用户名: 密码: 验证码:
基于层合速凝原理的陶瓷件快速制造设备及材料成型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷材料具有耐高温、耐腐蚀、强度高、硬度大、抗氧化等优点,陶瓷材料的直接成型已经成为快速成型技术的研究热点和发展方向之一。由于陶瓷件的快速成型技术在国内外尚处于起步阶段,现有工艺及设备大都存在造价高、材料性能要求高、制件质量差等缺点,目前仍未有专门用于陶瓷件生产的快速成型设备。为解决以上难题,陕西科技大学提出了层合速凝成型陶瓷件的技术,本课题就是以该理论为基础,并结合陶瓷材料和石蜡的特性,设计出一种新的陶瓷件快速成型装置,该装置适用于以陶瓷为成型材料,石蜡为支撑及粘结材料的快速成型制造。将该装置与啄木鸟DX3017型雕刻机进行配合工作,加工出的产品理化性能优异,品种丰富,得到了国内行业专家、政府领导和消费者的一致好评。该设备的成功研制对陶瓷产品快速生产具有十分重要的应用价值。
     该陶瓷件快速成型机的加工过程是建立在层合速凝成型的基础上,其加工步骤为:首先用Pro/E建立零件的三维实体模型,然后利用分层软件对该模型进行分层处理,从而把该三维实体切成一片片的二维截面轮廓,随后把这些信息传送到机床,指引成型运动。前期工作完成之后,分别在盛放陶瓷浆料以及石蜡浆料的料斗内加注材料,开启加热装置同时启动搅拌装置。然后在铺料台上铺一层石蜡,待石蜡凝固后,由计算机发出指令控制刻刀在石蜡板上刻出零件截面形状,并由吹风装置吹走石蜡碎屑,清空镂空部分,再铺一层陶瓷浆料,用刮板将多余的浆料刮走,镂空部分被陶瓷浆料填充。重复上述步骤,逐层叠加,形成实体。最后取出实体,进行排蜡、烧结,即可得到陶瓷件。
     本课题主要取得了以下创造性成果:
     1.以层合速凝技术为理论基础,结合陶瓷快速成型的工作原理,对陶瓷快速成型设备的机械部分进行了设计、计算和选取,最终确定了该设备的机械系统结构。
     2.利用目前国内应用较广的大型三维软件Pro/E对所设计的机械系统部分进行了建模及装配,并通过该软件的三维仿真模块对其实际的运动规律进行了模拟,验证了该设计的合理性。并且利用了大型有限元分析软件ANSYS对铺料台在加工过程中的变形进行分析,根据分析的结果对铺料台结构进行优化,优化后的铺料台结构在满足运动规律的前提下工作精度大大提高。
     3.设计完成了陶瓷件快速成型机"IPC+PMAC"的控制系统。在比较分析几种开放式数控系统的基础上,结合陶瓷件快速成型机的控制要求,提出"IPC+PMAC"的控制方案,配以交流伺服控制系统,搭建了陶瓷件快速成型机的控制系统。对系统电气驱动部件如主轴变频器、交流伺服驱动器、交流伺服电机等进行了计算选取,设计完成了硬件系统连接图。交流伺服系统的控制性能很大程度上影响了零件的加工精度,因此,本文建立了交流伺服控制系统的数学模型,在经典控制理论的基础上,运用Matlab/SIMULINK对进给交流伺服控制系统进行了PID仿真分析,得出了系统的响应曲线,并分析得出了系统的稳态误差。为了使系统得到更好的性能,利用PEWIN软件对系统进行了调试仿真。
     4.搭建了陶瓷件快速成型机的数控系统软件部分,采用模块化的设计思路,对程序的上载和下载,系统的PMAC插补模块,PMAC的PLC,和数据采集分别作了分析。
     5.结合现有的控制系统硬件,设计了另一种采用西门子S7-200PLC对陶瓷快速成型机的进行控制的控制方案,并成功地实现了该设备的运动控制要求。至此该陶瓷快速成型机的样机已经成功研制完成,从调试运行的实验结果分析可得,整个系统的管理和控制任务能比较顺利地完成,达到了预期的效果。
     6.利用快速成型设备按照层合速凝技术原理制备了95Al203陶瓷凸轮件及性能测试样品并进行了性能测试。SEM显微结构表明:断面颗粒较均匀,晶粒尺寸在4μm左右,晶粒呈短柱状。层间间隙已经消失,样品烧结为一体,且具有一定的增韧效果。一体成型的95氧化铝陶瓷样品SEM显微结构表明,晶粒分布较均匀,晶粒呈短柱状,晶粒尺寸为3μ m左右;通过相关性能测试,快速成型设备制备的样品性能与一体成型的95氧化铝陶瓷样品的性能基本一样,差别较小;因此快速成型制备陶瓷部件方法是可行的。
     在对样机进行加工实验的过程中也发现了不少不足之处:样机运行过程中的安全性和稳定性有待提高;样机加工的效率有待优化;与雕刻机的配合功能有待完善,数据传输有待改进等等。
In these days, molding materials is getting more mature increasingly. For ceramic materials'good qualities, such as high temperature resistance, corrosion resistance, high strength, and great hardness, ceramic direct molding has become one of the research focus and developments in rapid prototyping technology. The rapid prototyping technology (RP) of ceramic parts is still at starting stage at home and abroad, and most of the existing technology and equipments have defects, including high cost, material with high quality performance and products being poor quality, there has not been a rapid prototyping device dedicated to ceramic parts production. However, to solve the above problems, Shaanxi University of Science and Technology proposed the technology of laminated speed cemented to product ceramic parts. The topic was based on the theory, and combined with the characteristics of ceramic materials and paraffin to design a new kind rapid prototyping device for ceramic parts. The device is suitable for rapid prototyping manufacturing that takes ceramic as the molding materials and paraffin wax as support and bonding materials. The device coordinated with the woodpecker carving machine DX3017to process the products with excellent physical and chemical properties, and species richness, which achieved the great agreement from the domestic industry experts, government leaders and consumers. The successful development of the device has filled the domestic blank, and reached the international advanced technical level, which is with great value in industrial applications.
