodegradable hydrogels based on poly(ethylene oxide)[J]. J. Controlled Release.2005,101:13-20.
    [1]Khan, S., Hanjra, M.A. Footprints of water and energy inputs in food production-Global perspectives[J]. Food Policy.2009,34:130-140.
    [2]Stewart, W.M., Dibb, D.W., Johnston, A.E., Smyth, T.J. The contribution of commercial fertilizer nutrients to food production[J]. Agron J.2005,97:1-6.
    [3]Entry, J.A., Sojka, R.E. Matrix based fertilizers reduce nitrogen and phosphorus leaching in three soils[J]. J. Environ. Manage.2008,87:364-372.
    [4]Shaviv, A., Mikkelsen, R. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation-A review[J]. Nutr. Cycl. Agroecosys.1993,35:1-12.
    [5]Jarosiewicz, A., Tomaszewska, M. Controlled-release NPK fertilizer encapsulated by polymeric membranes[J]. J. Agric. Food. Chem.2003,51:413-417.
    [6]Perez-Garcia, S., Fernandez-Perez, M., Villafranca-Sanchez, M., Gonzalez-Pradas, E., Flores-Cespedes, F. Controlled release of ammonium nitrate from ethylcellulose coated formulations [J]. Ind. Eng. Chem. Res.2007,46:3304-3311.
    [7]Ibrahim, A.A., Jibril, B.Y. Controlled release of paraffin wax/rosin-coated fertilizers[J]. Ind. Eng. Chem. Res.2005,44:2288-2291.
    [8]Li, J.F., Li, Y.M., Dong, H.P. Controlled release of herbicide acetochlor from clay/carboxylmethylcellulose gel formulations [J]. J. Agric. Food. Chem.2008,56: 1336-1342.
    [9]Ni, B.L., Liu, M.Z., Lu, S.Y. Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations[J]. Chem. Eng. J.2009, 155:892-898.
    [10]El-Rehim, H.A.A., Hegazy, E.S.A., El-Mohdy, H.L.A. Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance[J]. J. Appl. Polym. Sci.2004,93:1360-1371.
    [11]Kabiri, K., Zohuriaan-Mehr, M.J. Superabsorbent polymer materials:a review[J]. Iran. Polym. J.2008,17:451-477.
    [12]Abedi-Koupai, J., Sohrab, F., Swarbrick, G. Evaluation of hydrogel application on soil water retention characteristics[J]. J. Plant Nutr.2008,31:317-331.
    [13]Lentz, R.D., Kincaid, D.C. Polyacrylamide treatments for reducing seepage in soil-lined reservoirs:a field evaluation[J]. T. ASABE.2008,51:535-544.
    [14]Murray, H.H. Traditional and new applications for kaolin, smectite, and palygorskite:a general overview[J]. Appl. Clay Sci.2000,17:207-221.
    [15]Valdrighi, M.M., Pera, A., Agnolucci, M., Frassinetti, S., Lunardi, D., Vallini, G. Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)-soil system:a comparative study [J]. Agric., Ecosyst. Environ.1996,58:133-144.
    [16]Vlckova, Z., Grasset, L., Antosova, B., Pekar, M., Kucerik, J. Lignite pre-treatment and its effect on bio-stimulative properties of respective lignite humic acids[J]. Soil Biol. Biochem.2009,41:1894-1901.
    [17]Walker, G.M., Magee, T.R.A., Holland, C.R., Ahmad, M.N., Fox, N., Moffatt, N.A. Compression testing of granular NPK fertilizers[J]. Nutr. Cycl. Agroecosys. 1997,48:231-234.
    [18]IsIklan, N., Kursun, F., Inal, M. Graft copolymerization of itaconic acid onto sodium alginate using benzoyl peroxide[J]. Carbohydr. Polym.2010,79: 665-672.
    [19]Liu, J.H., Wang, Q., Wang, A.Q. Synthesis and characterization of chitosan-g-poly(acrylic acid)/sodium humate superabsorbent[J]. Carbohydr. Polym.2007,70:166-173.
