用户名: 密码: 验证码:
多功能磁性荧光纳米药载的合成、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着材料科学、化学、生命科学、药学和医学等学科的迅速发展与有机融合,作为纳米科学技术中的一个分支——纳米药物载体在疾病诊断、预防和治疗中显示出广阔的应用前景,对医学的发展产生了重要的推动作用。本论文从研究饮食补充物活性成分和作用机理入手,以改性或不改性的壳聚糖为基质,合成了三种具有示踪、磁响应和生物靶向性的多功能纳米药载,分别用于运送肽类药物(胰岛素)、亲水性药物(阿霉素)和疏水性药物(喜树碱),主要从以下五个方面进行了创新性研究:
     1.将胰脏细胞膜吸附到大孔球形硅胶上制备细胞膜固定相,并填充成稳定性好、可再生、具有生物活性的色谱柱,再通过前沿亲和色谱方法测得芒果苷(MF)在色谱柱上的解离常数(Kd)和活性结合位点数(Bt)。实验结果表明芒果苷在胰脏细胞膜上存在着丰富的结合位点,并与膜蛋白之间具有较强的亲和性。这就为确证芒果苷在胰岛素信号通路中发挥调控作用提供了有力的证据。
     2.利用高效液相色谱与超滤相结合的方法系统地研究了绿茶提取物(GTE)活性组分与药物传送途中相关蛋白质之间的作用特点。结果表明,表被儿茶素被酸酯(EGCG)和表被儿茶素(EGC)不仅与血浆运输蛋白(白蛋白)有较高的结合率,而且与细胞膜蛋白之间也有较高的结合率。由此推测,这两种儿茶素是绿茶提取物中的主要活性组分,绿茶对糖尿病和癌症的抑制作用应该与绿茶儿茶素活性组分和运输蛋白以及细胞膜蛋白的高亲和性有关。
     3.以壳聚糖为基质,利用不同的壳聚糖/量子点/磁纳米颗粒比例和不同的参数条件,将超顺磁氧化铁和碲化镉量子点直接凝聚成不同形貌的磁性荧光(CLM)杂合纳米水溶胶。其中球形的CLM杂合纳米胶拥有理想的平均粒径(<160nrn),和较高的胰岛素上载量(约为40.1mg/g)。研究了在胰岛素受体介导下MF、EGCG和ECG对正常人肝L02细胞摄入上载胰岛素的CLM杂合纳米胶的影响。研究表明MF, EGCG和ECG能够促进胰岛素与L02细胞的靶向结合,并且改善L02细胞对胰岛素的敏感性。这为以上三种组分的抗糖尿病活性提供了证据,同时也拓展了纳米药载的应用潜力。
     4.利用原位组装的方法,开发了一种新型的以羧甲基壳聚糖(CMCH)为基质,并键合有叶酸的磁性荧光纳米颗粒(CFLMNPs)。室温下CFLMNPs具有强烈的超顺磁和光致发光性能,在模拟的生理环境中,CFLMNPs的粒径范围是170-190nm。研究了抗癌药物阿霉素(ADM)在CFLMNPs上的上载量和累积释放特性。利用激光扫描共聚焦显微成像(LSCM)观察药载与细胞的相互作用,发现CFLMNPs是通过叶酸受体介导的内吞机制进入癌细胞的。这些结果表明,多功能的CFLMNPs具有较高的药物上载率、低毒性、癌细胞特异性靶向和良好的细胞相容性,有望成为靶向药物传送和细胞成像的理想纳米药载。
     5.以球形磁性荧光杂合纳米水溶胶为核心,利用原位组装的方法,开发了一种新型的键合有叶酸-四肽复合物的磁性荧光纳米药载(CLM-tetrapeptide-FA)。在模拟的生理环境下,该纳米药载的粒径约为150-190nm。为靶向和上载喜树碱(CPT)而设计的叶酸-四肽袋状结构有效地保护了CPT,改善了其抗癌特性,并降低了毒副作用;而且,CPT的上载量可以通过键合不同疏水性的四肽加以调整,这是一种兼备上载药物和保护药物的新的药载设计理念。药载在磁诱导和叶酸受体介导下实现了对肿瘤细胞的双重特异性靶向。从细胞毒性研究和血液相容性研究表明,这是一种毒性低、生物相容性高的纳米药载,有望成为一种高效的肿瘤靶向性药物载体。
With the rapid development and organic integration of materials science, chemistry, life sciences, pharmacy and medical science, as a branch of nanoscale science and technology, the nanometer drug carrier has exhibited extensive application prospects in diagnosis, prevention and treatment of disease, and plays an important role in the development of medicine. This paper started from studying the active ingredients and effect mechanism of diet supplements, and presented three kinds of synthesis approaches of multifunctional nanometer drug carriers with tracing and targeting properties using modified or raw chitosan as matrixes for peptides drug (insulin), hydrophilism drug (adriamycin), and hydrophobicity drug (camptothecin) delivery, respectively. The more detailed novelty of this research can be categorized as following:
     1. The cell membrane stationary phase (CMSP) was prepared by immobilizing rat islet pancreas cell membrane on the surface of silica. The resulting CMSP was filled into chromatographic column with enzymatic activity, stability and reproducibility. The dissociation constant (Kd) and the amount of active binding sites (B,) for mangiferin (MF) on cell membrane were determined using frontal chromatography. The results suggested that mangiferin possessed strong affinity with membrane protein and abundant binding sites on cell membrane, which provided powerful evidence for regulatory function of mangiferin on insulin signaling pathway.
     2. The interaction properties of active compounds in green tea extract (GTE) and involved proteins in the path of drugs delivery were studied systematically by high performance liquid chromatography-UV/DAD combined with ultrafiltration. The results showed that (-)-epigallocatechin gallate (EGCG) and (-)-epicatechin gallate (ECG) were main active components in GTE. There were high binding degrees between two catechins and transportation proteins in plasma, and proteins on cell membrane. We suggest that the inhibition of the pathogenesis of some diseases (diabetes mellitus and cancer) by green tea should be associated with the high affinities of catechins to transportation proteins and cell membrane proteins.
     3. The chitosan-based luminescent/magnetic (CLM) hybrid nanogels were synthesized with different chitosan/QD/MNP ratios and under different processing parameters by direct gelation of chitosan, CdTe and superparamagnetic iron oxide into the copolymer. Spherical CLM hybrid nanogels possessed appropriate average sizes (<160nm) and moderate loading amount of insulin (40.1mg/g). Human normal hepatocytes L02cell line was used to explore the effects of additives, such as MF, EGCG, and ECG on the insulin-receptor-mediated cellular uptake using insulin-loaded CLM hybrid nanogels. The study demonstrates that MF, EGCG and ECG are potentially able to enhance targeting combination of insulin with L02cells and improve insulin sensitivity in L02cells, which provide directly evidence for antidiabetic activity of above three components and expand the potential application for the nano drug carrier.
     4. A novel folate conjugated carboxymethyl chitosan-ferroferric oxide doped cadmium telluride quantum dot nanoparticles (abbreviate:CFLMNPs) was developed by assembly in situ. The as-prepared CFLMNPs possessed intense superparamagnetic and fluorescent property at room temperature. The size range of CFLMNPs was about170-190nm. The loading efficiency and cumulative release of anticancer drug (adriamycin, ADM) on the CFLMNPs were determined. The CFLMNPs were transported into the HepG2cells by an folate-receptor-mediated endocytosis mechanism. The results indicate that the multifunctional CFLMNPs possess a high drug loading efficiency, low cytotoxicity and favourable cell compatibility, and are promising candidates for carboxymethyl chitosan-based targeted drug delivery and cellular imaging.
     5. A novel chitosan-based luminescent/magnetic hybrid nanoparticles with folate-conjugated tetrapeptide composites (CLMNPs-tetrapeptide-FA) was synthesized by direct gelation combined with conjugation in situ. The size range of CLMNPs-tetrapeptide-FA copolymers was approximately150-190nm. The folate-tetrapeptide pocket-like structures designed specifically for targeting and loading camptothecin (CPT) could prevent CPT from hydrolyzation and toxicity diffusion to some extent. Additionally, the loading amount of CPT could be regulated by conjugating different hydrophobic peptide on copolymer, which is a kind of new concept having both drug loading and drug protecting. Dual specific targeting of the copolymers to cancer cells was achieved under external magnetic field guidance combined with a folate-receptor-mediated endocytosis. The multifunctional CLMNPs-tetrapeptide-FA copolymers are promising candidates for tumor-targeted drug delivery.
引文
[1]Takakura, Y., Hashida, M. Macromolecular carrier systems for targeted drug delivery: Pharmacokinetic considerations on biodistribution [J]. Pharmaceutical Research.1996,13(6), 820-831.
    [2]Dvorak, H. F., Nagy, J. A., Dvorak, J. T., Dvorak, A. M. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules [J]. American Journal of Pathology.1988,133(1):95-109.
    [3]Ishida, T, Kirchmeier, M. J., Moase, E. H., Zalipsky, S., Allen, T. M. Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells [J]. Biochimica et Biophysica Acta-Biomembranes.2001,1515(2):144-158.
    [4]Tyrrell, Z. L., Shen, Y.Q., Radosz, M. Near-critical fluid micellization for high and efficient drug loading:Encapsulation of paclitaxel into PEG-b-PCL micelles [J]. The Journal of Physical Chemistry C.2011,115(24):11951-11956.
    [5]Thambi, T., Yoon, H. Y., Kim, K., Kwon, I. C., Yoo, C. K., Park, J. H. Bioreducible block copolymers based on poly(ethylene glycol) and poly(Y-benzyl L-glutamate) for intracellular delivery of camptothecin [J]. Bioconjugate Chemistry.2011,22(10):1924-1931.
    [6]Zhang, K., Wang, Y. J., Yu, A., Zhang, Y., Tang, H., Zhu, X. X. Cholic acid-modified dendritic multimolecular micelles and enhancement of anticancer drug therapeutic efficacy [J]. Bioconjugate Chemistry.2010,21(9):1596-1601.