     The process of ceramic parts rapid prototyping machine was on the basis of laminated cemented speed modeling, the processing steps were as follow:Firstly, three-dimensional solid model of the parts was established with Pro/E, and then was stratified by layered software so that it became pieces of two-dimensional cross-sectional profile, all of the data was transmitted to the machine tools to guide modeling movement. Secondly, the ceramic slurry and paraffin slurry were filled in hoopers respectively, and then the heating device and the stirring device were turned on simultaneously. Thidly, a layer of paraffin was paved on the paving plattform, after paraffin solidified, the computer issued a directive to control graver carving the part's section shape in paraffin board, and the paraffin wax debris was blown away by the blowing device to empty hollow part out. A layer of ceramic slurry was paved on it, and the excess slurry was scraped away by scraper, the hollow part was filled with ceramic slurry. Repeating the above steps, and overlapping layer by layer, an entity was formed. Finally the entity was taken out for wax removal and sintering to obtain the ceramic parts.
     The creative achievements in the paper are as follow:
     Based on laminated quick-setting and combined with rapid prototyping principle, the whole mechanical structure of the rapid prototyping equipment for ceramic parts was designed, calculated and picked up, so that it was determined at last.
     The three-dimensional models of the michaical structure were established to assemble in Pro/E, and the motor parameters of the device were set to realize the device's three-dimensional simulation. The real course of the campaign was seen through the simulation, and it can check whether the design is reasonable on the baisis of analysis. Finite element analysis software ANSYS was used to analyze the deformation of paving platform in the process. Through the analysis, it was found that a certain degree of deformation was occurred on the platform, which would influence ceramic parts machining accuracy at some degree. On the basis of the analysis, the platform's structural was improved, and analyzed again to meet the design requirements.
     The control system of the rapid prototyping equipment for ceramic parts adopted the plan of "IPC+PMAC". Compaired with several kinds of open CNC systems and based on the control requirements of ceramic parts rapid prototyping machine, the control program of "IPC+PMAC" was proposed, togethering with AC servo control system, the control system of ceramic parts rapid prototyping was set up. The electrical drive components of the system were calculated to pick up, including spindle inverters, AC servo drives, AC servo motor. And the connection diagram of the hardware system was completed. The control performance of AC servo system was affected the machining accuracy greatly, therefore, this paper establishes a mathematical model of the AC servo control system, on the basis of classical control theory, the Matlab/SIMULINK was adopted to do PID simulation analysis for feed AC servo control system, and the system response curve&the steady-state error were obtained,. In order to get better performance PEWIN software was used to make debugging simulatin for system.
