用户名: 密码: 验证码:
基于功能化纳米材料和微流控芯片的生化分析新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料由于具有独特的光学、电化学、催化性能以及良好的生物相容性,已被广泛应用于生物化学和生物医学研究中。在生化分析领域,将纳米材料应用于生物传感器的制备可以显著提高传感器的分析性能。至今,基于纳米材料的生物传感器(纳米生物传感器)已被应用于DNA、蛋白质、多肽等多种生物分子的检测,并在生化分析领域显示了十分诱人的应用前景。尽管如此,相对于传统生物传感技术,纳米生物传感器尚处于起步阶段。在利用纳米材料构建生物传感器的过程中,关键的一步在于如何将纳米材料的优势与生物识别事件相结合。因此,设计和构建灵敏度更高、选择性更好的纳米生物传感器仍是生物传感领域的研究热点。
     芯片电泳(MCE)是微流控芯片技术的重要组成部分,也是近年来发展最快的分离分析技术之一。与传统分离技术相比,MCE具有操作简单、分离效率高、分析速度快、试剂和样品消耗量少、易于集成化和自动化等优点。正是由于这些独特的优势,MCE已经被(?)泛应用于小分子、DNA和蛋白质等多种物质的分离和检测。相对于传统分离技术如高效液相色谱和气相色谱,MCE技术尚不成熟,而且目前所建立的大多数MCE分析方法无法应用于实际样品特别是生物样品分析。因此,建立高灵敏的MCE分析方法,并应用于生物样品分析,对于推动生物化学和生物医学的发展,具有十分重要的意义。
     基于以上考虑,本论文利用几种纳米材料如纳米金(AuNPs)、二氧化硅纳米粒子(SiO2NPs)、量子点(QDs)的独特光学性质,发展了几种新型光学生物传感技术;此外,利用MCE技术建立了一系列用于检测复杂生物样品中痕量物质的新方法。具体内容如下:
     1.基于功能化纳米材料的生物检测新体系研究
     (1)基于AuNPs能够增强荧光偏振的原理,以EcoRI酶为模型分析物,发展了一种简单、超灵敏检测核酸内切酶的荧光偏振生物传感器。首先在纳米金表面修饰具有捕获功能的DNA,再与荧光标记的部分互补DNA杂交,形成具有EcoRI酶识别位点的双链DNA功能化纳米探针。当EcoRI酶存在时,纳米探针表面的双链DNA被EcoRI酶选择性切断,释放出更短的荧光标记的DNA片段,从而导致荧光偏振值(P)减小。根据P值的变化可以定量分析EcoRI酶的活性。此传感器不仅具有较宽的检测范围和很低的检测限,而且选择性很高。此外,它还可以用于核酸内切酶抑制剂的筛选。
     (2)基于核酸适体构型转换触发纳米粒子信号放大的原理,利用三磷酸腺苷(ATP)作为模型分析物,构建了一种检测生物分子的荧光偏振适体传感器。该传感体系以荧光标记的发夹式核酸适体作为分子识别探针和检测探针,单链DNA修饰的SiO2NPs作为信号放大探针。当没有目标分子存在时,荧光标记的发夹式核酸适体不会与纳米粒子功能化的DNA结合,此时体系的P值很小。当加入ATP后,它与核酸适体结合使发夹式结构打开,且打开的发夹式核酸适体能与纳米粒子功能化的DNA杂交,从而导致体系的P值增大。据此可用于定量检测ATP,检测范围为40pmol/L~100μmol/L。该方法不需要复杂的分离、洗涤步骤,整个过程都在均相中完成。通过改变适体的碱基序列,该方法很容易用于蛋白质、金属离子及其它小分子物质的分析。
     (3)基于DNA切割反应的特异性和AuNPs的超高荧光猝灭能力,以EcoRⅠ酶、EcoRⅤ酶和HaeⅢ酶为模型分析物,构建了一种能同时高灵敏检测多种核酸内切酶的多色纳米分子信标。在该体系中,三种标记了不同荧光染料的发夹式DNA(酶底物)通过金-硫的亲和作用共同组装在AuNPs表面形成多色纳米分子信标。由于自组装作用拉近了AuNPs与荧光染料的距离,因此所有荧光染料的荧光通过纳米表面能量转移被猝灭。当目标核酸内切酶存在时,它们能选择性切断发夹式DNA,释放出游离的荧光标记DNA片段,从而导致相应荧光染料的荧光恢复。据此可以实现多种核酸内切酶活性的同时检测。所建立的方法具有检测范围宽、灵敏度高和选择性好等优点。此外,基于核酸内切酶抑制剂对DNA切割反应的抑制作用,该方法还可以用于核酸内切酶抑制剂的筛选。
     (4)利用QDs的独特光学性质,结合分子间及分子内猝灭剂的高效荧光猝灭能力,构建了一种新型纳米探针用于核酸内切酶检测及抑制剂筛选。在该探针中,荧光猝灭剂通过与酶底物DNA片段的直接标记和互补DNA杂交方式连接到QDs表面。在没有核酸内切酶存在时,QDs的荧光通过能量转移被猝灭,纳米探针处于“关闭”状态。当体系中存在目标核酸内切酶时,QDs表面的双链DNA被切断,猝灭剂脱离QDs表面而使QDs的荧光恢复。QDs的荧光增强幅度与核酸内切酶含量有关,据此可以用于核酸内切酶活性的分析。采用不同发射波长的QDs和对应的猝灭剂,该方法可以实现多种核酸内切酶的同时检测。此外,基于核酸内切酶抑制剂能够抑制酶切反应,该方法还可以用于核酸内切酶抑制剂的筛选。
     2.基于芯片电泳的生物检测新方法研究
     (1)以荧光素异硫氰(酸酯(FITC)为柱前衍生试剂,采用自制的玻璃/聚二甲基硅氧烷(PDMS)复合芯片,结合芯片电泳激光诱导荧光(MCE-LIF)检测技术,建立了一种简单、快速、灵敏检测生物样品中D-酪氨酸的新方法。该方法以γ-环糊精为手性选择剂,结合胶束电动色谱分离模式,通过优化分离条件,在150s内实现了D/L-酪氨酸对映体的快速分离,D-酪氨酸的检测限达到了33nmol/L。利用该方法对正常人与肾衰竭病人血浆中D-酪氨酸的含量进行了测定,结果显示肾衰竭病人血浆中D-酪氨酸的含量明显高于正常人。该方法可用于肾衰竭病疾病的临床诊断。
     (2)采用集成柱前微反应器和柱后微反应器的玻璃/PDMS复合芯片,提出了一种在线衍生-MCE-化学发光(CL)检测新技术,并将其应用于巯基类化合物的测定。该方法将衍生反应、进样、电泳分离和CL检测集成在同一片芯片中进行,实现了高度的集成化和自动化。以N-(4-氨基丁基)-N-乙基-异鲁米诺(ABEI)和邻苯二醛(OPA)为在线衍生试剂,卡托普利、硫普罗宁、硫鸟嘌呤和6-巯基嘌呤等四种巯基类药物为模型分析物,采用胶束电动色谱分离模式,在80s内完成了四种药物的分离和同时检测。该方法具有很高的灵敏度,四种巯基类药物的检测限在8.9-13.5nmol/L范围。利用该方法对人血浆样品中巯基类药物的含量进行了测定。
     (3)采用MCE-LIF或CL检测技术,建立了快速检测生物样品中痕量物质的免疫分析新方法。该方法采用竞争免疫模式,以荧光或CL标记的抗原为示踪剂,与游离抗原(分析物)竞争结合有限量的抗体,免疫反应后进行电泳分离检测。利用听建立的方法分别对人血浆中苯巴比妥(PB)和人血清中睾酮(T)的含量进行了测定。与常规免疫分析方法相比,该方法具有简单、快速、灵敏度高、成本低等优点。
     (4)采用玻璃微珠作为抗体固定介质,结合MCE-LIF检测技术,发展了一种多元免疫分析方法。该方法将表面固定有不同抗体的多种玻璃微珠、多种荧光标记的抗原和游离抗原(分析物)同时置于芯片的样品池中进行免疫反应,然后进样、分离和检测。由于玻璃微珠的引入,免疫复合物不能进入分离通道,从而使分离变得更简单。此外该方法只需单一检测器和单一荧光标记试剂即可完成多种物质的同时免疫检测,降低了分析成本。以PB、苯妥英(PHT)、卡马西平(CBZ)和茶碱(Th)为模型分析物,使用该方法能够在20min内完成四种物质的同时测定,检测限在1.8-2.5nmol/L范围内。通过更换不同的抗原/抗体对,该方法很容易应用到其它物质如蛋白质、多肽及环境污染物的分析。