    [20]Chu, M., Zhu, S.Q., Li, H.M., Huang, Z.B., Li, S.Q. Synthesis of poly(acrylic acid)/sodium humate superabsorbent composite for agricultural use[J]. J. Appl. Polym. Sci.2006,102:5137-5143.
    [21]Brady, N.C., Weil, R.R., The nature and properties of soils (13th Ed.)[M]. Springer Netherlands,2002.
    [22]Aciego Pietri, J.C., Brookes, P.C. Relationships between soil pH and microbial properties in a UK arable soil[J]. Soil Biol. Biochem.2008,40:1856-1861.
    [23]Baath, E., Anderson, T.H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques[J]. Soil Biol. Biochem. 2003,35:955-963.
    [24]Wang, W.B., Wang, A.Q. Synthesis, swelling behaviors, and slow-release characteristics of a guar gum-g-poly(sodium acrylate)/sodium humate superabsorbent[J]. J. Appl. Polym. Sci.2009,112:2102-2111.
    [25]Liang, R., Liu, M.Z. Preparation and properties of a double-coated slow-release and water-retention urea fertilizer[J]. J. Agric. Food. Chem.2006,54: 1392-1398.
    [26]Al-Zahrani, S.M. Controlled-release of fertilizers:modelling and simulation[J]. Int. J. Eng. Sci.1999,37:1299-1307.
    [27]Bhardwaj, A.K., Shainberg, I., Goldstein, D., Warrington, D.N., J.Levy, G. Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soils[J]. Soil Sci. Soc. Am. J.2007,71:406-412.
    [28]Stahl, J., Cameron, M., Haselbach, J., Aust, S. Biodegradation of superabsorbent polymers in soil[J]. Environ. Sci. Pollut. R.2000,7:83-88.
    [29]Rizzarelli, P., Puglisi, C., Montaudo, G. Soil burial and enzymatic degradation in solution of aliphatic co-polyesters[J]. Polym. Degrad. Stab.2004,85:855-863.
    [30]Kijchavengkul, T., Auras, R., Rubino, M., Alvarado, E., Camacho Montero, J.R., Rosales, J.M. Atmospheric and soil degradation of aliphatic-aromatic polyester films[J]. Polym. Degrad. Stab.2010,95:99-107.
    [31]Shogren, R.L., Doane, W.M., Garlotta, D., Lawton, J.W., Willett, J.L. Biodegradation of starch/poly lactic acid/poly(hydroxyester-ether) composite bars in soil[J]. Polym. Degrad. Stab.2003,79:405-411.
    [1]Matson, P.A., Naylor, R., Ortiz-Monasterio, I. Integration of environmental, agronomic, and economic aspects of fertilizer management[J]. Science.1998,280: 112-115.
    [2]Ayoub, A.T. Fertilizers and the environmen[J]. Nutr. Cycl. Agroecosys.1999,55: 117-121.
    [3]Chien, S., Prochnow, L., Tu, S., Snyder, C. Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility:an update review[J]. Nutr. Cycl. Agroecosys.2011,89:229-255.
    [4]Kundu, M.C., Mandal, B. Nitrate enrichment in groundwater from long-term intensive agriculture:its mechanistic pathways and prediction through modeling[J]. Environ. Sci. Technol.2009,43:5837-5843.
    [5]Chatterjee, R. Projecting the future of nitrogen pollution[J]. Environ. Sci. Technol. 2009,43:1659-1659.
    [6]Du, C.W., Zhou, J.M., Shaviv, A. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers[J]. J. Polym. Environ. 2006,14:223-230.
    [7]Ibrahim, A.A., Jibril, B.Y. Controlled release of paraffin wax/rosin-coated fertilizers [J]. Ind. Eng. Chem. Res.2005,44:2288-2291.
    [8]Khan, M., Kim, K.W., Mingzhi, W., Lim, B.K., Lee, W.H., Lee, J.Y. Nutrient-impregnated charcoal:an environmentally friendly slow-release fertilizer [J]. The Environmentalist.2008,28:231-235.