     The numerical control system software portion of the ceramic parts rapid prototyping machine was build, a modular design ideas was used to analyse the program upload and download, system PMAC interpolation module, the PMAC's PLC and data acquisition.
     Combined with the existing control system hardware, an alternative control scheme was proposed:adopting Siemens S7-200PLC to design the control system of the device. The control scheme was easy to realize the control requirements and successfully achieved the processing motion. The ceramic rapid prototyping machine prototype has been successfully developed, from the results of debugging and running the experimental, it was available to find that the management and control tasks of the entire system can work well and stable, and calibration with great machining accuracy, which all have meet the requirements and achieved the desired results.
     95Al2O3ceramic cams were processed by the rapid prototyping device and the sample's performance was tested. SEM microstructure showed that:section particles were uniform grain size was about in4μm and short column. Layer gap has disappeared, the sample sintered as a whole, and with toughening effect. SEM microstructure of one forming of the95Al2O3ceramic sample showed that: the grain distributed uniformly and took on in short column, was about in3μm; after related performance tests, the sample prepared by rapid prototyping equipment performance slightly worse than one forming of the95Al2O3ceramic sample, however the difference was hardly. Therefore, using rapid prototyping equipment to process ceramic components is available.
     There are a lot of inadequacies in the process of re-processing for the prototype experiment:the security and stability of the prototype machine need to be improved; processing efficiency needs to be optimized; the function of working with engraving machine need to be improved, data transmission needs to be improved and so on.
引文
[1]王秀峰,罗宏杰.快速原型制造技术[M].北京:中国轻工业出版社,2001.
    [2]F. B. Prinz, et al. JTEC/WTEC Panel on Rapid Prototyping in Europe and Japan [J]. Japanese and World Technology Evaluation Centers, vols.1-2,1997.
    [3]C. J. Luis, J. Vivancos, etal. Comparative analysis of injection systems for manufacturing parts[J]. Journal of Materials Processing Technology,2003, (08):143-144.
    [4]P. Kulkarni, D. Dutta. On the synthesis of layered manufacturing and material removal processes[J]. ASME Journal of Manufacturing Science and Engineering,1998,152-158.
    [5]R. L. Rhorer, K. K. Jurrens, B. N. Damazo. Evaluating the performance of rapid prototyping/rapid manufacturing systems[J]. in Proceedings of the 31st CIRP International Seminar on Manufacturing Systems,1998,141-145.
    [6]沈国强.几种常用快速原型制造技术的分析及比较[J].现代机械,1998,(3):14-18.
    [7]K.P.Karunakaran, P.Vivekananda Shanmuganathan, Sanyay Janardhan Jadhav, et al. Rapid Prototyping of Metallic Parts and Moulds[J]. Journal of Materials Processing Technology,2000,105:371-381.
    [8]王运赣,叶翠华,张欣.快速成型技术[M].武昌:华中科技大学出版社,2005.
    [9]M. L. Griffith, J. W. Halloran. Freeform fabrication of ceramics via stereolithography [J]. J. Am. Ceram. Soc.,1996,79(10):2601-2608.
    [10]C. Hinczewski, S. Corbel, T. Chartier. Stereolithography for fabrication of ceramic three-dimensional parts [J]. Rapid Prototyping Journal,1998,4(3):104-111.
    [11]G. Brady, J.Halloran. Stereolithography of ceramic suspensions [J]. Rapid Prototyping Journal,1997,3(2):61-65.
    [12]D. L. Bourell, H.L.Marcus, J. W. Barlow, et al. Selective laser sintering of metals and ceramics[J]. International Journal of Powder Metallurgy,1992,28(4):369-382.
    [13]R. Goodridge, K. Dalgarno, D. Wood. Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications[J]. Proceedings of the I MECH E (Part H), Journal of Engineering in Medicine,2006,220(1):57-68.
    [14]J. P. Kruth, S.Kumar, J. Van Vaerenbergh. Study of laser-sinterability of ferro-based powders [J]. Rapid Prototyping Journal,2005,11(5):287-293.
    [15]J. Lorrison, K. Dalgarno, D. Wood. Processing of an apatite-mullite glass-ceramic and an hydroxyapatite/phosphate glass composite by selective laser sintering [J]. Journal of Materials Science:Materials in Medicine,2005,16(8):775-781.
    [16]牛永江,罗海玉.快速成形技术及研究动向[J].天水师范学院学报,2004, (2):23-25.