Nanomaterials are widely used in biochemical and biomedical studies due to their unique optical, electrochemical and catalytic properties and excellent biocompatibility. In biochemical analysis, the use of nanomaterials for construction of biosensors can substantially improve the performance of biosensors. Until now, nanomaterial-based biosensors (nano-biosensors) have been applied for detection of many biomolecules such as DNA, proteins and peptides, which indicates attractive application prospect of them in the field of biochemical analysis. Nevertheless, nano-biosensor researches are still in their infancy compared with the conventional bio sensing technology. The key in the development of nano-biosensors is the combination of the advantage of nanomaterials with biorecognition events. Therefore, the design of nano-biosensors with high sensitivity and selectivity is still a hot in the field of biosensing research.
     Microchip electrophoresis (MCE) is an important part of the microfluidic chip technology, and is also one of the fastest growing separation techniques in recent years. Compared with conventional separation technique, MCE has several advantages including simplicity, high separation efficiency, short analysis time, low sample and reagent consumption, and ease of integration and automatization. Based on these unique advantages, MCE has been widely used for the separation and detection of many compounds such as small molecules, DNA and protein. Nevertheless, MCE researches are still in their infancy compared with conventional separation techniques such as high performance liquid chromatography and gas chromatography. Moreover, most of existing MCE analysis methods can not be applied for real sample analysis, especially for biological sample analysis. Consequently, the research on MCE analysis methods for sensitive detection of biological samples has crucial significance for promoting the development of biochemistry and biomedicine. In this thesis, several novel optical sensing systems have been developed based on the unique optical property of several nanomaterials such as gold nanoparticles (AuNPs), silica nanoparticles (SiO2NPs) and quantum dots (QDs). In addition, several new bioassay methods based on MCE technique have been developed for the detection of trace substances in biological samples. The details are summarized as follows:
     1. Novel bioassay systems based on functionalized nanomaterials
     (1) A simple and ultrasensitive biosensor based on AuNP-enhanced fluorescence polarization for the detection of endonuclease is developed by using EcoRI as a model analyte. AuNPs are first modified with capture DNA molecules, and then hybridized with fluorescently labeled DNA that sequences are partly complementary to capture DNA molecules, forming the duplex DNA-functionalized nanoprobes that contain the recognition sites of EcoRI. In the presence of EcoRI, the douplex DNA molecules on the AuNP surface are specifically cleaved, and pieces of DNA fragments along with the fluorescent dye are released, which results in the decrease of fluorescence polarization value P. The EcoRI activity can be quantified by monitoring the change in the P value. The present sensing system not only provide a wide detection range and a low detection limit, but also has high selectivity. In addition, it could be also applied for endonuclease inhibitor screening.