    [7]Meenach, S. A., Kim, Y. J., Kauffman, K. J., Kanthamneni, N., Bachelder, E. M., Ainslie, K. M. Synthesis, optimization and characterization of camptothecin-loaded acetalated dextran porous microparticles for pulmonary delivery [J]. Molecular Pharmaceutics.2012,9(2): 290-298.
    [8]Bae, Y., Nishiyama, N., Fukushima, S., Koyama, H., Yasuhiro, M., Kataoka, K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property:Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy [J]. Bioconjugate Chemistry.2005, 16(1):122-130.
    [9]Adair, J.H., Parette, M. P., Altinoglu, E. I. Kester, M. Nanoparticulate alternatives for drug delivery [J]. ACS Nano.2010,4(9):4967-4970.
    [10]Almutairi, A., Akers, W. J., Berezin, M.Y., Achilefu, S., Frechet, J. M. J. Monitoring the biodegradation of dendritic near-infrared nanoprobes by in vivo fluorescence imaging [J]. Molecular Pharmaceutics.2008,5(6):1103-1110.
    [11]Yu, C.Y., Cao, H., Zhang, X.C., Zhou, F.Z., Cheng, S.X., Zhang X.Z., Zhuo, R.X. Hybrid nanospheres and vesicles based on pectin as drug carriers [J]. Langmuir.2009,25(19): 11720-11726.
    [12]Win, K.Y., Feng, S.S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs [J]. Biomaterials.2005,26 (15): 2713-2722.
    [13]Cui, W.G., Li, X.H., Zhu, X.L., Yu, G, Zhou, S.B., Weng, J. Investigation of drug release and matrix degradation of electrospun poly(DL-lactide) fibers with paracetanol inoculation [J]. Biomacromolecules.2006,7(5):1623-1629.
    [14]Sun, Y. N., Wang, C. D., Zhang, X. M., Ren, L., Tian, X. H. Shape dependence of gold nanoparticles on in vivo acute toxicological effects and biodistribution [J]. Journal of Nanoscience and Nanotechnology.2011,11 (2):1210-1216.
    [15]Cheng, Y.Y., Wu, Q.L., Li, Y.W., Hu, J.J., Xu, T.W. New insights into the interactions between dendrimers and surfactants:2. Design of new drug formulations based on dendrimer surfactant aggregates [J]. The Journal of Physical Chemistry B.2009,113(24):8339-8346.
    [16]Shen, J.M., Tang, W.J., Zhang, X.L., Chen, T., Zhang, H.X. A novel carboxymethyl chitosan-based folate/Fe3O4/CdTe nanoparticle for targeted drug delivery and cell imaging [J]. Carbohydrate Polymers.2012,88 (1):239-249.
    [17]Kim, D., Gao, Z.G., Lee, E.S., Bae, Y.H. In vivo evaluation of doxorubicin-loaded polymeric micelles targeting folate receptors and early endosomal pH in drug-resistant ovarian cancer [J]. Molecular Pharmaceutics.2009,6(5):1353-1362.
    [18]Christian, D.A., Cai, S.S., Garbuzenko, O.B., Harada, T., Zajac, A. L., Minko, T. Discher, D.E. Flexible filaments for in vivo imaging and delivery:Persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage [J]. Molecular Pharmaceutics.2009, 6(5):1343-1352.
    [19]Prencipe, G., Tabakman, S.M., Welsher, K., Liu, Z., Goodwin, A.P. Zhang, L., Henry, J., Dai, H.J. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation [J]. Journal of the American Chemical Society.2009,131(13):4783-4787.
    [20]Duncan, R. The dawning era of polymer therapeutics [J]. Nature Reviews Drug Discovery. 2003,2(5):347-360.
    [21]Maeda, H. SMANCS and polymer-conjugated macromolecular drugs advantages in cancer chemotherapy [J]. Advanced Drug Delivery Reviews.2001,46(1-3):169-185.
    [22]Jain, R. K. Delivery of molecular and cellular medicine to solid tumors [J]. Advanced Drug Delivery Reviews.1998,53(1-3):49-67.
    [23]Cui, W., Lu, X.M., Cui, K., Wu, J., Wei, Y, Lu, Q.H. Fluorescent nanoparticles of chitosan complex for real-time monitoring drug release [J]. Langmuir.2011,27 (13):8384-8390.
    [24]Kang, H.Z., Liu, H.P., Zhang, X.L., Yan, J.L., Zhu, Z., Peng, L. Yang, H.H., Kim, Y, Tan, W.H. Photoresponsive DNA-cross-linked hydrogels for controllable releas and cancer therapy [J]. Langmuir.2011,27(1):399-408.
    [25]Zou, P., Yu, Y.K., Wang, Y. A., Zhong, Y.Q., Welton, A., Galban, C., Wang, S.M., Sun, D.X. Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release [J]. Molecular Pharmaceutics.2010,7(6):1974-1984.
    [26]Hu, S.H., Liu, T.Y., Huang, H.Y., Liu, D.M., Chen, S.Y. Magnetic-sensitive silica nanospheres for controlled drug release [J]. Langmuir.2008,24(1):239-244.
    [27]Na, K., Jung, J., Lee, J., Hyun, J. Thermoresponsive pore structure of biopolymer microspheres for a smart drug carrier [J]. Langmuir.2010,26(13):11165-11169.
    [28]Anker, J.N., Koo, Y.E., Kopelman, R. Magnetically controlled sensor swarms. Sens Actuators B[J].2007,121(1):83-92.
    [29]Guo, X., Szoka, F. C. Chemical approaches to triggerable lipid vesicles for drug and gene delivery. Accounts of Chemical Research.2003,36 (5):335-341.
    [30]Torchilin, V. P. Multifunctional nanocarriers. Advanced Drug Delivery Reviews.2006, 58(14):1532-1555.
    [31]Discher, D. E., Ahmed, F. Polymersomes. Annual Review of Biomedical Engineering.2006, 8(1):323-341.
    [32]Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology.2007,2,751-760.
    [33]Algar, W.R., Prasuhn, D.E., Stewart, M.H., Jennings, T.L., Blanco-Canosa, J.B., Dawson, P.E., Medintz, I.L.. The controlled display of biomolecules on nanoparticles:A challenge suited to bioorthogonal chemistry. Bioconjugate Chemistry.2011,22(5):825-858.
    [34]Langer, R, Peppas, N. A. Advances in biomaterials, drug delivery and bionanotechnology [J]. AlChE Journal.2003,49 (12):2990-3006.
    [35]Soppimatha, K.S., Aminabbavia, T. M., Kulkarnia A. R., Walter E. R. Biodegradable polymeric nanoparticles as drug delivery devices [J]. Journal of Controlled Release.2001, 70(1-2):1-20.
    [36]Saito, N., Murakami, T. N., Takahashi, J., Horiuchi, H., Ota, H., Kato, H., Okada, T., Nozaki, K., Takaoka, K. Synthetic biodegradable polymers as drug delivery systems for bone morphogenetic proteins [J]. Advanced Drug Delivery Reviews.2005,57(7):1037-1048.
    [37]Xia, W. S., Liu, P., Zhang, J. L., Chen, J. Biological activities of chitosan and chitooligosaccharides [J]. Food Hydrocolloid.2011,25 (2):170-179.
    [38]Suzuki, K., Mikami, T., Okawa, Y., Tokoro, A., Suzuki, S., Suzuki, M. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose [J]. Carbohydrate Research.1986,151: 403-408.
    [39]Medintz, I. L., Uyeda, H. T., Goldman, E. R., Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing [J]. Nature Materials.2005,4,435-446.
    [40]Lu, A. H., Salabas, E. L., Schuth, F. Mangetic nanoparticles:synthesis, protection, functionalization, and application [J]. Angewandte Chemie International Edition.2007,46(8): 1222-1244.
    [41]Gupta, A. K., Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials.2005,26(18):3995-4021.
    [42]Sun, S. H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles [J]. Advanced Materials.2006,18(4):393-403.
    [43]Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V., Muller, R. N. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemial characterizations, and biological applications [J]. Chemical Reviews.2008,108(6):2064-2110.
    [44]Jain, P. K., Huang, X., EI-Sayed, I. H., El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology and medicine [J]. Accounts of Chemical Research.2008,41(12):1578-1586.
    [45]Zheng, J., Nicovich, P. R., Dickson, R. M. Highly fluorescent noble-metal quantumdots [J]. Annual Review of Physical Chemistry.2007,58:409-431.
    [46]Menard-Moyon, C., Kostarelos, K., Prato, M., Bianco, A. Functionalized carbon nanotubes for probing and modulating molecular functions [J]. Chemistry & Biology.2010, 17(2):107-115.
    [47]Eliseeva, S. V., Bunzli, J. C. G. Lanthanide luminescence for functionalmaterials and biosciences [J]. Chemical Society Reviews.2010,39(1):189-227.
    [48]B unzli, J. C. G. Lanthanide luminescence for biomedical analyses and imaging [J]. Chemical Reviews.2010,110(5):2729-2755.
    [49]Haensch, C., Hoeppener, S., Schubert, U. S. Chemical modification of self-assembled silane based monolayers by surface reactions [J]. Chemical Society Reviews.2010,39(6): 2323-2334.
    [50]Knopp, D., Tang, D., Niessner, R. Review:Bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles [J]. Analytica Chimica Acta.2009,647(l):14-30.
    [51]张世远,都有为.磁性材料基础[M].北京:北京科学出版社,1988.
    [52]李萌远,李国栋.铁氧体物理学[M].北京:科学出版社,1978.
    [53]宛德福,罗世华.磁性物理[M].北京:电子工业出版社,1987.
    [54]Xie, J., Lee, S., Chen, X.Y. Nanoparticle-based theranostic agents [J]. Advanced Drug Delivery Reviews,2010M 62 (11):1064-1079.