    [9]Choi, M.M.S., Meisen, A. Sulfur coating of urea in shallow spouted beds[J]. Chem. Eng. Sci.1997,52:1073-1086.
    [10]El-Shafei, Y.Z., Al-Omran, A.M., Al-Darby, A.M., Shalaby, A.A. Influence of upper layer treatment of gel-forming conditioner on water movement in sandy soils under sprinkler infiltration[J]. Arid Soil Res. Rehab.1992,6:217-231.
    [11]Sannino, A., Demitri, C., Madaghiele, M. Biodegradable cellulose-based hydrogels:design and applications[J]. Materials.2009,2:353-373.
    [12]Zohuriaan-Mehr, M.J., Omidian, H., Doroudiani, S., Kabiri, K. Advances in non-hygienic applications of superabsorbent hydrogel materials[J]. J. Mater. Sci. 2010,45:5711-5735.
    [13]Yu, J., Shainberg, I., Yan, Y.L., Shi, J.G., Levy, G.J., Mamedov, A.I. Superabsorbents and semiarid soil properties affecting water absorption[J]. Soil Sci. Soc. Am. J.2011,75:2305-2313.
    [14]Chen, Z.B., Liu, M.Z., Ma, S.M. Synthesis and modification of salt-resistant superabsorbent polymers[J]. React. Funct. Polym.2005,62:85-92.
    [15]Singh, A., Sarkar, D.J., Singh, A.K., Parsad, R., Kumar, A., Parmar, B.S. Studies on novel nanosuperabsorbent composites:swelling behavior in different environments and effect on water absorption and retention properties of sandy loam soil and soil-less medium[J]. J. Appl. Polym. Sci.2011,120:1448-1458.
    [16]Trenkel, M.E., Controlled-release and stabilized fertilizers in agriculture[M]. International Fertilizer Industry Association, Paris,1997.
    [17]Al-Zahrani, S.M. Utilization of polyethylene and paraffin waxes as controlled delivery systems for different fertilizers [J]. Ind. Eng. Chem. Res.2000,39: 367-371.
    [18]Guo, M.Y., Liu, M.Z., Liang, R., Niu, A.Z. Granular urea-formaldehyde slow-release fertilizer with superabsorbent and moisture preservation [J]. J. Appl. Polym. Sci.2006,99:3230-3235.
    [19]Panariello, G., Favaloro, R., Forbicioni, M., Caputo, E., Barbucci, R. Synthesis of a new hydrogel, based on guar gum, for controlled drug release[J]. Macromol. Symp.2008,266:68-73.
    [20]Walker, G.M., Magee, T.R.A., Holland, C.R., Ahmad, M.N., Fox, N., Moffatt, N.A. Compression testing of granular NPK fertilizers [J]. Nutr. Cycl. Agroecosys. 1997,48:231-234.
    [21]Lafci, A., Giiruz, K., Yiicel, H. Investigation of factors affecting caking tendency of calcium ammonium nitrate fertilizer and coating experiments[J]. Nutr. Cycl. Agroecosys.1988,18:63-70.
    [22]Wang, W.B., Wang, A.Q. Synthesis, swelling behaviors, and slow-release characteristics of a guar gum-g-poly(sodium acrylate)/sodium humate superabsorbent[J]. J. Appl. Polym. Sci.2009,112:2102-2111.
    [23]He, M.C., Shi, Y.H., Lin, C.Y. Characterization of humic acids extracted from the sediments of the various rivers and lakes in China[J].环境科学学报(英文 版).2008,20:1294-1299.
    [24]Valdrighi, M.M., Pera, A., Agnolucci, M., Frassinetti, S., Lunardi, D., Vallini, G. Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)-soil system:a comparative study[J]. Agric., Ecosyst. Environ.1996,58:133-144.