     (2) An amplified fluorescence polarization aptasensor based on aptamer structure-switching-triggered nanoparticle amplification for assaying biomolecule is proposed by using adenosine triphosphate (ATP) as a model analyte. In this system, fluorescently labeled aptamer hairpin is used as recognition probe, and single-stranded DNA-functionalized SiO2NPs is used as amplified probe. In the absence of ATP, fluorescently labeled aptamer hairpin can not bind with SiO2NP-functionalized DNA, and will has low P value of the system. Upon the addition of ATP, it binds with its aptamer, and the stem of the hairpin probe is opened. After which the opened hairpin probe hybridizes with the SiO2NP-functionalized DNA probe. This leads to an significant increase of P value, which provides the quantitative basis of the detection of ATP. The assay showed a wide detection range from40pmol/L to100μmol/L. Importantly, the present assay is done in aqueous solution, without separation and washing. This new methodology can be easily extended to assay proteins, metal ions and other small molecules by simply changing the aptamer sequences.
     (3) A multicolor nanobeacon based on the high specificity of DNA cleavage reactions and the ultrahigh fluorescence quenching ability of AuNPs for sensitive and multiplexed detection of endonucleases is developed by using EcoRⅠ, EcoRⅤ and HaeⅢ as model analytes. In this system, three hairpin DNAs (enzyme substrates) tagged with different dyes are co-assembled at the surface of AuNPs through Au-S affinity, to form the multicolor gold nanobeacon. This assembly brings the dyes into very close proximity with the AuNPs, which leads to significant quenching of the fluorescencedue to the nanosurface energy-transfer (NSET) effect. Upon the addition of the targeted endonucleases, specific DNA cleavage occurs and pieces of DNA fragments are released from the AuNP surface along with the fluorescent dye, which results in the fluorescence recovery that provides the quantitative basis for the multiplex detection of endonuclease activity. The proposed method has wide detection ranges, high sensitivity and selectivity. In addition, this assay can be easily adapted to screening inhibitors for endonucleases because DNA cleavage by an endonuclease is restrained in the presence of inhibitors.
     (4) A new kind of nanoprobes based on unique optical property of QDs combined with high fluorescence quenching ability of inter-and intramolecular quenchers for the detection of endonucleases is developed. The nanoprobe was prepared by conjugating two sets of DNA substrates carrying quenchers onto the surface of aminated QDs through direct assembly and DNA hybridization. In the absence of endonucleases, the fluorescence of QDs is quenched through energy transfer effect, and the nanoprobe stays in the "OFF" state. When the nanoprobe is exposed to the targeted endonucleases, specific DNA cleavages occurs and pieces of DNA fragments are released from QD surface along with fluorescent quenchers, resulting in fluorescence recovery. The endonuclease activity is quantified by monitoring the change in the fluorescence intensity. By using different emissions of QDs, the proposed assay could be applied for the multiplex detection of endonucleases. Furthermore, it can be easily adapted to screening inhibitors for endonucleases because DNA cleavage by an endonuclease is restrained in the presence of inhibitors.
     2. New MCE-based bioassay methods
     (1) A simple, rapid and sensitive MCE method based on laser induced fluorescence (LIF) detection and fluorescein isothiocyanate (FITC) as precolumn derivatization reagent is developed the detection of D-tyrosine (Tyr) in biological samples. In this method, y-CD is selected as chiral selector and the mode of micellar electrokinetic chromatography (MEKC) was applied for the separation of D/L-Tyr enantiomer. After optimization of separation conditions, D/L-Tyr enantiomer is well separated within150s. The limit of detection is as low as33nmol/L Using the proposed method, D-Tyr in human plasma was quantified and its level in patients suffering from renal failure was found to be higher than that from normal humans. These results suggest the potential use of the proposed method for clinical diagnosis of renal failure.
     (2) An integrated microfluidic device with online labeling and chemiluminescence (CL) detection is developed for the simultaneous quantification of thiol compounds. In this device, the online labeling, electrophoresis separation and CL detection were compactly integrated onto a home-made glass/PDMS hybrid microchip, which showed high integration and automatization. By using N-(4-aminobutyl)-N-ethylisolu-minol (ABEI) and o-phthalaldehyde (OPA) as online labeling reagents, four thiol drugs including captopril (CP),6-thioguanine (6-TG),6-mercaptopurine (6-MP), and2-mercaptopropionylglycine (2-MPG) as model compounds were separated and detected within80s. This assay showed high sensitivity, and detection limits for the thiol drugs tested were in the range of8.9-13.5nmol/L. Using this assay, the thiol drugs in human plasma samples were successfully quantified.
     (3) By using MCE with LIF or CL detection technique, new immunoassay methods for rapid detection of trace substances in biological samples are developed. These methods are based on the competitive reaction between the free antigens (analyte) and fluorescently or chemiluminescently labeled antigens with limit amounts of antibody, MCE separation of the immunocomplexes and free labeled antigens, followed by the LIF or CL detection of the fluorescent or chemiluminescent species. Using these methods, the phenobarbital (PB) in human plasma and testosterone (T) in human serum were quantified, respectively. Compared with conventional immunoassay methods, the proposed assays are simple, rapid, sensitive and cost-effective.