    [55]Dabbousi, B.O., Rodriguez-Viejo, J.,Mikulec, F. V.,Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., Bawendi, M. G. (CdSe)ZnS core-shell quantum dots [J]. The Journal of Physical Chemistry B.1997,101(46):9463-9475.
    [56]Hines, M. A., Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals [J]. The Journal of Physical Chemistry.1996,100(2): 468-471.
    [57]Algar, W. R., Tavares, A. J., Krull, U. J. Beyond labels:A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction [J]. Analytica Chimica Acta.2010,673(1):1-25.
    [58]Medintz, I. L., Mattoussi, H. Quantum dot-based resonance energy transfer and its growing application in biology [J]. Physical Chemistry Chemical Physics.2009, 11(1):17-45.
    [59]Hezinger, A.F., Tessmar, J., Gopferich, A. Polymer coating of quantum dots [J]. European Journal of Pharmaceutics and Biopharmaceutics.2008,68(1):138-152.
    [60]Mamedova, N.N., Kotov, N.A., Rogaeh, A.L., Studer J. Albumin-CdTe nanoparticle bioconjugates:Preparation, structure, and interunit energy transfer with antenna effect [J]. Nano Letters.2001,1(6):281-286.
    [61]Mahtab, R., Rogers, J.P., Murphy, C.J. Temperature and salt-dependent binding of long DNA to protein-sized quantum dots:Thermodynamics of "inorganic Protein"-DNA interactions [J]. Journal of the American Chemical Society.2000,122(2):14-17.
    [62]patolsky, F., Gill, R., Weizmann, Y., Mokari, T., Banin, U., Willner, I. Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots [J]. Journal of the American Chemical Society.2003,125(46):13918-13919.
    [63]Pathak, S., Choi, S.K., Arnheim, N., Thompson, M.E. Hydroxylated quantum dots as luminescent probes for insitu hybridization [J]. Journal of the American Chemical Society. 2001,123(17):4103-4104.
    [64]Courty, S, Bouzigues, C., Lueeardlni, C., Ehrensperger, M.V., Bonneau, S., Dahan, M. Tracking individual proteins in living cells using single quantum dot imaging [J]. Methods in Enzymology.2006,414:211-228.
    [65]Bakalova, R., Zhelev, Z., Ohba, H., Baba, Y. Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins [J]. Journal of the American Chemical Society.2005, 127(26):9328-9329.
    [66]Ghazani, A.A., Lee, J.A., Klostranec, J., Xiang, Q., Dacosta, R.S., Wilson, B.C., Tsao, M.S., Chan, W.C. High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals [J]. Nano Letters.2006,6(12):2881-2886.
    [67]Qian, J., Zhang, C.Y., Cao, X.D., Liu, S.Q. Versatile immunosensor using a quantum dot coated silica nanosphere as a label for signal amplification [J]. Analytical Chemistry.2010, 82(15):6422-6429.
    [68]Akerman, M.E., Chan, W.C., Laakkonen, P., Bhatia, S.N., Ruoslahti, E. Nanocrystal targeting in vivo [J]. Proceedings of the National Academy of Sciences of the United States of America. 2002,99(20):12617-12621.
    [69]Dahan, M., Levi, S., Luccardini, C., Rostaing, P., Riveau, B., Triller, A. Diffusion dynamics of glycine recptors revealed by single-quantum dot tracking [J]. Science,2003, 302(5644):442-445.
    [70]Aluri, S., Janib, S.M., Mackay, J. A. Environmentally responsive peptides as anticancer drug carriers [J]. Advanced Drug Delivery Reviews.2009,61(11):940-952.
    [71]Guthi, J.S., Yang, S.G, Huang, G., Li, S.Z., Khemtong, C., Kessinger, C.W., Peyton, M., Minna, J.D., Brown, K.C., Gao, J.M. MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells [J]. Molecular Pharmaceutics.2010,7 (1):32-40.
    [72]Kratz, F. Albumin as a drug carrier:design of prodrugs, drug conjugates and nanoparticles [J]. Journal of Controlled Release.2008,132 (3):171-183.
    [73]Kratz, F., Ajaj, K. A., Warnecke, A. Anticancer carrier-linked prodrugs in clinical trials [J]. Expert Opinion on Investigational Drugs.2007,16 (7):1037-1058.
    [74]Desai, N., Trieu, V, Yao, Z., Louie, L., Ci, S., Yang, A., Tao, C., De, T., Beals, B., Dykes, D., Noker, P., Yao, R., Labao, E., Hawkins, M., Soon-Shiong, P. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel [J]. Clinical Cancer Research.2006,12 (4):1317-1324.
    [75]Gerweck, L.E., Seetharaman, K. Cellular pH gradient in tumor versus normal tissue:Potential exploitation for the treatment of cancer [J]. Cancer Research.1996,56(6):1194-1198.
    [76]Cook, J.A., Gius, D., Wink, D.A., Krishna, M.C., Russo, A., Mitchell, J.B. Oxidative stress, redox, and the tumor microenvironment [J]. Seminars in Radiation Oncology.2004,14(3): 259-266.
    [77]Mbeunkui, F., Johann, D.J.Jr. Cancer and the tumor microenvironment:A review of an essential relationship [J], Cancer Chemotherapy and Pharmacology.2009,63 (4):571-582.
    [78]Schafer, F.Q., Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple [J]. Free Radical Biology and Medicine.2001, 30(11):1191-1212.
    [79]Ferrara, N., Hillan, K.J., Gerber, H.P., Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer [J]. Nature Reviews Drug Discovery. 2004,3(5):391-400.
    [80]Dreher, M.R., Simnick, A.J., Fischer, K., Smith, R.J., Patel, A., Schmidt, M., Chilkoti, A. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles [J]. Journal of the American Chemical Society.2008,130 (2):687-694.
    [81]Dreher, M.R., Liu, W., Michelich, C.R., Dewhirst, M.W., Chilkoti, A. Thermal cycling enhances the accumulation of a temperature-sensitive biopolymer in solid tumors [J]. Cancer Research.2007,67 (9):4418-4424.
    [82]Qian, Z.M., Li, H., Sun, H., Ho, K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway [J]. Pharmacological Reviews.2002,54 (4): 561-587.
    [83]Tanaka, T., Fujishima, Y., Kaneo, Y. Receptor mediated endocytosis and cytotoxicity of transferrin-mitomycin c conjugate in the HepG2 cell and primary cultured rat hepatocyte [J]. Biological & Pharmaceutical Bulletin.2001,24 (3):268-273.
    [84]Hilgenbrink, A.R., Low, P.S. Folate receptor-mediated drug targeting:from therapeutics to diagnostics [J]. Journal of Pharmaceutical Sciences.2005,94 (10):2135-2146.
    [85]Song, S., Liu, D., Peng, J., Sun, Y., Li, Z., Gu, J.R., Xu, Y. Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo [J]. International Journal of Pharmaceutics.2008,363 (1-2):155-161.
    [86]Wadia, J.S., Dowdy, S.F. Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer [J]. Advanced Drug Delivery Reviews. 2005,57(4):579-596.
    [87]Leamon, C.P., Low, P.S. Cytotoxicity of momordin-folate conjugates in cultured human-cells [J]. Journal of Biological Chemistry.1992,267 (35):24966-24971.
    [88]Leamon, C.P., Low, P.S. Selective targeting ofmalignant-cells with cytotoxin-folate conjugates [J]. Journal of Drug Targeting.1994,2 (2):101-112.
    [89]Lee, R.J., Low, P.S. Folate-mediated tumor-cell targeting of liposome-entrapped doxorubicin in-vitro [J]. Biochimica et BiophysicaActa(BBA)-Biomembranes.1995,1233 (2):134-144.
    [90]Cho, K.C., Jeong, J.H., Chung, H.J., Joe, C.O., Kim, S.W., Park, T.G. Folate receptor-mediated intracellular delivery of recombinant caspase-3 for inducing apoptosis [J]. Journal of Controlled Release.2005,108(1):121-131.
    [91]Lee, R.J., Huang, L. Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer [J]. Journal of Biological Chemistry.1996,271(14): 8481-8487.
    [92]Prabaharan, M., Grailer, J.J., Pilla, S., Steeber, D.A., Gong, S.Q. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn(?) H40, poly (L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery [J]. Biomaterials.2009,30(16): 3009-3019.
    [93]Ambade, A.V., Savariar, E.N., Thayumanavan, S. Dendrimeric micelles for controlled drug release and targeted delivery [J]. Molecular Pharmaceutics.2005,2 (4):264-272.
    [94]Kim, Y., Pourgholami, M.H., Morris, D.L., Stenzel, M.H. Effect of cross-linking on the performance of micelles as drug delivery carriers:A cell uptake study [J]. Biomacromolecules.2012,13 (3):814-825.
    [95]Fleming, S., Mandal, T.K, Walt, D.R. Nanosphere-microsphere assembly methods for core-shell materials preparation [J]. Chemistry of Materials.2001,13(6):2210-2216.
    [96]Oh, K.S., Lee, K.E., Han, S.S., Cho, S.H., Kim, D., Yuk, S.H. Formation of core/shell nanoparticles with a lipid core and their application as a drug delivery system [J]. Biomacromolecules.2005,6 (2):1062-1067.
    [97]Kang, X.J., Cheng, Z.Y., Li, C.X., Yang, D.M., Shang, M.M., Ma, P.A., Li, G.G., Liu, N., Lin, J. Core-shell structured up-conversion luminescent and mesoporous NaYF4:Yb3+/Er3+@nSiO2 @mSiO2 nanospheres as carriers for drug delivery [J]. The Journal of Physical Chemistry C.2011,115 (32):15801-15811.
    [98]Lei, J.Y., Wang, L.Z., Zhang, J.L. Superbright multifluorescent core-shell mesoporous nanospheres as trackable transport carrier for drug [J]. ACS Nano.2011,5 (5):3447-3455.
    [99]Schneider, J. J. Magnetic core/shell and quantum-confined semiconductor nanoparticles via chimie douce organometallic synthesis [J]. Advanced Materials.2001,13(7):529-533.