    [25]Vlckova, Z., Grasset, L., Antosova, B., Pekar, M., Kucerik, J. Lignite pre-treatment and its effect on bio-stimulative properties of respective lignite humic acids[J]. Soil Biol. Biochem.2009,41:1894-1901.
    [26]Haynes, R.J., Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions:a review[J]. Nutr. Cycl. Agroecosys.1998,51:123-137.
    [27]Aciego Pietri, J.C., Brookes, P.C. Relationships between soil pH and microbial properties in a UK arable soil[J]. Soil Biol. Biochem.2008,40:1856-1861.
    [28]Gan, F.Q., Zhou, J.M., Wang, H.Y., Du, C.W., Chen, X.Q. Removal of phosphate from aqueous solution by thermally treated natural palygorskite[J]. Water Res.2009,43:2907-2915.
    [29]Murray, H.H. Traditional and new applications for kaolin, smectite, and palygorskite:a general overview[J]. Appl. Clay Sci.2000,17:207-221.
    [30]Andry, H., Yamamoto, T., Irie, T., Moritani, S., Inoue, M., Fujiyama, H. Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality [J]. J. Hydrol.2009,373:177-183.
    [31]Bakass, M., Mokhlisse, A., Lallemant, M. Absorption and desorption of liquid water by a superabsorbent polymer:Effect of polymer in the drying of the soil and the quality of certain plants[J]. J. Appl. Polym. Sci.2002,83:234-243.
    [32]Bhardwaj, A.K., Shainberg, I., Goldstein, D., Warrington, D.N., Levy, G.J. Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soils[J]. Soil Sci. Soc. Am. J.2007,71:406-412.
    [33]Ni, B.L., Liu, M.Z., Lii, S.Y., Xie, L.H., Zhang, X., Wang, Y.F. Novel slow-release multielement compound fertilizer with hydroscopicity and moisture preservation[J]. Ind. Eng. Chem. Res.2010,49:4546-4552.
    [34]Marci, G., Mele, G., Palmisano, L., Pulito, P., Sannino, A. Environmentally sustainable production of cellulose-based superabsorbent hydrogels[J]. Green Chem.2006,8:439-444.
    [35]Umare, S.S., Chandure, A.S. Synthesis, characterization and biodegradation studies of poly(ester urethane)s[J]. Chem. Eng. J.2008,142:65-77.
    [36]Duarte, A.R.C., Mano, J.F., Reis, R.L. Enzymatic degradation of 3D scaffolds of starch-poly-(ε-caprolactone) prepared by supercritical fluid technology [J]. Polym. Degrad. Stab.2010,95:2110-2117.
    [37]Shogren, R.L., Doane, W.M., Garlotta, D., Lawton, J.W., Willett, J.L. Biodegradation of starch/polylactic acid/poly(hydroxyester-ether) composite bars in soil[J]. Polym. Degrad. Stab.2003,79:405-411.
    [1]Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S. Agricultural sustainability and intensive production practices[J]. Nature.2002,418:671-677.
    [2]Matson, P.A., Naylor, R., Ortiz-Monasterio, I. Integration of environmental, agronomic, and economic aspects of fertilizer management J]. Science.1998,280: 112-115.
    [3]Ju, X.T., Xing, G.X., Chen, X.P., Zhang, S.L., Zhang, L.J., Liu, X.J., Cui, Z.L., Yin, B., Christie, P., Zhu, Z.L., Zhang, F.S. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proc. Natl. Acad. Sci. U.S.A.2009,106:3041-3046.
    [4]Vitousek, P.M., Naylor, R., Crews, T., David, M.B., Drinkwater, L.E., Holland, E., Johnes, P.J., Katzenberger, J., Martinelli, L.A., Matson, P.A., Nziguheba, G, Ojima, D., Palm, C.A., Robertson, G.P., Sanchez, P.A., Townsend, A.R., Zhang, F.S. Nutrient imbalances in agricultural development[J]. Science.2009,324: 1519-1520.
    [5]Trenkel, M.E., Controlled-release and stabilized fertilizers in agriculture[M]. International Fertilizer Industry Association, Paris,1997.