    [17]曹志清,丁玉梅,宋丽莉等.快速原型技术[M].北京:化学工业出版社,2005.
    [18]K.P. Karunakaran, P.Vivekananda Shanmuganathan, Sanyay Janardhan Jadhav, etal[J]. Rapid Prototyping of Metallic Parts and Moulds Journal of Materials Processing Technology,2000,105:371-381.
    [19]J P Kruth. Material incress manufacturing by rapid prototyping technologies[J].CIRP Annals,1991,40 (2):603-614.
    [20]李涤尘,赵万华,卢秉恒.快速成型技术发展方向探讨[J].制造技术与机床,2000,(3):8-9.
    [21]徐巍,凌芳.熔融沉积快速成型工艺的精度分析及对策[J].实验室研究与探索,2009,6(28):27-29.
    [22]王晓聪,孙锡红,快速成形技术研究现状及其应用前景[J].精密制造与自动化,2007,(03):57-60.
    [23]吴刚.快速成型制造技术研究与开发[J].辽宁师专学报,2009,2(11):83-84.
    [24]袁祁刚,杨继全.快速成型技术的新进展[J].金属成型工艺,2003,5(21):12-14.
    [25]胡庆夕,周克平等.快速制造技术的发展与应用[J].机电一体化,2003(5):6-11.
    [26]CXF. Lam, X.M. Mo, S.H. Teoh, et al. Scaffold Development Using 3D Printing with a Starch-based Polymer [J]. Materials Science and Engineering,2002, (C20):49-56.
    [27]Ju"rgen Stampfl, Hao-Chih Liu, Seo Woo Nam. Rapid prototyping and manufacturing by gelcasting of metallic and ceramic slurries[J]. Materials Science and Engineering,2002, A334:187-192.
    [28]Ajantha K. Egodawatta, D.K. Harrison. Feasibility study on developing productivity and quality improved layered manufacturing method for rapid prototyping tooling manufacture [J]. Journal of Materials Processing Technology,2004,149:604-608.
    [29]陈世柱.快速原型技术及其在复合材料成形方面的应用[J].中南工业大学学报,2002,23(5):166-169.
    [30]周振堂,马廉洁.零件制造的快速成型技术及其应用[J].铸造工程,2008,5(32):12-14.
    [31]李毅生.快速成型技术简介[J].科技资讯,2008(9):244-246.
    [32]周增文.机械加工工艺基础[M].长沙:中南大学出版社,2003.
    [33]王广春,赵国群,杨艳.快速成型与快速模具制造技术[J].新工艺新技术,2000, (9):30-32.
    [34]邹国林,郭东明,贾振元.快速自动成型与快速模具制造技术[J].全国生产工程第八届学术大会论文集,北京:机械工业出版社,1999(01):223-224.
    [35]曹志清,丁玉梅,宋丽莉等.快速原型技术[M].北京:化学工业出版社,2005.
    [36]Jurgen Stampfl, Hao-Chih Liu, Seo Woo Nam. Rapid prototyping and manufacturing by gelcasting of metallic and ceramic slurries[J]. Materials Science and Engineering,2002, A334:187-192.
    [37]Ashley S. Rapid prototyping coming to age[J]. Mech Eng,1995, (6):63-66.
    [38]Ajantha K. Egodawatta, D.K. Harrison. Feasibility study on developing productivity and Quality improved layered manufacturing method for rapid prototyping/tooling/ manufacture[J]. Journal of Materials Processing Technology,2004,149:604-608.
    [39]陈雪芳,荣静.基于FDM的快速成型质量的研究[J].苏州市职业大学学报,2009,1(20):17-19.
    [40]张健,芮延年,陈洁.基于LOM的快速成型及其在产品开发中的应用[J].苏州大学学报(工科版),2008,4(28):38-40.
    [41]袁慧羚,周天瑞.光固化快速成型工艺的精度研究[J].南方金属,2009(167):24-27.
    [42]K. Tang, A. Pang. Optimal connection of loops in laminated object manufacturing[J]. Computer-Aided Design,2003,35 (11):1011-1022.
    [43]Robert S. Fast precise & safe prototyping with FDM. FEM-Intell Des Manufg Proto, 1992,50:6.
    [43]J.H. Bohn, The Rapid Prototyping Resource Center. http//cadserv.cadlab.vt.edu/ bohn/RP.html,1997.