    [100]Ali A.H., Bazzi, R., Cabuil, V. Multistep continuous-flow microsynthesis of magnetic and fluorescent g-Fe2O3@SiO2 core/shell nanoparticles [J]. Angewandte Chemie-International Edition.2009,48(39):7180-7183.
    [101]Jayakumar, R., Menon, D., Manzoor, K., Nair, S. V., Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials-A short review [J]. Carbohydrate Polymers.2010,82 (2):227-232.
    [102]Shen, J.M., Xu, L., Lu, Y., Cao, H.M., Xu, Z.G, Chen, T., Zhang, H.X. Chitosan-based luminescent/magnetic hybrid nanogels for insulin delivery, cell imaging, and antidiabetic research of dietary supplements [J]. International Journal of Pharmaceutics.2012,427 (2): 400-409.
    [103]Zhang, L., Qiao, S., Jin, Y, Chen, Z., Gu, H., Lu, G Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals:Fabrication and structure control [J]. Advanced Materials.2008,20(4):805-809.
    [104]Deng, Y., Deng, C., Qi, D., Liu, C., Liu, J., Zhang, X., Zhao, D. Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of trypsin [J]. Advanced Materials.2009,21(13):1377-1382.
    [105]Chen, H.M., Deng, C.H., Zhang, X.M. Synthesis of Fe3O4@SiO2@PMMA core-shell-shell magnetic microspheres for highly efficient enrichment of peptides and proteins for MALDI-TOF MS analysis [J]. Angewandte Chemie International Edition.2010,49(3): 607-611.
    [106]Quan, Q.M., Xie, J., Gao, H.K., Yang, M., Zhang, F., Liu, G, Lin, X., Wang, A., Eden, H. S., Lee, S., Zhang, G.X., Chen, X.Y HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy [J]. Molecular Pharmaceutics.2011,8(5):1669-1676.
    [107]Corato, R.D., Bigall, N.C., Ragusa, A., Dorfs, D., Genovese, A., Marotta, R., Manna, L., Pellegrino,T. Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: Synthesis and cancer cell targeting and sorting [J]. ACS Nano.2011,5(2):1109-1121.
    [108]Wu, W.T., Zhou, T., Berliner, A., Banerjee P., Zhou, S.Q. Smart core-shell hybrid nanogels with Ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery [J]. Chemistry of Materials.2010,22 (6):1966-1976.
    [109]Zahr, A.S., Villiers, M.D., Pishko, M.V. Encapsulation of drug nanoparticles in self-assembled macromolecular nanoshells [J]. Langmuir.2005,21(1):403-410.
    [110]Wu, W.T., Aiello, M., Zhou, T., Berliner, A., Banerjee, P., Zhou, S.Q. In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery [J]. Biomaterials.2010,31 (11):3023-3031.
    [111]Galbiati, A., Tabolacci, C., Rocca, B. M. D., Mattioli, P., Beninati, S., Paradossi, G., Desideri, A. Targeting tumor cells through chitosan-folate modified microcapsules loaded with camptothecin [J]. Bioconjugate Chemistry.2011,22(6):1066-1072.
    [112]Zhang, K., Wang, Y. J., Yu, A., Zhang, Y, Tang, H., Zhu, X. X. Cholic acid-modified dendritic multimolecular micelles and enhancement of anticancer drug therapeutic efficacy [J]. Bioconjugate Chemistry.2010,21(9):1596-1601.
    [113]Thambi, T., Yoon, H.Y., Kim, K.Y., Kwon, I.C., Yoo, C.K., Park, J.H. Bioreducible block copolymers based on poly(ethylene glycol) and poly(y-benzyl L-glutamate) for intracellular delivery of camptothecin [J]. Bioconjugate Chemistry.2011,22(10):1924-1931.
    [114]Chen, Y., Zheng, X.C., Qian, H.Q., Mao, Z.Q., Ding, D., Jiang, X.Q. Hollow core-porous shell structure poly(acrylic acid) nanogels with a superhigh capacity of drug loading [J]. ACS Applied Materials & Interfaces.2010,2 (12):3532-3538.
    [115]Tian, G., Gu, Z.J., Liu, X.X., Zhou, L.J., Yin, W.Y., Yan, L., Jin, S., Ren, W.L. Xing, GM., Li, S.J., Zhao, Y.L. Facile fabrication of rare-earth-doped Gd2O3 hollow spheres with upconversion luminescence, magnetic resonance, and drug delivery properties [J]. The Journal of Physical Chemistry C.2011,115 (48):23790-23796.
    [116]Krack, M., Hohenberg, H., Kornowski, A., Lindner, P., Weller, H., Forster, S. Nanoparticle-loaded magnetophoretic vesicles [J]. Journal of the American Chemical Society. 2008,130 (23):7315-7320.
    [117]Fujimoto, K., Toyoda, T., Fukui, Y. Preparation of bionanocapsules by the layer-by-layer deposition of polypeptides onto a liposome [J]. Macromolecules.2007,40 (14):5122-5128.
    [118]Hong, X., Li, J., Wang, M.J., Xu, J.J., Guo, W., Li, J.H., Bai, Y.B., Li, T.J. Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach [J]. Chemistry of Materials.2004,16 (21):4022-4027.
    [119]Kas, R., Sevinc, E., Topal, U., Acar, H.Y. A universal method for the preparation of magnetic and luminescent hybrid nanoparticles [J]. The Journal of Physical Chemistry C.2010,114 (17):7758-7766.
    [120]Guo, J., Yang, W.L., Wang, C.C., He, J. Chen, J.Y. Poly(N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres:Preparation, characterization, and biomedical applications [J]. Chemistry of Materials.2006,18(23):5554-5562.
    [121]Corato, R.D., Bigall, N.C., Ragusa, A., Dorfs, D., Genovese, A., Marotta, R., Manna, L., Pellegrino T. Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: Synthesis and cancer cell targeting and sorting [J]. ACS Nano.2011,5(2):1109-1121.
    [122]Li, L.L., Chen, D., Zhang, Y.Q., Deng, Z.T., Ren, X.L., Meng, X.W., Tang, F.Q., Ren, J., Zhang, L. Magnetic and fluorescent multifunctional chitosan nanoaprticles as a smart drug delivery system [J]. Nanoteehnology.2007,18(40):405102-405107.
    [123]Wang, L., Sun, J.Q. Poly(allylamine hydrochloride)-dextran microgels functionalized with magnetic and luminescent nanoparticles [J]. Journal of Material Chemistry.2008,18(34): 4042-4049.
    [124]Fan, H.M., Olivo, M., Shuter, B., Yi, J.B., Bhuvaneswari, R., Tan, H.R., Xing, G.C., Ng, C.T., Liu, L., Lucky, S. S., Bay, B.H., Ding, J. Quantum dot capped magnetite nanorings as high performance nanoprobe for multiphoton fluorescence and magnetic resonance imaging [J]. Journal of the American Chemical Society.2010,132(42):14803-14811.
    [125]Zebli, B., Susha, A.S., Sukhorukov, QB., Rogach, A.L., Parak. W.J. Magnetic targeting and cellular uptake of polymer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals [J]. Langmuir.2005,21(10):4262-4265.
    [126]Bridot, J., Faure, A., Laurent, S., Riviere, C., Billotey, C., Hiba, B., Janier, M., Josserand, V, Coll, J., Elst, L.V., Muller, R., Roux, S., Perriat, P., Tillement, O. Hybrid gadolinium oxide nanoparticles:multimodal contrast agents for in vivo imaging [J]. Journal of the American Chemical Society.2007,129(16):5076-5084.
    [127]Scheffold, A., Miltenyi, S., Radbruch, A. Magnetofluorescent liposomes for increased sensitivity of immunofluorescence [J]. Immunotechnology.1995,1(2):127-137.
    [128]Kim, K., Park, J. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel [J]. Lab on A Chip.2005,5(6):657-664.
    [129]Dressman, D., Yan, H., Traverso, G, Kinzler, K., Vogelstein, B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations [J]. Proceedings of the National Academy of Sciences of the United States of America.2003,100(15):8817-8822.
    [130]Danielli, A., Arie, A., Porat, N., Ehrlich, M. Detection of fluorescent-labeled probes at subpicomolar concentrations by magnetic modulation [J]. Optics Express.2008, 16(23):19,253-19,259.
    [1]Miura, T., Ichiki, H., Hashimoto, I., Iwamoto, N., Kato, M., Kubo, M., Ishihara, E., Komatsu, Y., Okada, M., Ishida, T., Tanigawa, K. Antidiabetic activity of a xanthone compound, mangiferin [J]. Phytomedicine.2001,8 (2):85-87.
    [2]Miura, T., Ichiki, H., Iwamoto, N., Kato, M., Kubo, M., Sasaki, H., Okada, M., Ishida, T., Seino, Y., Tanigawa, K. Antidiabetic activity of the rhizoma of anemarrhena asphodeloides and active components, mangiferin and its glucoside [J]. Biological and Pharmaceutical Bulletin.2001,24 (9):1009-1011.
    [3]Pott, I., Breithaupt, D.E., Carle, R. Detection of unusual carotenoid esters in fresh mango (Mangifera indica L. cv. "Kent") [J]. Phytochemistry.2003,64 (4):825-829.
    [4]Wilkinson, A.S., Monteith, G.R., Shaw, P.N., Lin, C.N., Gidley, M.J., Thomson, S.J.R. Effects of the mango components mangiferin and quercetin and the putative mangiferin metabolite norathyriol on the transactivation of peroxisome proliferator-activated receptor isoforms [J]. Journal of Agricultural and Food Chemistry.2008,56 (9):3037-3042.
    [5]Hu, H.G., Wang, M.J., Zhao, Q.J., Liao, H.L., Cai, L.Z., Song, Y., Zhang, J., Yu, S.C., Chen, W.S., Liu, C.M., Wu, Q.Y. Synthesis of mangiferin derivatives as protein tyrosine phosphatase 1B inhibitors [J]. Chemistry of Natural Compounds.2007,43 (6):663-666.