    [6]Du, C.W., Zhou, J.M., Shaviv, A. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers [J]. J. Polym. Environ. 2006,14:223-230.
    [7]Ibrahim, A.A., Jibril, B.Y. Controlled release of paraffin wax/rosin-coated fertilizers[J]. Ind. Eng. Chem. Res.2005,44:2288-2291.
    [8]Ni, B.L., Liu, M.Z., Lu, S.Y., Xie, L.H., Wang, Y.F. Multifunctional slow-release organic-inorganic compound fertilizer [J]. J. Agric. Food. Chem.2010,58: 12373-12378.
    [9]Collins, T. Toward sustainable chemistry[J]. Science.2001,291:48-49.
    [10]Edgar, K.J., Buchanan, C.M., Debenham, J.S., Rundquist, P.A., Seiler, B.D., Shelton, M.C., Tindall, D. Advances in cellulose ester performance and application[J]. Prog. Polym. Sci.2001,26:1605-1688.
    [11]Bhardwaj, A.K., Shainberg, I., Goldstein, D., Warrington, D.N., J.Levy, G. Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soils[J]. Soil Sci. Soc. Am. J.2007,71:406-412.
    [12]Huttermann, A., Zommorodi, M., Reise, K. Addition of hydrogels to soil for prolonging the survival of Pinus halepensis seedlings subjected to drought[J]. Soil Till. Res.1999,50:295-304.
    [13]Bakass, M., Mokhlisse, A., Lallemant, M. Absorption and desorption of liquid water by a superabsorbent polymer:Effect of polymer in the drying of the soil and the quality of certain plants[J]. J. Appl. Polym. Sci.2002,83:234-243.
    [14]Ye, H., Zhao, J.Q., Zhang, Y.H. Novel degradable superabsorbent materials of silicate/acrylic-based polymer hybrids[J]. J. Appl. Polym. Sci.2004,91: 936-940.
    [15]Yu, J., Shainberg, I., Yan, Y.L., Shi, J.G., Levy, G.J., Mamedov, A.I. Superabsorbents and semiarid soil properties affecting water absorption[J]. Soil Sci. Soc. Am. J.2011,75:2305-2313.
    [16]Marci, G, Mele, G, Palmisano, L., Pulito, P., Sannino, A. Environmentally sustainable production of cellulose-based superabsorbent hydrogels[J]. Green Chem.2006,8:439-444.
    [17]Demitri, C., Del Sole, R., Scalera, F., Sannino, A., Vasapollo, G, Maffezzoli, A., Ambrosio, L., Nicolais, L. Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid[J]. J. Appl. Polym. Sci.2008,110:2453-2460.
    [18]Yang, C.Q., Wang, X. Formation of five-membered cyclic anhydride intermediates by polycarboxylic acids:Thermal analysis and Fourier transform infrared spectroscopy[J]. J. Appl. Polym. Sci.1998,70:2711-2718.
    [19]Xie, X., Liu, Q., Cui, S.W. Studies on the granular structure of resistant starches (type 4) from normal, high amylose and waxy corn starch citrates[J]. Food Res. Int.2006,39:332-341.
    [20]Coma, V., Sebti, I., Pardon, P., Pichavant, F.H., Deschamps, A. Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid[J]. Carbohydr. Polym.2003,51:265-271.
    [21]Tran, C.T., Sly, L.I., Mitchell, D.A. Selection of a strain of Aspergillus for the production of citric acid from pineapple waste in solid-state fermentation[J]. World J. Microbiol. Biotechnol.1998,14:399-404.
    [22]Wang, J. Improvement of citric acid production by Aspergillus niger with addition of phytate to beet molasses[J]. Bioresour. Technol.1998,65:243-245.
    [23]Shaviv, A., Raban, S., Zaidel, E. Modeling controlled nutrient release from polymer coated fertilizers:diffusion release from single granules[J]. Environ. Sci. Technol.2003,37:2251-2256.