     (4) A multiplex immunoassay method based on MCE-LIF detection and glass beads as antibody carriers is developed. In this method, the multiplexed immunoreactions between multiple antibody-immobilized glass beads with analytes and respective fluorescently labeled antigens were performed in a sample reservoir. After online incubation, the immunoreaction solution was injected into a separation channel, and free fluorescently labeled antigens were separated and detected in the separation channel. With the help of glass beads, the immunocomplex can not move into the separation channel, which simplifies the separation procedure. Furthermore, the assay requires only one detector and a single label reagent, which could reduce the assay cost. With the use of PB, phenytoin (PHT), carbamazepine (CBZ) and theophylline (Th) as model analytes, the multiplex immunoassay could be completed within20min, with detection limits of1.8-2.5nmol/L. This method can be easily extended to assay other compounds such as proteins, peptides and envinonmental pollutants by adopting other antigen/antibody pairs.
引文
[1]Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications:recent advances and perspectives. Chemical Society Reviews,2012,41(6):2256-2282
    [2]Tiwari P M, Vig K, Dennis V A, et al. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials,2011,1(1):31-63
    [3]Dulkeith E, Ringler M, Klar T A, et al. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Letters,2005,5(4):585-589
    [4]Lee S, Cha E J, Park K, et al. A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angewandte Chemie International Edition,2008,47(15):2804-2807
    [5]Leuvering J H W, Thal P J H M, Waart M V D, et al. A sol particle agglutination assay for human chorionic gonadotrophin. Journal of Immunological Methods, 1981,45(2):183-194
    [6]Storhoff J J, Lucas A D, Garimella V,et al. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nature Biotechnology,2004,22(7):883-887
    [7]Guarise C, Pasquato L, Filippis V D, et al. Gold nanoparticles-based protease assay. Proceedings of the National Academy of Sciences of the United States of America,2006,103(11):3978-3982
    [8]Laromaine A, Koh L, Murugesan M, et al. Protease-triggered dispersion of nanoparticle assemblies. Journal of the American Chemical Society,2007, 129(14):4156-4157
    [9]Huang C C, Huang Y F, Cao Z H, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Analytical Chemistry,2005,77(17):5735-5741
    [10]Liu J W, Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. Journal of the American Chemical Society,2003,125(22): 6642-6643
    [11]Ou L J, Jin P Y, Chu X, et al. Sensitive and visual detection of sequence-specific DNA-binding protein via a gold nanoparticle-based colorimetric biosensor. Analytical Chemistry,2010,82(14):6015-6024
    [12]Wang L H, Liu X F, Hu X F, et al. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chemical Communications, 2006, (36):3780-3782
    [13]Wang J, Wang L H, Liu X F, et al. A gold nanoparticle-based aptamer target binding readout for ATP assay. Advanced Materials,2007,19(22):3943-3946
    [14]Zhang J, Wang L H, Pan D, et al. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small,2008,4(8): 1196-1200
    [15]Li J S, Deng T, Chu X, et al. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Analytical Chemistry,2010,82(7):2811-2816
    [16]Li J S, Chu X, Liu Y L, et al. A colorimetric method for point mutation detection using high-fidelity DNA ligase. Nucleic Acids Research,2005,33(19):e168
    [17]Song G T, Chen C E, Ren J S, et al. A simple, universal colorimetric assay for endonuclease/methyltransferase activity and inhibition based on an enzyme-responsive nanoparticle system. ACS Nano,2009,3(5):1183-1189
    [18]Dulkeith E, Morteani A C, Niedereichholz T, et al. Fluorescence quenching of dye molecules near gold nanoparticles:radiative and nonradiative effects. Physical Review Letters,2002,89(20):203002-203006
    [19]Yun C S, Javier A, Jennings T, et al. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. Journal of the American Chemical Society, 2005,127(9):3115-3119
    [20]Dubertret B, Calame M, Libchaber A J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnology,2001,19(4):365-370
    [21]Mayilo S, Kloster M A, Wunderlich M,et al. Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Letters,2009,9(12):4558-4563
    [22]Lowe S B, Dick J A G, Cohen B E, et al. Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot-peptide conjugates. ACS Nano,2012,6(1):851-857
    [23]Wang X, Geng J, Miyoshi D, et al. A rapid and sensitive "add-mix-measure" assay for multiple proteinases based on one gold nanoparticle-peptide-fluorophore conjugate. Biosensors and Bioelectronics,2010,26(2):743-747
    [24]Lee H, Lee K, Kim I K, et al. Fluorescent gold nanoprobe sensitive to intracellular reactive oxygen species. Advanced Functional Materials,2009, 19(12):1884-1890
    [25]Kim J H, Han S H, Chung B H. Improving Pb2+ detection using DNAzyme-based fluorescence sensors by pairing fluorescence donors with gold nanoparticles. Biosensors and Bioelectronics,2011,26(5):2125-2129
    [26]Kim Y S, Jurng J. Gold nanoparticle-based homogeneous fluorescent aptasensor for multiplex detection. Analyst,2011,136(18):3720-3724
    [27]Zheng D, Seferos D S, Giljohann D A, et al. Aptamer nano-flares for molecular detection in living cells. Nano Letters,2009,9(9):3258-3261
    [28]Prigodich A E, Randeria P S, Briley W E, et al. Multiplexed nanoflares:mRNA detection in live cells. Analytical Chemistry,2012,84(4):2062-2066
    [29]Song S P, Liang Z Q, Zhang J, et al. Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angewandte Chemie International Edition,2009,48(46):8670-8674
    [30]Zhang J, Wang L H, Zhang H, et al. Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small,2010,6(2): 201-204