    [6]Klaman, L.D., Boss, O., Peroni, O.D., Kim, J.K., Martino, J.L., Zabolotny, J.M., Moghal, N., Lubkin, M., Kim, Y.B., Sharpe, A.H., Stricker-Krongrad, A., Shulman, G.L., Neel, B.G, Kahn, B.B. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice [J]. Molecular and Cellular Biology.2000, 20 (15):5479-5489.
    [7]Rau, O., Wurglics, M., Paulke, A., Zitzkowski, J., Meindl, N., Bock, A., Dingermann, T., Abdel-Tawab, M., Schubert-Zsilavecz, M. Carnosic acid and carnosol, phenolic diterpene compounds of the labiate herbs rosemary and sage, are activators of the human peroxisome proliferator-activated receptor gamma [J]. Planta Medica.2006,72 (10):881-887.
    [8]Luo, R.Z., Beniac, D.R., Fernandes, A., Yip, C.C., Ottensmeyer, E.P. Quaternary structure the insulin-insulin receptor complex [J]. Seience.1999,285 (5430):1077-1080.
    [9]Ottensmeyer, E.P., Beniac, D.R., Luo, R.Z., Yip, C.C. Mechanism of transmembrane signaling:Insulin binding and the insulin receptor [J]. Biochemistry.2000,39 (40): 12103-12112.
    [10]Hubbard, S.R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog [J].The EMBO Journal.1997,16 (18):5572-5581.
    [11]Aoki, N., Matsuda, T. A cytosolic protein-tyrosine phosphatase PTP1B specifically dephosphorylates and deactivates prolactinactivated STAT5a and STAT5b [J]. Journal of Biological Chemistry.2000,275 (50):39718-39726.
    [12]Liu, F., Hill, D.E., Chernoff, J. Direct binding of the proline-rich region of protein tyrosine phosphatase 1B to the src homology 3 domain of p130Cas [J]. Journal of Biological Chemistry.1996,271:31290-31295.
    [13]Berger, J.P., Akiyama, T.E., Meinke, P.T. PPARs:therapeutic targets for metabolic disease [J]. Trends in Pharmacological Sciences.2005,26 (5):244-251.
    [14]Sanugul, K., Akao, T., Li, Y., Kakiuchi, N., Nakamura, N., Hattori, M. Isolation of a human intestinal bacterium that transforms mangiferin to norathyriol and inducibility of the enzyme that cleaves a C-glucosyl bond [J]. Biological & Pharmaceutical Bulletin.2005,28 (9): 1672-1678.
    [15]Kim, H., Haluzik, M., Asghar, Z., Yau, D., Joseph, J.W., Fernandez, A.M., Reitman, M.L., Yakar, S., Stannard, B., Heron-Milhavet, L., Wheeler, M.B., LeRoith, D. Peroxisome proliferator-activated receptor-a agonist treatment in a transgenic model of type 2 diabetes reverses the lipotoxic state and improves glucose homeostasis [J]. Diabetes.2003,52 (7): 1770-1778.
    [16]Michalik, L., Auwerx, J., Berger, J.P., Chatterjee, V.K., Glass, C.K., Gonzalez, F.J., Grimaldi, P.A., Kadowaki, T., Lazar, M.A., O'Rahilly, S., Palmer, C.N.A., Plutzky, J., Reddy, J.K., Spiegelman, B.M., Staels, B., Wahli, W. Peroxisome proliferator-activated receptors [J]. Pharmacological Research.2006,58 (4):726-741.
    [17]Lin, H., Chen, R., Sheng, F.L., Zhang, H.X. Study on interaction of mangiferin to insulin and glucagon in ternary system [J]. Spectrochimica Acta Part A.2010,75 (5):1584-1591.
    [18]Dong, Z.B., Li, S.P., Hong, M., Zhu, Q. Hypothesis of potential active components in Angelica sinensis by using biomembrane extraction and high performance liquid chromatography [J]. Journal of Pharmaceutical and Biomedical Analysis.2005 (4),38: 664-669.
    [19]Prateek, A.B., Moaddel, R., Wainer, I.W. The synthesis and characterization of cellular membrane affinity chromatography columns for the study of human multidrug resistant proteins MRP1, MRP2 and human breast cancer resistant protein BCRP using membranes obtained from spodoptera frugiperda (Sf9) insect cells [J]. Talanta.2010,81(4-5):1477-1481.
    [20]Michael, I.D., Robert, P.S. Ligand interactions with membrane-bound porcine atrial muscarinic receptor(s) [J]. Biochemistry.1980,19 (15):3407-3413.
    [21]Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry.1976,72: 248-254.
    [22]He, L.C., Wang, S.C., Geng, X.D. Coating and fusing cell membranes onto a silica surface and their chromatographic characteristics [J]. Chromatographia.2001,54 (1):71-76.
    [23]Xu, S.Y., Bian, R.L., Chen, X. In method of pharmacological experiment (Third Edition) [M]. People's Medical Publishing House. Beijing, pp521-523,2006.
    [24]Mohd Din, A.T., Hameed, B.H., Ahmad, A.L. Batch adsorption of phenol onto physiochemical-activated coconut shell [J]. Journal of Hazardous Materials.2009,161 (2-3): 1522-1529.
    [25]He, L.C., Yang, G.D., Geng, X.D. Enzymatic activity and chromatographic characteristics of the cell membrane immobilized on silica surface [J]. Chinese Science Bulletin.1999,44 (9): 826-831.
    [26]Andreas Lundqvist, Per Lundahl. Advantages of quantitative affinity chromatography for the analysis of solute interaction with membrane proteins [J]. Journal of Biochemical and Biophysical Methods.2001,49 (1-3):507-521.
    [27]Zeng, A.G., Yuan, B.X., Wang, C.H., Yang, G.D., He, L.C. Frontal analysis of cell-membrane chromatography for determination of drug-alD adrenergic receptor affinity [J]. Journal of Chromatography B.2009,877 (20-21):1833-1837.
    [28]Arata, Y., Hirabayashi, J., Kasai, K.I. Application of reinforced frontal affinity chromatography and advanced processing procedure to the study of the binding property of a Caenorhabditis elegans galectin [J]. Journal of Chromatography A.2001,905 (1-2):337-343.
    [29]Kasai, K.I., Ishii, S.I. Quantitative analysis of affinity chromatography of trypsin. A new technique for investigation of protein-ligand interaction [J]. Journal of Biochemistry.1975,77 (1):261-264.
    [30]Wang, Y., Yuan, B.X., Deng, X.L., He, L.C., Wang, S.C., Zhang, Y.Y., Han, Q.D. Comparison of alphal-adrenergic receptor cell-membrane stationary phases prepared from expressed cell line and from rabbit hepatocytes [J]. Analytical and Bioanalytical Chemistry.2006,386 (7-8):2003-2011.
    [1]Beretta, G, Furlanetto, S., Regazzoni, L., Zarrella, M., Facino, R.M. Quenching of a, β-unsaturated aldehydes by green tea polyphenols:HPLC-ESI-MS/MS studies [J]. Journal of Pharmaceutical and Biomedical Analysis.2008,48 (3-4):606-611.
    [2]Magdalena, M., Agnieszka, W., Krzysztof, Z. Effects of non-fermented tea extracts on in vitro digestive hydrolysis of lipids and on cholesterol precipitation [J]. European Food Research and Technology.2008,226 (4):731-736.
    [3]Kim, J., Zhang, X., Rieger-Christ, K.M., Summerhayes, I.C., Wazer, D.E., Paulson, K.E., Yee, A.S. Suppression of WNT signaling by the green tea compound EGCG in invasive breast cancer cells:requirement of the transcriptional repressor HBP1 [J]. Journal of Biological Chemistry.2006,281 (16):10865-10875.
    [4]Takada, M., Nakamura, Y., Koizumi, T., Toyama, H., Kamigaki, T., Suzuki, Y., Takeyama, Y, Kuroda, Y. Suppression of human pancreatic carcinoma cell growth and invasion by epigallocatechin-3-gallate [J]. Pancreas.2002,25 (1):45-48.
    [5]Khan, N., Mukhtar, H. Tea polyphenols for health promotion [J]. Life Sciences.2007,81(7): 519-533.
    [6]Shoji, Y., Nakashima, H. Glucose-lowering effect of powder formulation of African black tea extract in KK-Ay/TaJcl diabetic mouse [J]. Archives of Pharmacal Research.2006,29 (9): 786-794.
    [7]Jin, Y.X., Tang, Y.H., Zeng, S. Analysis of flurbiprofen, ketoprofen and etodolac enantiomers by pre-column derivatization RP-HPLC and application to drug-protein binding in human plasma [J]. Journal of Pharmaceutical and Biomedical Analysis.2008,46 (5):953-958.
    [8]Singh, S.S., Mehta, J. Measurement of drug-protein binding by immobilized human serum albumin-HPLC and comparison with ultrafiltration [J]. Journal of Chromatography B.2006, 834(1-2):108-116.
    [9]Bhattacharya, A.A., Grune, T., Curry, S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin [J]. Journal of Molecular Biology.2000,303 (5):721-732.
    [10]Demant, E.J., Friche, E. Kinetics of anthracycline accumulation in multidrug-resistant tumor cells:relationship to drug lipophilicity and serum albumin binding [J]. Biochemical Pharmacology.1998,56 (9):1209-1217.
    [11]Guo, M., Su, X.Y., Kong, L., Li, X., Zou, H.F. Characterization of interaction property of multicomponents in Chinese Herb with protein by microdialysis combined with HPLC [J]. Analytica Chimica Acta.2006,556:183-188.
    [12]Naranjo, C.A., Sellers, E.M. Drug-Protein Binding [M]. Praeger, New York, pp 233-251, 1986.
    [13]Carter, D.C., Ho, J.X. Structure of serum albumin [J]. Advances in Protein Chemistry.1994, 45:153-203.
    [14]Kremer, J.M., Wilting, J., Janssen, L.H. Drug binding to human alpha-l-acid glycoprotein in health and disease [J]. Pharmacological Reviews.1988,40 (1):1-47.