    [24]Murray, H.H. Traditional and new applications for kaolin, smectite, and palygorskite:a general overview[J]. Appl. Clay Sci.2000,17:207-221.
    [25]Al-Zahrani, S.M. Controlled-release of fertilizers:modelling and simulation[J]. Int. J. Eng. Sci.1999,37:1299-1307.
    [26]Ni, B.L., Liu, M.Z., Lu, S.Y., Xie, L.H., Zhang, X., Wang, Y.F. Novel slow-release multielement compound fertilizer with hydroscopicity and moisture preservation[J]. Ind. Eng. Chem. Res.2010,49:4546-4552.
    [27]Zhang, J.P., Chen, H., Wang, A.Q. Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite[J]. Eur. Polym. J.2005,41:2434-2442.
    [28]Petrov, P., Petrova, E., Tchorbanov, B., Tsvetanov, C.B. Synthesis of biodegradable hydroxyethylcellulose cryogels by UV irradiation[J]. Polymer. 2007,48:4943-4949.
    [29]Bajpai, A.K., Shrivastava, J. In vitro enzymatic degradation kinetics of polymeric blends of crosslinked starch and carboxymethyl cellulose[J]. Polym. Int.2005, 54:1524-1536.
    [1]Tilman, D. Global environmental impacts of agricultural expansion:The need for sustainable and efficient practices[J]. Proc. Natl. Acad. Sci. USA.1999,96: 5995-6000.
    [2]Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S. Agricultural sustainability and intensive production practices[J]. Nature.2002,418:671-677.
    [3]Guidelines on nitrogen management in agricultural systems[M]. International Atomic Energy Agency, Vienna,2008.
    [4]Matson, P.A., Naylor, R., Ortiz-Monasterio, I. Integration of environmental, agronomic, and economic aspects of fertilizer management[J]. Science.1998,280: 112-115.
    [5]Matson, P.A., Parton, W.J., Power, A.G., Swift, M.J. Agricultural intensification and ecosystem properties[J]. Science.1997,277:504-509.
    [6]Kenawy, E.R., Sherrington, D.C., Akelah, A. Controlled release of agrochemical molecules chemically bound to polymers[J]. Eur. Polym. J.1992,28:841-862.
    [7]Du, C.W., Zhou, J.M., Shaviv, A. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers [J]. J. Polym. Environ. 2006,14:223-230.
    [8]Bansiwal, A.K., Rayalu, S.S., Labhasetwar, N.K., Juwarkar, A.A., Devotta, S. Surfactant-modified zeolite as a slow release fertilizer for phosphorus [J]. J. Agric. Food. Chem.2006,54:4773-4779.
    [9]Bandyopadhyay, S., Bhattacharya, I., Ghosh, K., Varadachari, C. New slow-releasing molybdenum fertilize[J]. J. Agric. Food. Chem.2008,56: 1343-1349.
    [10]Ni, B.L., Liu, M.Z., Lu, S.Y., Xie, L.H., Wang, Y.F. Multifunctional slow-release organic-inorganic compound fertilizer[J]. J. Agric. Food. Chem.2010,58: 12373-12378.
    [11]Trenkel, M.E., Controlled-release and stabilized fertilizers in agriculture[M]. International Fertilizer Industry Association, Paris,1997.
    [12]Shaviv, A. Advances in controlled-release fertilizers[J]. Adv. Agron.2001,71: 1-49.
    [13]Debeaufort, F., Voilley, A. Methylcellulose-based edible films and coatings:2. mechanical and thermal properties as a function of plasticizer content[J]. J. Agric. Food. Chem.1997,45:685-689.
    [14]Flores, S., Fama, L., Rojas, A.M., Goyanes, S., Gerschenson, L. Physical properties of tapioca-starch edible films:Influence of filmmaking and potassium sorbate[J]. Food Res. Int.2007,40:257-265.
    [15]Ni, B.L., Liu, M.Z., Lu, S.Y., Xie, L.H., Wang, Y.F. Environmentally friendly slow-release nitrogen fertilizer [J]. J. Agric. Food. Chem.2011,59:10169-10175.