    [31]Golub E, Pelossof G, Freeman R, et al. Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Analytical Chemistry,2009,81(22):9291-9298
    [32]Yin J, Wu T, Song J B, et al. SERS-active nanoparticles for sensitive and selective detection of cadmium ion (Cd2+). Chemistry of Materials,2011,23(21): 4756-4764
    [33]Zhang H M, Li W T, Sheng Z H, et al. Ultrasensitive detection of porcine circovirus type 2 using gold(III) enhanced chemiluminescence immunoassay. Analyst,2010,135(7):1680-1685
    [34]Xiao Y, Patolsky F, Katz E, et al. "Plugging into enzymes":nanowiring of redox enzymes by a gold nanoparticle. Science,2003,299(5614):1877-1881
    [35]Chu X, Fu X, Chen K, et al. An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label. Biosensors and Bioelectronics, 2005,20(9):1805-1812
    [36]Liu X P, Deng Y J, Jin X Y, et al. Ultrasensitive electrochemical immunosensor for ochratoxin A using gold colloid-mediated hapten immobilization. Analytical Biochemistry,2009,389(1):63-68
    [37]Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science,2003,301(5641):1884-1886
    [38]Zhang X R, Qi B P, Li Y, et al. Amplified electrochemical aptasensor for thrombin based on bio-barcode method. Biosensors and Bioelectronics,2009, 25(1):259-262
    [39]Chen Y C, Snee P T. Imparting nanoparticle function with size-controlled amphiphilic polymers. Journal of the American Chemical Society,2008,130(12): 3744-3745
    [40]Kim Y P, Oh Y H, Oh E, et al. Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface. Analytical Chemistry,2008,80(12):4634-4641
    [41]Shi L F, Paoli V D, Rosenzweig N, et al. Synthesis and application of quantum dots FRET-based protease sensors. Journal of the American Chemical Society, 2006,128(32):10378-10379
    [42]Freeman R, Finder T, Gill R, et al. Probing protein kinase (CK2) and alkaline phosphatase with CdSe/ZnS quantum dots. Nano Letters,2010,10(6):2192-2196
    [43]Ghadiali J E, Cohen B E, Stevens M M. Protein kinase-actuated resonance energy transfer in quantum dot-peptide conjugates. ACS Nano,2010,4(8):4915-4919
    [44]Tavares A J, Noor M O, Vannoy C H,et al. On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer. Analytical Chemistry,2012,84(1):312-319
    [45]Freeman R, Willner B, Willner I. Integrated biomolecule-quantum dot hybrid systems for bioanalytical applications. The Journal of Physical Chemistry Letters,2011,2(20):2667-2677
    [46]Algar W R, Krull U J. Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer. Analytical Chemistry,2009,81(10):4113-4120
    [47]GeiBler D, Charbonniere L J, Ziessel R F, et al. Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angewandte Chemie International Edition, 2010,49(8):1396-1401
    [48]Medintz I L, Clapp A R, Mattoussi H, et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials,2003,2(9):630-638
    [49]Tang B, Cao L H, Xu K H, et al. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles. Chemistry-A European Journal,2008,14(12):3637-3644
    [50]Yang P, Zhao Y, Lu Y, et al. Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots:A fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions. ACS Nano,2011,5(3):2147-2154
    [51]Wu C S, Oo M K K, Fan X D. Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. ACS Nano,2010,4(10):5897-5904
    [52]Boeneman K, Mei B C, Dennis A M, et al. Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. Journal of the American Chemical Society,2009,131(11):3828-3829
    [53]Algar W R, Krull U J. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer. Analytical Chemistry,2010, 82(1):400-405
    [54]Du D, Ding J W, Tao Y, et al. CdTe nanocrystal-based electrochemical biosensor for the recognition of neutravidin by anodic stripping voltammetry at electrodeposited bismuth film. Biosensors and Bioelectronics,2008,24(4):863-868
    [55]Huang H P, Li J J, Tan Y L, et al. Quantum dot-based DNA hybridization by electrochemiluminescence and anodic stripping voltammetry. Analyst,2010, 135(7):1773-1778
    [56]Hansen J A, Wang J, Kawde A N, et al. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. Journal of the American Chemical Society,2006,128(7):2228-2229
    [57]Wang J, Liu G D, Merkoci A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. Journal of the American Chemical Society,2003,125(11):3214-3215
    [58]Cheng W, Yan F, Ding L, et al. Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging. Analytical Chemistry,2010,82(8):3337-3342
    [59]Jie G F, Liu B, Pan H C, et al. CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification. Analytical Chemistry,2007,79(15):5574-5581
    [60]Huang H P, Jie G F, Cui R J, et al. DNA aptamer-based detection of lysozyme by an electrochemiluminescence assay coupled to quantum dots. Electrochemistry Communications,2009,11(4):816-818
    [61]Liu X, Jiang H, Lei J P, et al. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Analytical Chemistry,2007,79(21):8055-8060
    [62]Liu X, Zhang Y Y, Lei J P, et al. Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification with self-produced coreactant from oxygen reduction. Analytical Chemistry,2010,82(17):7351-7356
    [63]Huang X Y, Li L, Qian H F, et al. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angewandte Chemie International Edition,2006,45(31):5140-5143
    [64]Liu X Q, Freeman R, Golub E, et al. Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. ACS Nano,2011,5(9):7648-7655
    [65]Freeman R, Liu X Q, Willner I. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. Journal of the American Chemical Society,2011,133(30):11597-11604
    [66]Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chemical Society Reviews,2012,41(6):2283-2307
    [67]Chang H X, Tang L H, Wang Y, et al. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Analytical Chemistry,2010,82(6): 2341-2346