    [15]Dong, Z.B., Li, S.P., Hong, M., Zhu, Q. Hypothesis of potential active components in Angelica sinensis by using biomembrane extraction and high performance liquid chromatography [J]. Journal of Pharmaceutical and Biomedical Analysis.2005,38(4):664-669.
    [16]Zlotos, G., Bucker, A., Kinzig-Schippers, M., Sorgel. F., Holzgrabe, U. Plasma protein binding of gyrase inhibitors [J]. Journal of Pharmaceutical Sciences.1998,87 (2):215-220.
    [17]Ji, T.H., Grossmann, M., Ji, I. G protein-coupled receptors:I. Diversity of receptor-ligand interactions [J]. Journal of Biological Chemistry.1998,273 (26):17299-17302.
    [18]Gether, U., Kobilka, B.K. G Protein-coupled receptors.Ⅱ. Mechanism of agonist activation [J]. Journal of Biological Chemistry.1998,273 (29):17979-17982.
    [19]Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry.1976,72: 248-254.
    [20]Santoni, V., Kieffer, S., Desclaux, D., Masson, F., Rabilloud, T. Membrane proteomics:Use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties [J]. Electrophoresis.2000, 21 (16):3329-3344.
    [21]Hu, B., Wang, L., Zhou, B., Zhang, X., Sun, Y., Ye, H., Zhao, L.Y., Hu, Q.H., Wang, G.X., Zeng, X.X. Efficient procedure for isolating methylated catechins from green tea and effective simultaneous analysis of ten catechins, three purine alkaloids, and gallic acid in tea by high-performance liquid chromatography with diode array detection [J]. Journal of Chromatography A.2009,1216 (15):3223-3231.
    [22]Pelillo, M., Bonoli, M., Biguzzi, B., Bendini, A., Gallina Toschi, T., Lercker, G. An investigation in the use of HPLC with UV and MS-electrospray detection for the quantification of tea catechins [J]. Food Chemistry.2004,87 (3):465-470.
    [23]Shibukawa, A., Kuroda, Y., Nakagawa, T. Development of high-performance frontal analysis and the application to the study of drug-plasma protein binding [J]. Trends in analytical chemistry.1999,18 (8):549-556.
    [24]Kajiya, K., Kumazawa, S., Nakayama, T. Effects of external factors on the interaction of tea catechins with lipid bilayers [J]. Bioscience Biotechnology and Biochemistry.2002,66 (11): 2330-2335.
    [25]Tamba, Y., Ohba, S., Kubota, M., Yoshioka, H., Yoshioka, H. Single GUV method reveals interaction of tea catechin (2)-epigallocatechin gallate with lipid membranes [J]. Biophysical Journal.2007,92 (9):3178-3194.
    [1]Khan, N., Mukhtar, H. Tea polyphenols for health promotion [J]. Life Sciences.2007,81 (7): 519-533.
    [2]Wei, W., Ma, G. H., Wang, L. Y., Wu, J., Su, Z. G., Hollow quaternized chitosan microspheres increase the therapeutic effect of orally administered insulin [J]. Acta Biomater.2010,6 (1): 205-209.
    [3]Yao, H. T., Huang, S. Y, Chiang, M. T. A comparative study on hypoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan in streptozotocin-induced diabetic rats [J]. Food and Chemical Toxicology.2008,46 (5): 1525-1534.
    [4]Wilkinson, A. S., Monteith, G. R., Shaw, P. N., Lin, C. N., Gidley, M. J., Thomson, S. J. R. Effects of the mango components mangiferin and quercetin and the putative mangiferin metabolite norathyriol on the transactivation of peroxisome proliferator-activated receptor isoforms [J]. Journal of Agricultural and Food Chemistry.2008,56 (9):3037-3042.
    [5]Hu, H. G., Wang, M. J., Zhao, Q. J., Liao, H. L., Cai, L. Z., Song, Y, Zhang, J., Yu, S. C., Chen, W. S., Liu, C. M., Wu, Q. Y. Synthesis of mangiferin derivatives as protein tyrosine phosphatase 1B inhibitors [J]. Chemistry of Natural Compounds.2007,43 (6):663-666.
    [6]Klaman, L. D., Boss, O., Peroni, O. D., Kim, J. K., Martino, J. L., Zabolotny, J. M., Moghal, N., Lubkin, M., Kim, Y B., Sharpe, A. H., Stricker-Krongrad, A., Shulman, G. I., Neel, B. G., Kahn, B. B. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice [J]. Molecular and Cellular Biology.2000,20 (15):5479-5489.
    [7]Rau, O., Wurglics, M., Paulke, A., Zitzkowski, J., Meindl, N., Bock, A., Dingermann, T., Abdel-Tawab, M., Schubert-Zsilavecz, M. Carnosic acid and carnosol, phenolic diterpene compounds of the labiate herbs rosemary and sage, are activators of the human peroxisome proliferator-activated receptor gamma [J]. Planta Medica.2006,72 (10):881-887.
    [8]Shen, J. M., Wang, J., Liu, X. Y, Zhao, C. D., Zhang, H. X. Study of mangiferin-receptor affinity by cell membrane chromatography using rat pancreas [J]. Medicinal Chemistry Research. DOI 10.1007/s00044-011-9697-y Published online:22 June 2011.
    [9]Anrakua, M., Fujii, T., Kondo, Y, Kojima, E., Hata, T., Tabuchi, N., Tsuchiya, D., Goromaru, T., Tsutsumi, H., Kadowaki, D., Maruyama, T., Otagiri, M., Tomid, H. Antioxidant properties of high molecular weight dietary chitosan in vitro and in vivo [J]. Carbohydrate Polymers. 2011,83 (2):501-505.
    [10]Lee, C. M., Jeong, H. J., Kim, S. L., Kim, E. M., Kim, D. W., Lim, S. T., Jang, K. Y, Jeong, Y Y., Nah, J. W., Sohn, M. H. SPION-loaded chitosan-linoleic acid nanoparticles to target hepatocytes [J]. International Journal of Pharmaceutics.2009,371 (1-2):163-169.
    [11]Sandra, O. H. G., Manuel, G. O., Esperanza, M. A., Jose, A. R. C. Chitosan improves insulin sensitivity as determined by the euglycemic-hyperinsulinemic clamp technique in obese subjects [J]. Nutrition Research.2010,30 (6):392-395.
    [12]Hu, B., Wang, L., Zhou, B., Zhang, X., Sun, Y., Ye, H., Zhao, L. Y., Hu, Q. H., Wang, G. X., Zeng, X. X. Efficient procedure for isolating methylated catechins from green tea and effective simultaneous analysis of ten catechins, three purine alkaloids, and gallic acid in tea by high-performance liquid chromatography with diode array detection [J]. Journal of Chromatography A.2009,1216 (15):3223-3231.
    [13]Marta, G. C., Arantxa, R. C. Dietary phytochemicals and their potential effects on obesity:A review [J]. Pharmacological Research.2011,64 (5):438-455.
    [14]Yang, M., Wang, C., Chen, H. Green, Oolong and black tea extracts modulate lipid metabolism in hyperlipidemia rats fed high-sucrose diet [J]. Journal of Nutritional Biochemistry.2001,12 (1):14-20.
    [15]Yun, J. W. Possible anti-obesity therapeutics from nature-A review [J]. Phytochemistry. 2010,71 (14-15):1625-1641.
    [16]Shen, J.M., Liu, X.Y., Tang, W.J., Wang, J., Zhang, H.X. Efficient Isolation of Catechins from Green Tea and Characterization of Interaction Property of Catechins with Proteins by HPLC-UV/DAD Combined with Ultrafiltration [J]. Medicinal Chemistry Research.DOI: 10.1007/s00044-011-9890-z.2011.
    [17]Shoji, Y, Nakashima, H. Glucose-lowering effect of powder formulation of African black tea extract in KK-Ay/TaJcl diabetic mouse [J]. Archives of Pharmacal Research.2006,29 (9): 786-794.
    [18]Calero, N., Munoz, J., Ramirez, P., Guerrero, A. Flow behaviour, linear viscoelasticity and surface properties of chitosan aqueous solutions [J]. Food Hydrocolloids.2010,24(6):659-666.
    [19]Dash, M., Chiellini, F., Ottenbrite, R.M., Chiellini, E. Chitosan-A versatile semi-synthetic polymer in biomedical applications [J]. Progress in Polymer Science.2011,36 (8):981-1014.
    [20]Jia, X. Y., Chen, X., Xu, Y. L., Han, X. Y., Xu, Z. R. Tracing transport of chitosan nanoparticles and molecules in Caco-2 cells by fluorescent labeling [J]. Carbohydrate Polymers.2009,78 (2):323-329.
    [21]Trapani, A., Lopedota, A., Franco, M., Cioffi, N., leva, E., Garcia-Fuentes, M., Alonso, M. J., A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides [J]. European Journal of Pharmaceutics and Biopharmaceutics.2010,75 (1):26-32.
    [22]Sadeghi, A.M.M., Dorkoosh, F.A., Avadi, M.R., Saadat, P., Rafiee-Tehrani, M., Junginger, H.E. Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods [J]. International Journal of Pharmaceutics.2008:355 (1-2):299-306.
    [23]Sinha, V.R., Singla, A.K., Wadhawan, S., Kaushik, R., Kumria, R., Bansal, K., Dhawan, S. Chitosan microspheres as a potential carrier for drugs [J]. International Journal of Pharmaceutics.2004,274 (1-2):1-33.
    [24]Gomes, A., Vedasiromoni, J. R., Das, M., Sharma, R. M., Ganguly, D. K. Antihyperglycemic effect of black tea (Camellia sinensis) in rat [J]. Journal of Ethnopharmacology.1995,45 (3): 223-226.
    [25]Shukla, Y., Taneja, P. Anticarcinogenic effect of black tea on pulmonary tumors in Swiss albino mice [J]. Cancer Letters.2002,176 (2):137-141.