    [44]Wang S huhai, Jang J H, Schulze W A. Rapid Prototyping of Ceramic Components by Slurry Jet Printing[J]. JOURNAL OF THE CHINESE CERAMIC SOCIETY.2001, 29(4):344-349.
    [45]陈步庆,林柳兰,陆齐等.三维打印技术及系统研究[J].机电一体化,2005,(4)13-15.
    [46]K.P. Karunakaran, P.Vivekananda Shanmuganathan, Sanyay Janardhan Jadhav, etal. Rapid Prototyping of Metallic Parts and Moulds[J]. Journal of Materials Processing Technology,2000,105:371-381.
    [45]徐连强.快速成型技术在陶瓷产品设计中的应用[J].江苏陶瓷,2009,5(42):23-24.
    [46]薛义丹,徐廷献,郭文利等.注凝成形(gelcasting)工艺及其新发展[J].硅酸盐通报,2003,(5):69-73.
    [47]黄勇,向军辉,谢志鹏等.陶瓷材料流延成形研究现状[J].硅酸盐通报,2001,(4):22-27.
    [48]谢志鹏,黄勇.凝胶铸技术在陶瓷成形应用中的新发展[J].陶瓷学报,2001,22(3):142-146.
    [49]易中周,黄勇,谢志鹏.凝胶注模成形氧化锆耐火材料的研究[J].耐火材料,2002,36(1):9-12.
    [50]杨金龙,黄勇,司文捷等.α-Al2O3直接凝固注模成形工艺的研究[J].硅酸盐学报,1997,25(5):514-519.
    [51]周龙捷,许兴利,黄勇等.水基高固相含量SiC悬浮体的制备和凝胶注模成形[J].高技术通讯,2000,(7):100-103.
    [52]王秀峰,于成龙,江红涛,单联娟.一种陶瓷件的快速制造方法[P].中国发明专利,ZL200510043174.7,2005.
    [53]王秀峰,江红涛,孙勇.一种陶瓷部件快速制造方法[P].中国发明专利,ZL200510041976.4,2005.
    [54]王秀峰,单联娟,江红涛.陶瓷件的快速制备方法[P].中国发明专利,ZL200510043175.1,2005.
    [55]王秀峰,江红涛,于成龙,单联娟.一种陶瓷件的快速制备方法[P].中国发明专利,ZL200510043176.6,2005.
    [56]于成龙,王秀峰,江红涛.基于聚乙烯醇胶凝特性的金红石瓷无模成形技术[J].北京科技大学学报,2006,25(suppll):100-102.
    [57]YU Cheng-Long, WANG Xiu-Feng, TONG Xin. Integrated liauid-phase sintering of glass-alumina functionally graded materials[J]. Science of Sintering,2007,39(3): 133-144.
    [58]YU Cheng-Long, WANG Xiu-Feng. Novel Freeform fabrication method for rutile ceramic components. Materials Technology[J].2007,22(3):156-160.
    [59]YU Cheng-Long, WANG Xiu-Feng, JIANG Hong-Tao. Ripid fabrication and sintering properties of glass-alumina functionally graded materials[J]. The Proceedings of the China Association for Science and Technology:Vol.3. No.4,42-47, Beijing:Science Press USA Inc,2006.
    [60]JIANG Hong-Tao, WANG Xiu-Feng, YU Cheng-Long. Preparation of Glass-alumina Funtionally Graded Materials by Rapid Prototyping Technology[J]. Key Engineering Materials,2008,368-372:1828-1830.
    [61]JIANG Hong-Tao, WANG Xiu-Feng, YU Cheng-Long. Highly ordered growth of bismuth silicate micro-crystals[J]. Materials Technology,2008 (09):113-118.
    [62]于成龙,王秀峰,李建立.特种陶瓷胶态成型技术中的干燥理论及应用[J].硅酸盐通报,2008,27(2):329-333.
    [63]于成龙,王秀峰,江红涛.特种陶瓷材料胶态无模成形技术研究进展[J].材料导报,2007,21(6):107-111.
    [64]江红涛,王秀峰,于成龙.基于浆料胶凝特性的陶瓷制品快速成形技术[J].机械工程材料,2007,31(2):23-25.
    [65]杨万莉,王秀峰,江红涛.基于快速成型技术的陶瓷件无模制造[J].材料导报,2006,20(12):92-95.
    [66]杨万莉,王秀峰,江红涛.陶瓷部件的快速原型制造技术研究进展[J].矿LI-I机械,2006,34(11):111-114.