    [16]Milkowski, K., Clark, J.H., Doi, S. New materials based on renewable resources: chemically modified highly porous starches and their composites with synthetic monomers[J]. Green Chem.2004,6:189-190.
    [17]Wang, X., Gao, W.Y., Zhang, L.M., Xiao, P.G., Yao, L., Liu, Y.P., Li, K.F., Xie, W.G. Study on the morphology, crystalline structure and thermal properties of yam starch acetates with different degrees of substitution[J]. Sci. China Ser. B. 2008,51:859-865.
    [18]Agboola, S.O., Akingbala, J.O., Oguntimein, G.B. Physicochemical and functional properties of low DS cassava starch acetates and citrates[J]. Starch-Starke.1991,43:62-66.
    [19]Lawal, O.S., Adebowale, K.O. Physicochemical characteristics and thermal properties of chemically modified jack bean (Canavalia ensiformis) starch[J]. Carbohydr. Polym.2005,60:331-341.
    [20]Lee, H.L., Yoo, B. Effect of hydroxypropylation on physical and rheological properties of sweet potato starch[J]. LWT-Food Sci. Technol.2011,44: 765-770.
    [21]Marques, P.T., Lima, A.M.F., Bianco, G, Laurindo, J.B., Borsali, R., Le Meins, J.F., Soldi, V. Thermal properties and stability of cassava starch films cross-linked with tetraethylene glycol diacrylate[J]. Polym. Degrad. Stab.2006, 91:726-732.
    [22]Diop, C.I.K., Li, H.L., Xie, B.J., Shi, J. Effects of acetic acid/acetic anhydride ratios on the properties of corn starch acetates[J]. Food Chem.2011,126: 1662-1669.
    [23]Chi, H., Xu, K., Wu, X., Chen, Q., Xue, D.H., Song, C.L., Zhang, W.D., Wang, P.X. Effect of acetylation on the properties of corn starch[J]. Food Chem.2008, 106:923-928.
    [24]Kittipongpatana, O.S., Sirithunyalug, J., Laenger, R. Preparation and physicochemical properties of sodium carboxymethyl mungbean starches [J]. Carbohydr. Polym.2006,63:105-112.
    [25]Barbara, K. Properties and applications of xanthan gum[J]. Polym. Degrad. Stab. 1998,59:81-84.
    [26]Yoshii, F., Zhao, L., Wach, R.A., Nagasawa, N., Mitomo, H., Kume, T. Hydrogels of polysaccharide derivatives crosslinked with irradiation at paste-like condition[J]. Nucl. Instrum. Meth. B.2003,208:320-324.
    [27]Woo, K., Seib, P. A. Cross-linking of wheat starch and hydroxypropylated wheat starch in alkaline slurry with sodium trimetaphosphate[J]. Carbohydr. Polym. 1997,33:263-271.
    [28]Lin, W.J., Lee, H.K., Wang, D.M. The influence of plasticizers on the release of theophylline from microporous-controlled tablets[J]. J. Controlled Release.2004, 99:415-421.
    [29]Lopez, O.V., Garcia, M.A., Zaritzky, N.E. Film forming capacity of chemically modified corn starches[J]. Carbohydr. Polym.2008,73:573-581.
    [30]Pimentel, D., Houser, J., Preiss, E., White, O., Fang, H., Mesnick, L., Barsky, T, Tariche, S., Schreck, J., Sharon, A. Water resources:agriculture, the environment, and society[J]. Bioscience.1997,47:97-106.
    [31]Wang, H.X., Liu, C.M., Zhang, L., Water-saving agriculture in China:An overview[J]. Adv. Agron.,2002,75:135-171.
    [32]Bouranis, D.L., Theodoropoulos, A.G., Drossopoulos, J.B. Designing synthetic polymers as soil conditioners[J]. Commun. Soil Sci. Plant Anal.1995,26: 1455-1480.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700