    [26]Skrzydlewska, E., Ostrowska, J., Farbiszewski, R., Michalak, K. Protective effect of green tea against lipid peroxidation in the rat liver, blood serum and the brain [J]. Phytomedicine 2002, 9:232-238.
    [27]Juang, J. H., Wang, J. J., Shen, C. R., Kuo, C. H., Chien, Y. W., Kuo, H. Y, Tsai, Z. T., Yen, T. C. Magnetic resonance imaging of transplanted mouse islets labeled with chitosan-coated superparamagnetic iron oxide nanoparticles [J]. Transplantation Proceedings.2010,42 (6): 2104-2108.
    [28]Cho, H. S., Dong, Z. Y, Pauletti, G. M., Zhang, J. M., Xu, H. Gu, H. C., Wang, L. M., Ewing, R. C., Huth, C., Wang, F., Shi, D. L. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging:a multifunctional nanocarrier system for cancer diagnosis and treatment [J]. Nano.2010,4 (9):5398-5404.
    [29]Xu, X.Q., Deng, C.H., Gao, M.X., Yu, W.J., Yang, P.Y., Zhang, X.G. Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry [J]. Advanced Materials.2006,18 (24):3289-3293.
    [30]Guo J., Yang W.L., Wang C.C., He J., Chen J.Y Poly(N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres:preparation, characterization, and biomedical applications [J]. Chemistry of Materials.2006,18 (23):5554-5562.
    [31]Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry.1976,72: 248-254.
    [32]Fisher, K.A., Huddersman, K.D., Taylor, M. Joan. Comparison of micro-and mesoporous inorganic materials in the uptake and release of the drug model fluorescein and its analogues [J]. Chemistry-A European Journal.2003,9 (23):5873-5878.
    [33]Schmalenberg, K. E., Frauchiger, L., Nikkhouy-Albers, L., Uhrich, K. E. Cytotoxicity of a unimolecular polymeric micelle and its degradation products [J]. Biomacromolecules.2001,2 (3):851-855.
    [34]Win, K.Y., Feng, S.S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs [J]. Biomaterials,2005,26 (15): 2713-2722.
    [35]Biju, V, Makita, Y, Sonoda, A. Temperature-sensitive photoluminescence of CdSe quantum dot clusters [J]. The Journal of Physical Chemistry B.2005,109 (29):13899-13905.
    [1]Guo J., Yang W.L., Wang C.C., He J., Chen J.Y. Poly(N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres:preparation, characterization, and biomedical applications [J]. Chemistry of Materials.2006,18 (23):5554-5562.
    [2]Mathew, M. E., Mohan, J. C., Manzoor, K., Nair, S.V., Tamura, H., Jayakumar, R. Folate conjugated carboxymethyl chitosan-manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells [J]. Carbohydrate Polymers.2010,80 (2):442-448.
    [3]Myers, R.R., Campana, W.M., Shubayev, V.I. The role of neuroinflammation in neuropathic pain:mechanisms and therapeutic targets [J]. Drug Discovery Today.2006,11 (1-2):8-20.
    [4]Mangeney, C., Bousalem, S., Connan, C., Vaulay, M., Bernard, S., Chehimi, M. M. Latex and hollow particles of reactive polypyrrole:preparation, properties, and decoration by gold nanospheres [J]. Langmuir.2006,22 (24):10163-10169.
    [5]Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R.D., Lowry, GV. Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface [J]. Nano Letters.2005,5 (12):2489-2494.
    [6]Corato, R.D., Bigall, N.C., Ragusa, A., Dorfs, D., Genovese, A., Marotta, R., Manna, L. Pellegrino, T. Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and sorting [J]. Nano.2011,5 (2):1109-1121.
    [7]Calero, N., Munoz, J., Ramirez, P., Guerrero, A. Flow behaviour, linear viscoelasticity and surface properties of chitosan aqueous solutions [J]. Food Hydrocolloids.2010,24 (6-7): 659-666.
    [8]Jayakumar, R., Menon, D., Manzoor, K., Nair, S. V., Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials-A short review [J]. Carbohydrate Polymers.2010,82 (2):227-232.
    [9]Rejinold, N. S., Chennazhi, K. P., Tamura, H., Nair, S. V. Jayakumar, R. Multifunctional chitin nanogels for simultaneous drug delivery, bioimaging and biosensing [J]. ACS Applied Materials & Interfaces.2011,3 (9):3654-3665.
    [10]Muzzarelli, R.A.A., Boudrant, J., Meyer, D., Manno, N., DeMarchis, M., Paoletti, M.G. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin:A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial [J]. Carbohydrate Polymers.2012,87 (2):995-1012.
    [11]Chang, Y.C. Chen, D.H. Preparation and characterization of chitosan poly (acrylic acid) magnetic microspheres [J]. Journal of Colloid and Interface Science.2005,283:446-451.
    [12]Wang, J.S., Peng, R.T., Yang, J.H., Liu, Y.C., Hu, X.J. Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions [J]. Carbohydrate Polymers. 2011,84(3):1169-1175.
    [13]Chen, J.P., Yang, P.C., Ma, Y.H., Wu, T. Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator [J]. Carbohydrate Polymers.2011,84 (1): 364-372.
    [14]Gil, P.R., Parak, W. J. Composite nanoparticles take aim at cancer [J]. Nano.2008,2 (11): 2200-2205.
    [15]Jayakumar, R., Prabaharan, M., Nair, S.V., Tokura, S., Tamura, H., Selvamurugan, N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications [J]. Progress in Materials Science.2010,55 (7):675-709.
    [16]Cho, H.S., Dong, Z.Y., Pauletti, G.M., Zhang, J.M., Xu, H., Gu, H.C., Wang, L.M., Ewing, R. C., Huth, C., Wang, F., Shi, D.L. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging:A multifunctional nanocarrier system for cancer diagnosis and treatment [J]. Nano.2010,4 (9):5398-5404.
    [17]Guo, J., Yang, W.L., Wang, C.C. Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions [J]. Journal of Physical Chemistry B.2005,109 (37):17467-17473.
    [18]Wang, C., Ma, Q., Dou, W., Kanwal, S., Wang, GN., Fan, P., Yuan, P.F., Su, X.G Synthesis of aqueous CdTe quantum dots embedded silica nanoparticles and their applications as uorescence probes [J]. Talanta.2009,77 (4):1358-1364.
    [19]Manzoor, K., Johny, S., Menon, D., Nair, S. V. Bioconjugated luminescent quantum dots of doped ZnS:Mn a cytofriendly system for targeted cancer imaging [J]. Nanotechnology.2009, 20 (6):065102.
    [20]Pan, J., Feng, S. S. Targeting and imaging cancer cells by folate decorated quantum dots loaded nanoparticle of biodegradable polymers [J]. Biomaterials.2009,30 (6):1176-1183.
    [21]Turek, J.J., Leamon, C.P., Low, P.S. Endocytosis of folate-protein conjugates-ultrastructural-localization in Kb cells [J]. Journal of Cell Science.1993,106:423-430.
    [22]Blum, R.H., Carter, K.S. New antitumor drug with significant clinical activity [J]. Annals of Internal Medicine.1974,80 (2):249-259.
    [23]Jeong, Y.I., Na, H.S., Cho, K.O., Lee, H.C., Nah, J.W., Cho, C.S. Antitumor activity of adriamycin-incorporated polymeric micelles of poly(y-benzyl L-glutamate)/poly(ethylene oxide) [J]. International Journal of Pharmaceutics.2009,365 (1-2):150-156.
    [24]Deng, H., Li, X.L., Peng, Q., Wang, X., Chen, J.P., Li, Y.D. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angewandte Chemie International Edition.2005,44 (18):2782-2785.
    [25]Xu, X.Q., Deng, C.H., Gao, M.X., Yu, W.J., Yang, P.Y., Zhang, X.G. Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry [J]. Advanced Materials.2006,18 (24):3289-3293.
    [26]Chen, X.G., Park, H.J. Preparation and rheological properties of deoxycholate-chitosan and carboxymethyl-chitosan in aqueous systems [J]. Carbohydrate Polymers.2007,69(3):419-425.
    [27]Miller, GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Analytical Chemistry.1959,31:426-431.
    [28]Fisher, K.A., Huddersman, K.D., Taylor, M. Joan. Comparison of micro-and mesoporous inorganic materials in the uptake and release of the drug model fluorescein and its analogues [J]. Chemistry-A European Journal.2003,9 (23):5873-5878.
    [29]Prelot, B., Janusz, W., Thomas, F., Villieras, F., Charmas, R., Piasecki, W., Rudzinski, W. Adsorption of cadmium ions at the electrolyte/silica interface:experimental study of surface properties [J]. Applied Surface Science.2002,196:322-330.
    [30]Biju, V., Makita, Y, Sonoda, A. Temperature-sensitive photoluminescence of CdSe quantum dot clusters [J]. Journal of Physical Chemistry B.2005,109 (29):13899-13905.
    [31]Gardner, H.C., Gallardo, D.E., Bertoni, C. Temperature shifted photoluminescence in CdTe nanocrystals [M]. Proc. SPIE,6195:61950N1-8,2006.
    [32]Wang, Y., Tang, Z., Correa, D.M.A., Pastoriza-Santos, I., Giersig, M., Kotov, N.A., Liz-Marzan, L.M. Polymers as multidentate ligands for surface modification and hierarchical [J]. Journal of Physical Chemistry B.2004,108(40):15461-15469.
    [33]Wu, L., Yu, J.C., Fu, X. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation [J]. Journal of Molecular Catalysis A: Chemical.2006,244 (1-2):25-32.
    [34]Xuan, S.H., Wang, Y.X.J., Yu, Jimmy C., Leung Ken C.F. Preparation, characterization, and catalytic activity of core/shell Fe3O4@polyaniline@Au nanocomposites [J]. Langmuir.2009, 25(19):11835-11843.
    [35]Win, K.Y., Feng, S.S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs [J]. Biomaterials.2005,26 (15): 2713-2722.