    [67]杨万莉,王秀峰,江红涛.一种新的陶瓷件快速成型装置的设计[J].机械设计与制造,2007,(4):134-136.
    [68]杨万莉,王秀峰,江红涛.陶瓷制件层合速凝快速成形技术研究进展[J].硅酸盐通报,2007,(2):328-331.
    [69]党书彦,王秀峰,于成龙.利用工业废料制备玻璃陶瓷材料研究进展[J].陶瓷,2006,(11):9-12.
    [70]王秀峰,江红涛,于成龙等.数据分析与科学绘图软件Origin详解[M].北京:化学工业出版社,2008.
    [71]杨万莉,王秀峰,江红涛等.陶瓷制件层合速凝快速成型技术研究进展[J].硅酸盐通报,2007,26(2):328-331.
    [72]杨万莉,王秀峰,江红涛等.基于快速成型技术的陶瓷件无模制造[J].材料导报,2006,20(12):92-95.
    [73]孙勇.一种新的陶瓷部件快速成形技术及材料性能研究[D].咸阳:陕西科技大学,2005.
    [74]J P Kruth. Material incress manufacturing by rapid prototyping technologies[J]. CIRP Annals,1991,40 (2):603-614.
    [75]孙勇,王秀峰.快速原型制造技术在陶瓷制件上的研究进展[J].陕西科技大学学报,2004,5:148-152.
    [76]王秀峰,单联娟,江红涛等.一种陶瓷件的快速制备方法[P].中国发明专利,专利号:200510043175.1,2005.
    [77]王秀峰,于成龙,江红涛.一种陶瓷件的快速制造方法[P].中国发明专利,专利号:200510043174.7,2005.
    [78]于成龙,王秀峰,江红涛等.用于陶瓷快速制造的聚乙烯醇凝胶热分解研究[J].电子组件与材料,2006,25(6),26-29.
    [79]王秀峰,江红涛,于成龙等.一种陶瓷件的快速制备方法[P].中国发明专利,专利号:200510043176.6,2005.
    [80]S. Rangarajan, G. Qi, N. Venkataraman, etal. Processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 Ceramics[J]. Journal of the American Ceramic Society,2000,83 (7):1663-1671.
    [81]P.Vivekananda Shanmuganathan. Rapid Prototyping Report.CAD/CAM Publishing, Inc.1998-1999.
    [82]K W Dalgarno. Production grade tooling via layer manufacture [J]. Rapid Prototyping Journal,2001,7 (4):203-206.
    [83]单联娟.陶瓷器件的快速原形制造技术研究进展[J].江苏陶瓷,2005,38(3):14-17.
    [84]郑文纬,吴克坚.机械原理[M].北京:高等教育出版社,2004.
    [85]濮良贵,纪名刚.机械设计[M].北京:高等教育出版社,2004.
    [86]马秀清.步进电机的选用计算方法[J].中国新技术新产品,2009,13:120-122.
    [87]顾绳谷.电机及拖动基础[M].北京:机械工业出版社,2004.
    [88]赵玉刚,邢建国,江世成.数控工艺画雕刻机机械装置的设计[J].机械设计与研究,1999(2):66-69.
    [89]邓昭铭,张莹.机械设计基础[M].北京:高等教育出版社,2000.
    [90]秦成.基于Proe/Adams/Matlab挖掘机虚拟样机研究[J].机床与液压,2008,9(36):133-134.
    [91]林水雄,余伟铬,刘峰.基于MATLAB及Pro/E对曲柄导杆滑块组合机构的仿真[J].机械设计与制造,2009,3:86-88.
    [92]邢月卿,王德忠.基于Pro/E建模的激光模切机的动态仿真设计[J].科技创新导报2008,2:132-133.
    [93]孙洪吉,魏延刚.基于Pro/E3.0的三环减速器的虚拟装配及运动仿真[J].计算机应用技术,2008,3(35):27-29.
    [94]周尔民,肖乾.基于Pro/Ewildfire实现变速器的虚拟装配和运动仿真[J].煤矿机械,2007,2:87-88.
    [95]王旭峰,张学军,李永奎.清田整地机械起膜和碎土装置的运动仿真[J].农机化研 究,2008,2:36-38.
    [96]董亚峰,程鹏飞,黄莉.Pro/e运动仿真功能在实验教学中的应用[J].山西农业大学学报,2007,5(6):74-75.