    [68]Wang Y, Li Z H, Hu D H, et al. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. Journal of the American Chemical Society, 2010,132(27):9274-9276
    [69]Chen Q S, Wei W, Lin J M. Homogeneous detection of concanavalin A using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer. Biosensors and Bioelectronics,2011,26(11):4497-4502
    [70]Li J, Lu C H, Yao Q H, et al. A graphene oxide platform for energy transfer-based detection of protease activity. Biosensors and Bioelectronics,2011,26(9):3894-3899
    [71]Jang H J, Kim Y K, Kwon H M, et al. A graphene-based platform for the assay of duplex-DNA unwinding by helicase. Angewandte Chemie International Edition, 2010,49(33):5703-5707
    [72]Lin L, Liu Y, Zhao X, et al. Sensitive and rapid screening of T4 polynucleotide kinase activity and inhibition based on coupled exonuclease reaction and graphene oxide platform. Analytical Chemistry,2011,83(22):8396-8402
    [73]Loh K P, Bao Q, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry,2010,2(12):1015-1024
    [74]Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules. Angewandte Chemie International Edition,2009,48(26):4785-4787
    [75]Lu C H, Li J, Lin M H, et al. Amplified aptamer-based assay through catalytic recycling of the analyte. Angewandte Chemie International Edition,2010,49(45): 8454-8457
    [76]He S J, Song B, Li D, et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Advanced Functional Materials,2010, 20(3):453-459
    [77]Li F, Huang Y, Yang Q, et al. A graphene-enhanced molecular beacon for homogeneous DNA detection. Nanoscale,2010,2(6):1021-1026
    [78]Dong H F, Gao W C, Yan F, et al. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Analytical Chemistry,2010,82(13):5511-5517
    [79]Cui L, Lin X, Lin N, et al. Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method. Chemical Communications,2012,48(2):194-196
    [80]Lin L, Liu Y, Tang L, et al. Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst,2011,136(22):4732-4737
    [81]Du D, Wang L, Shao Y, et al. Functionalized graphene oxide as a nanocarrier in a multienzyme labeling amplification strategy for ultrasensitive electrochemical immunoassay of phosphorylated p53 (S392). Analytical Chemistry,2011,83(3): 746-752
    [82]Haque A J, Park H, Sung D, et al. An electrochemically reduced graphene oxide-based electrochemical immunosensing platform for ultrasensitive antigen detection. Analytical Chemistry,2012,84(4):1871-1878
    [83]Tang L, Wang Y, Liu Y, et al. DNA-directed self-Assembly of graphene oxide with applications to ultrasensitive oligonucleotide assay, ACS Nano,2011,5(5): 3817-3822
    [84]Xu S, Liu Y, Wang T, et al. Positive potential operation of a cathodic electro generated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Analytical Chemistry,2011,83(10): 3817-3823
    [85]Bi S, Zhao T, Luo B. A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer. Chemical Communications,2012,48(1):106-108
    [86]Luo M, Chen X, Zhou G, et al. Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme. Chemical Communications,2012,48(8):1126-1128
    [87]Guo Y, Deng L, Li J, et al. Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano,2011,5(2):1282-1290
    [88]Lu F, Gu L, Meziani M J, et al. Advances in bioapplications of carbon nanotubes. Advaced Materials,2009,21(2):139-152
    [89]Roy S, Gao Z Q. Nanostructure-based electrical biosensors. Nano Today,2009, 4(4):318-334
    [90]Yang W, Ratinac K R, Ringer S P, et al. Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angewandte Chemie International Edition,2010,49(12):2114-2138
    [91]O'Connell M J, Bachilo S M, Huffman C B, et al. Band gap fluorescence from in dividual single-walled carbon nanotubes. Science,2002,297(5581):593-596
    [92]Gao X Y, Xing G M, Yang Y L, et al. Detection of trace Hg2+ via induced circular dichroism of DNA wrapped around single-walled carbon nanotubes. Journal of the American Chemical Society,2008,130(29):9190-9191
    [93]Zhang L, Huang C Z, Li Y F, et al. Label free detection of sequence-specific DNA with multiwalled carbon nanotubes and their light scattering signals. The Journal of Physical Chemistry B,2008,112(23):7120-7122
    [94]Huang K J, Niu D J, Xie W Z, et al. A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/mult-walled carbon nanotubes-chitosans nanocomposite film modified glassy carbon electrode. Analytica Chimica Acta,2010,659(1-2):102-108
    [95]Zhao C, Qu K, Song Y, et al. A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+and cysteine in aqueous solutions. Chemistry-A European Journal,2010,16(27): 8147-8154
    [96]Claussen J C, Franklin A D, Haque A, et al. Electrochemical biosensor of nanocube-augmented carbon nanotube networks. ACS Nano,2009,3(1):37-44.
    [97]Yang M H, Yang Y, Yang H F, et al. Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials,2006,27(2):246-255
    [98]Li J, Ng H T, Cassell A, et al. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Letters,2003,3(5):597-602
    [99]Ye Y, Ju H. Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode. Biosensors and Bioelectronics,2005,21(5):735-741
    [100]Heller I, Smaal W T T, Lemay S Q et al. Probing macrophage activity with carbon-nanotube sensors. Small,2009,5(22):2528-2532.
    [101]Yu X, Munge B, Patel V, et al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. Journal of the American Chemical Society,2006,128(34):11199-11205.
    [102]Chikkaveeraiah B V, Bhirde A, Malhotra R, et al. Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Analytical Chemistry,2009,81(21):9129-9134
    [103]Chang Z, Fan H, Zhao K, et al. Electrochemical DNA biosensors based on palladium nanoparticles combined with carbon nanotubes. Electroanalysis,2008, 20(2):131-136.