    [36]Yoo, H.S., Park, T.G. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate [J]. Journal of Controlled Release.2004, 100:247-256.
    [37]Gabbay, E.J., Grier, D., Fingerie, R.E., Reimer, R., Levy, R., Pearce, S.W. Interaction specificity of the anthracyclines with DNA [J]. Biochemistry.1976,15 (10):2062-2070.
    [38]Prabaharan, M., Grailer, J.J., Pilla, S., Steeber, D.A., Gong, S.Q. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery [J]. Biomaterials.2009,30 (30):6065-6075.
    [39]Weng, J.F., Song, X.T, Li, L., Qian, H.F., Chen, K.Y., Xu, X.M., Cao, C.X., Ren, J.C. Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging [J]. Talanta.2006,70 (2):397-402.
    [1]Galbiati, A., Tabolacci, C, Rocca, B. M. D., Mattioli, P., Beninati, S., Paradossi, G, Desideri, A. Targeting tumor cells through chitosan-folate modified microcapsules loaded with camptothecin [J]. Bioconjugate Chemistry.2011,22 (6):1066-1072.
    [2]Bandyopadhyay, K., Gjerset, R. A. Protein kinase CK2 is a central regulator of topoisomerase I hyperphosphorylation and camptothecin sensitivity in cancer cell lines [J]. Biochemistry.2011, 50 (5):704-714.
    [3]Mi, Z.H., Burke, T. G Marked interspecies variations concerning the interactions of camptothecin with serum albumins:A frequency-domain fluorescence spectroscopic study [J]. Biochemistry.1994,33 (42):12540-12545.
    [4]Burke, T. G, Staubus, A. E., Mishra, A. K. Liposomal stabilization of camptotbecin's lactone ring [J]. Journal of the American Chemical Society.1992,114 (21):8318-8319.
    [5]Mi, Z. H., Burke, T, G Differential interactions of camptothecin lactone and carboxylate forms with human blood components [J]. Biochemistry.1994,33 (34):10325-10336.
    [6]Thambi, T., Yoon, H. Y., Kim, K., Kwon, I. C., Yoo, C. K., Park, J. H. Bioreducible block copolymers based on poly(ethylene glycol) and poly(γ-benzyl L-glutamate) for intracellular delivery of camptothecin [J]. Bioconjugate Chemistry.2011,22 (10):1924-1931.
    [7]Zhang, K., Wang, Y. J., Yu, A., Zhang, Y., Tang, H., Zhu, X. X. Cholic acid-modified dendritic multimolecular micelles and enhancement of anticancer drug therapeutic efficacy [J]. Bioconjugate Chemistry.2010,21 (9):1596-1601.
    [8]Meenach, S. A., Kim, Y. J., Kauffman, K. J., Kanthamneni, N., Bachelder, E. M. Synthesis, optimization and characterization of camptothecin-loaded acetalated dextran porous microparticles for pulmonary delivery [J]. Molecular Pharmaceutics.2012,9 (2):290-298.
    [9]Machida, Y., Onishi, H., Kurita, A., Hata, H., Morikawa, A. Pharmacokinetics of prolonged-release CPT-11-loaded micro-spheres in rats [J]. Journal of Controlled Release. 2000,66(2-3):159-175.
    [10]Musumeci,T., Ventura,C. A.,Giannone, I., Ruozi, B.,Montenegro, L., Pignatello, R., Puglisi, G. PLA/PLGA nanoparticles for sustained release of docetaxel [J]. International Journal of Pharmaceutics.2006,325 (1-2):172-179.
    [11]Guo, J., Yang, W.L., Wang, C.C., He, J., Chen, J.Y. Poly(N-isopropylacrylamide)-coated luminescent/magnetic silica microspheres:Preparation, characterization, and biomedical applications [J]. Chemistry of Materials.2006,18 (23):5554-5562.
    [12]Chen, J. P., Yang, P. C., Ma, Y. H., Wu, T. Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator [J]. Carbohydrate Polymers.2011,84 (1): 364-372.
    [13]Kong, S. D., Zhang, W. Z., Lee, J. H., Brammer, K., Lal, R., Karin, M., Jin, S. Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release [J]. Nano Letters.2010,10 (12):5088-5092.
    [14]Mathew, M. E., Mohan, J. C., Manzoor, K., Nair, S.V., Tamura, H., Jayakumar, R. Folate conjugated carboxymethyl chitosan-manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells [J]. Carbohydrate Polymers.2010,80 (2):442-448.
    [15]Mangeney, C., Bousalem, S., Connan, C., Vaulay, M., Bernard, S., Chehimi, M. M. Latex and hollow particles of reactive polypyrrole:Preparation, properties, and decoration by gold nanospheres [J]. Langmuir.2006,22 (24):10163-10169.
    [16]Cho, H.S., Dong, Z.Y., Pauletti, G.M., Zhang, J.M., Xu, H., Gu, H.C., Wang, L.M., Ewing, R. C., Huth, C., Wang, F., Shi, D.L. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging:A multifunctional nanocarrier system for cancer diagnosis and treatment [J]. Nano.2010,4 (9):5398-5404.
    [17]Shen, J. M., Tang, W. J., Zhang, X. L., Chen, T., Zhang, H. X. A novel carboxymethyl chitosan-based folate/Fe3O4/CdTe nanoparticle for targeted drug delivery and cell imaging [J]. Carbohydrate Polymers.2012,88 (1):239-249.
    [18]Jayakumar, R., Menon, D., Manzoor, K., Nair, S. V., Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials-A short review [J]. Carbohydrate Polymers.2010,82 (2):227-232.
    [19]Corato, R.D., Bigall, N.C., Ragusa, A., Dorfs, D., Genovese, A., Marotta, R., Manna, L., Pellegrino, T. Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: Synthesis and cancer cell targeting and sorting [J]. Nano.2011,5 (2):1109-1121.
    [20]Xia, W. S., Liu, P., Zhang, J. L., Chen, J. Biological activities of chitosan and chitooligosaccharides [J]. Food Hydrocolloid.2011,25 (2):170-179.
    [21]Suzuki, K., Mikami, T., Okawa, Y, Tokoro, A., Suzuki, S., Suzuki, M. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose [J]. Carbohydrate Research.1986,151:403-408.
    [22]Yang, S. J., Lin, F. H., Tsai, K. C., Wei, M. F., Tsai, H. M., Wong, J. M., Shieh, M. J. Folic acid-conjugated chitosan nanoparticles enhanced protoporphyrin IX accumulation in colorectal cancer cells [J]. Bioconjugate Chemistry.2010,21 (4):679-689.
    [23]Prabaharan, M., Grailer, J. J., Pilla, S., Steeber, D. A., Gong, S. Q. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery [J]. Biomaterials.2009,30 (16):3009-3019.
    [24]Mahato, R., Tai, W. Y., Cheng, K. Prodrugs for improving tumor targetability and efficiency [J]. Advanced Drug Delivery Reviews.2011,63 (8):659-670.
    [25]Shi, Z. L., Neoh, K. G, Kang, E. T., Shuter, B., Wang, S. C., Poh, C., Wang, W. (Carboxymethyl)chitosan-modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of stem cells [J]. ACS Applied Materials & Interfaces.2009,1(2):328-335.
    [26]Wu, W. T., Shen, J., Banerjee, P., Zhou, S. Q. Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery [J]. Biomaterials.2010,31 (32):8371-8381.
    [27]Moody, T. W., Mantey, S. A., Fuselier, J. A., Coy, D. H., Jensen, R. T. Vasoactive intestinal peptide-camptothecin conjugates inhibit the proliferation of breast cancer cells [J]. Peptides. 2007:28(9):1883-1890.
    [28]Pozzo, A. D., Ni, M. H., Esposito, E., Dallavalle, S., Musso, L., Bargiotti, A., Pisano, C., Vesci, L., Bucci, F., Castorina, M., Fodera. R., Giannini, G., Aulicino, C., Penco, S. Novel tumor-targeted RGD peptide-camptothecin conjugates:Synthesis and biological evaluation [J]. Bioorganic & Medicinal Chemistry.2010,18 (1):64-72.
    [29]Aluri, S., Janib, S. M., Mackay, J. A. Environmentally responsive peptides as anticancer drug carriers [J]. Advanced Drug Delivery Reviews.2009,61 (11):940-952.
    [30]Zhang, X. X., Eden, H. S., Chen, X. Y. Peptides in cancer nanomedicine:Drug carriers, targeting ligands and protease substrates [J]. Journal of Controlled Release.2012,159(1):2-13.
    [31]Henne, W. A., Doorneweerd, D. D., Hilgenbrink, A. R., Kularatne, S. A., Low, P. S. Synthesis and activity of a folate peptide camptothecin prodrug [J]. Bioorganic & Medicinal Chemistry Letters.2006,16 (20):5350-5355.
    [32]Wu, H. X., Zhang, S. J., Zhang, J. M., Liu, G., Shi, J. L., Zhang, L. X., Cui, X. Z., Ruan, M. L., He, Q. J., Bu, W. B. A hollow-core, magnetic, and mesoporous double-shell nanostructure: In situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties [J]. Advanced Functional Materials.2011,21 (10):1850-1862.
    [33]Sun, Y. N., Wang, C. D., Zhang, X. M., Ren, L., Tian, X. H. Shape dependence of gold nanoparticles on in vivo acute toxicological effects and biodistribution [J]. Journal of Nanoscience and Nanotechnology.2011,11 (2):1210-1216.
    [34]Lin Y. S., Haynes, C. L. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity [J]. Journal of the American Chemical Society.2010,132 (13):4834-4842.
    [35]Miyakem, M., Honda, T., Miwatani, T. Effect of divalent cations and saccharides on Vibrio metschnikovii cytolysin-induced hemolysis of rabbit erythrocytes [J]. Infection and Immunity. 1989,57(1):158-163.
    [36]Yoo, H. S., Park, T.G. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate [J]. Journal of Controlled Release.2004,100: 247-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700