    [97]龚曙光,谢桂兰,邱爱红.ANSYS工程实例应用解析[M].北京:机械工业出版社,2003.
    [98]李黎明.ANSYS有限元分析实用教程[M].北京:清华大学出版社,2005.
    [99]张朝辉,王富耻,席巧娟.ANSYS8.0结构分析及实例解析[M].北京:机械工业出版社,2005.
    [100]秦宇.ANSYS11.0基础与实例教程[M].北京:化学工业出版社,2008.
    [101]肖林京,隋秀华,苗德俊.基于ANSYS的带式输送机传动滚筒疲劳寿命分析研究[J].煤矿机械,2008,11(29):28-30.
    [102]陈玲,宋平娜,彭佳,韩继增.基于ANSYS的定柱式旋臂起重机的有限元分析[J].天津理工大学学报,2005,2(21):64-67.
    [103]李培,张乐乐,杨强,施新宇.基于ANSYS的斜拉桥承受动载荷的仿真与分析[J].系统仿真学报,2009,21(21):6893-6897.
    [104]崔超,杨海波.基于ANSYS的新式五面立卧加工中心的分析[J].研究园地,2008.
    [105]卢胜利等.现代数控系统[M].机械工业出版社,2006年6月第一版.
    [106]Delta Tau Data System Inc.PMAC User's Manul.2003.
    [107]北京元茂兴设备技术有限责任公司.PMAC用户手册[Z].2001.
    [108]PMAC Introduction Manual.Delta Tau Data Systems Inc.2004.
    [109]PMAC-PC Hardware Reference Manual. Delta Tau Data Systems Inc.2003.
    [110]孟淑娟,高世一,刘建伟.基于开放式数控系统软件开发[J].机械设计与制造.2006,11:49-51.
    [111]张清,周艳玲.数控机床进给系统交流伺服电机选择[J].制造技术与机床,1998,7:18-20
    [112]李长胜,赵敬云.RP技术在新产品快速开发中的应用[J].锻压技术,2002(4):44-47.
    [113]刘毅.基于PMAC的微小型机床数控系统的研究[D].哈尔滨工业大学硕士论文,2006.6.
    [114]Delta Tau Data System Inc. PMAC PMACTUNINGPRO [M]. USA:DELTA TAU Data System Inc,1997,02:21-30.
    [115]申宇,马伯渊,张金楼.基于PMAC卡的高速数据采集[J].机电工程技术,2006,35(2):96-97.
    [116]马静,刘延章,朱虹.基于PMAC的快速成型轮廓运动控制研究[J].机械设计与制造.2007, (1):27-29.
    [117]李国厚,杨青杰,洪源.PLC原理与应用设计[M].北京:化学工业出版社,2005.
    [118]刘美俊.可编程控制器应用技术[M].福建:福建科学技术出版社,2006.
    [119]张扬,蔡春伟.S7-200 PLC原理与应用系统设计[M].北京:机械工业出版社,2007.
    [120]高东强,田振亚,郝大建.陶瓷件快速成型机控制系统[J].机床与液压,2008,10(36):217-220.
    [121]李国萍.基于PLC的数控机床电气控制问题[J].科技创新导报,2009,33:86.
    [122]罗敏.基于PLC和触摸屏的纸厂污水控制系统[J].机电工程技术,2009,11:50-51.
    [123]李世普.特种陶瓷工艺学[M].武汉:工业大学出版社,1993.
    [124]郝仕敏.基于快速成型的概念产品实现方法研究[D].长沙:国防科技大学,2005:16-17.
    [125]韩可.快速成型技术及软件研究[D].北京:北京化工大学,2004.
    [126]杨万莉.陶瓷件快速成型机的设计及成型工艺的研究[D].西安:陕西科技大学,2007.
    [127]李家驹等.陶瓷工艺学[M].北京:中国轻工业出版社,2007.
    [128]钦征骑等.新型陶瓷材料手册[M].江苏:江苏科学技术出版社,1996.
    [129]孟德安,马慧侠,刘高兴.降低95氧化铝瓷烧成温度的研究[J].现代技术陶,2002,93(3):11-13.
    [130]黄勇,路学成,余军.氧化铝陶瓷增韧研究进展[J].江苏陶瓷,2007,40(2):11-15
    [131]王令其,张思弟等.数控加工技术[M].机械工业出版社,2008.
    [132]顾京等.数控机床加工程序编制[M].机械工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700