    [104]Wang J, Kawde A, Jan M R. Carbon-nanotube-modified electrodes for amplified enzyme-based electrical detection of DNA hybridization. Biosensors and Bioelectronics,2004,20(5):995-1000
    [105]Ou C F, Chen S H, Yuan R, et al. Layer-by-layer self-assembled multilayer films of multi-walled carbon nanotubes and platinum-Prussian blue hybrid nanoparticles for the fabrication of amperometric immunosensor. Journal of Electroanalytical Chemistry,2008,624(2):287-292
    [106]So H M, Won K, Kim Y H, et al. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. Journal of the American Chemical Society,2005,127(34):11906-11907
    [107]Jing L, Liang C, Shi X, et al. Fluorescent probe for Fe(III) based on pyrene grafted multiwalled carbon nanotubes by click reaction. Analyst,2012,137(7): 1718-1722
    [108]Guo L Q, Yin N, Nie D D, et al. Label-free fluorescent sensor for mercury(II) ion by using carbon nanotubes to reduce background signal. Analyst,2011, 136(8):1632-1636
    [109]Li H, Tian J, Wang L, et al. Multi-walled carbon nanotubes as an effective fluorescent sensing platform for nucleic acid detection. Journal of Materials Chemistry,2011,21(3):824-828
    [110]Zhen S J, Chen L Q, Xiao S J, et al. Carbon nanotubes as a low background signal platform for a molecular aptamer beacon on the basis of long-range resonance energy transfer. Analytical Chemistry,2010,82(20):8432-8437
    [111]Zhang L, Wei H, Li J, et al. A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay. Biosensors and Bioelectronics, 2010,25(8):1897-1901
    [112]Zhang Y, Li B, Yan C, et al. One-pot fluorescence detection of multiple analytes in homogenous solution based on noncovalent assembly of single-walled carbon nanotubes and aptamers. Biosensors and Bioelectronics,2011,26(8):3505-3510
    [113]Chen H, Yu C, Jiang C, et al. A novel near-infrared protein assay based on the dissolution and aggregation of aptamer-wrapped single-walled carbon nanotubes. Chemical Communications,2009, (33):5006-5008
    [114]Barone P W, Baik S, Heller D A, et al. Near-in frared optical sensors based on single-walled carbon nanotubes. Nature Materials,2005,4(1):86-92
    [115]Yang R, Jin J, Chen Y, et al. Carbon nanotube-quenched fluorescent oligonucleotides:probes that fluoresce upon hybridization. Journal of the American Chemical Society,2008,130(26):8351-8358
    [116]Zhu Z, Tang Z, Phillips JA, et al. Regulation of singlet oxygen generation using single-walled carbon. Journal of the American Chemical Society,2008,130(33): 10856-10857
    [117]Yang R, Tang Z, Yan J, et al. Noncovalent assembly of carbon nanotubes and single-stranded DNA:an effective sensing platform for probing biomolecular interactions. Analytical Chemistry,2008,80(19):7408-7413
    [118]Liu Y, Wang Y, Jin J, et al. Fluorescent assay of DNA hybridization with label-free molecular switch:reducing background-signal and improving specificity by using carbon nanotubes. Chemical Communications,2009,14(6):665-667
    [119]Yao J, Li J, Owens J, et al. Combing DNAzyme with single-walled carbon nanotubes for detection of Pb(II) in water. Analyst,2011,136(4):764-768
    [120]Nagl S, Schulze P, Ohla S, et al. Microfluidic chips for chirality exploration. Analytical Chemistry,2011,83(9):3232-3238
    [121]Shang F J, Guihen E, Glennon J D. Recent advances in miniaturisation-the role of microchip electrophoresis in clinical analysis. Electrophoresis,2012,33(1): 105-116
    [122]Wu D P, Qin J H, Lin B C. Electrophoretic separations on microfluidic chips. Journal of Chromatography A,2008,1184(1-2):542-559
    [123]Nagrath S, Sequist L V, Maheswaran S,et al. Isolation of rare circulating tumour cells in cacer patients by microchip technology. Nature,2007,450(7173):1235-1239
    [124]Yu M, Wang Q S, Patterson J E, et al. Multilayer polymer microchip capillary array electrophoresis devices with integrated on-chip labeling for high-throughput protein analysis. Analytical Chemistry,2011,83(9):3541-3547
    [125]Fan Z H, Harrison D J. Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections. Analytical Chemistry,1994,66(1):177-184
    [126]Jacobson S C, Hergenroder R, Koutny L B, et al. Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices. Analytical Chemistry,1994,66(7):1107-1113
    [127]Jacobson S C, Koutny L B, Hergenroder R, et al. Microchip capillary electrophoresis with an integrated postcolumn reactor. Analytical Chemistry, 1994,66(20):3472-3476
    [128]Zhang C X, Manz A. Narrow sample channel injectors for capillary electrophoresis on microchips. Analytical Chemistry,2001,73(11):2656-2662
    [129]Lapos J A, Ewing A G Injection of Fluorescently labeled analytes into microfabricated chips using optically gated electrophoresis. Analytical Chemistry, 2000,72(19):4598-4602
    [130]Chen C C, Yen S F, Makamba H, et al. Semihydrodynamic injection for high salt stacking and sweeping on microchip electrophoresis and its application for the analysis of estrogen and estrogen binding. Analytical Chemistry,2007,79(1): 195-201
    [131]Luo Y, Wu D, Zeng S, et al. Double-cross hydrostatic pressure sample injection for chip CE:variable sample plug volume and minimum number of electrodes. Analytical Chemistry,2006,78(17):6074-6080
    [132]Jacobson S C, Ramsey J M. Integrated microdevice for DNA restriction fragment analysis. Analytical Chemistry,1996,68(5):720-723
    [133]Fang Q, Xu G M, Fang Z L. A high-throughput continuous sample introduction interface for microfluidic chip-based capillary electrophoresis systems. Analytical Chemistry,2002,74(6):1223-1231
    [134]Jiang G F, Attiya S, Ocvirk G, et al. Red diode laser induced fluorescence detection with a confocal microscope on a microchip for capillary electrophoresis. Biosenssors and Bioelectronics,2000,14(10-11):861-869
    [135]Ren K N, Liang Q L, Mu X, et al. Miniaturized high throughput detection system for capillary array electrophoresis on chip with integrated light emitting diode array as addressed ring-shaped light source. Lab on a Chip,2009,9(5): 733-736
    [136]Chabinyc M L, Chiu D T, McDonald J C, et al. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Analytical Chemistry,2001,73(18):4491-4498
    [137]Renzi R F, Stamps J, Horn B A, et al. Hand-held microanalytical instrument for chip-based electrophoretic separations of proteins. Analytical Chemistry,2005, 77(2):435-441
    [138]Tsukagoshi K, Jinno N, Nakajima R. Development of a micro total analysis system incorporating chemiluminescence detection and application to detection of cancer markers. Analytical Chemistry,2005,77(6):1684-1688
    [139]Hashimoto M, Tsukagoshi K, Nakajima R, et al. Microchip capillary electrophoresis using on-line chemiluminescence detection. Journal of Chromatography A,2000,867(1-2):271-279
    [140]Liu B F, Ozaki M, Utsumi Y, et al. Chemiluminescence detection for a microchip capillary electrophoresis system fabricated in poly(dimethylsiloxane). Analytical Chemistry,2003,75(1):36-41
    [141]Mangru S D, Harrison D J. Chemiluminescence detection in integrated postseparation reactors for microchip-based capillary electrophoresis and affinity electrophoresis. Electrophoresis,1998,19(13):2301-2307
    [142]Su R G, Lin J M, Qu F, et al. Capillary electrophoresis microchip coupled with on-line chemiluminescence detection. Analytica Chimica Acta,2004,508(1):11-15
    [143]Su R G, Lin J M, Uchiyama K, et al. Integration of a flow-type chemiluminescence detector on a glass electrophoresis chip. Talanta,2004,64(4): 1024-1029
    [144]Zhao S L, Huang Y, Ye F G, et al. Determination of intracellular sulphydryl compounds by microchip electrophoresis with selective chemiluminescence detection. Journal of Chromatography A,2010,1217(36):5732-5736
    [145]Zhao S L, Huang Y, Liu Y M. Microchip electrophoresis with chemiluminescence detection for assaying ascorbic acid and amino acids in single cells. Journal of Chromatography A,2009,1216(39):6746-6751
    [146]Zhao S L, Huang Y, Shi M, et al. Quantification of biogenic amines by microchip electrophoresis with chemiluminescence detection. Journal of Chromatography A,2009,1216(26):5155-5159
    [147]Ye F G, Huang Y, Xu Q, et al. Quantification of taurine and amino acids in mice single fibrosarcoma cell by microchip electrophoresis coupled with chemiluminescence detection. Electrophoresis,2010,31(10):1630-1636
    [148]Zhao S L, Huang Y, Shi M, et al. Quantification of carnosine-related peptides by microchip electrophoresis with chemiluminescence detection. Analytical Biochemistry,2009,393(1):105-110
    [149]Huang Y, Zhao S L, Shi M, et al. Chemiluminescent immunoassay of thyroxine enhanced by microchip electrophoresis. Analytical Biochemistry,2010,399(1): 72-77
    [150]Zhao S L, Liu J W, Huang Y, et al. Introducing chemiluminescence resonance energy transfer into immunoassay in a microfluidic format for an improved assay sensitivity. Chemical Communications,2012,48(5):699-701
    [151]Liang Z H, Chiem N, Ocvirk G, et al. Microfabrication of a planar absorbance and fluorescence cell for integrated capillary electrophoresis devices. Analytical Chemistry,1996,68(6):1040-1046
    [152]Petersen N J, Mogensen K B, Kutter J P. Performance of an in-plane detection cell with integrated wavelengths for UV/Vis absorbance measurements on microfluidic separation devices. Electrophoresis,2002,23(20):3528-3536
    [153]Duggan M P, McCreedy T, Ayloott J W. A non-invasive analysis method for on-chip spectrophotometric detection using liquid-core waveguiding with a 3D architecture. Analyst,2003,128(11):1336-1340
    [154]Salimi-Moosavi H, Jiang Y T, Lester L, et al. A multireflection cell for enhanced absorbance detection in microchip-based capillary electrophoresis devices. Electrophoresis,2000,21(7):1291-1299
    [155]Noblitt S D, Henry C S. Improving the compatibility of contact conductivity detection with microchip electrophoresis using a bubble cell. Analytical Chemistry,2008,80(19):7624-7630
    [156]Liu J H, Wang J Y, Chen Z G, et al. A three-layer PMMA electrophoresis microchip with Pt microelectrodes insulated by a thin film for contactless conductivity detection. Lab on a Chip,2011,11(5):969-973
    [157]Henderson R D, Guijt R M, Haddad P R, et al. Manufacturing and application of a fully polymeric electrophoresis chip with integrated polyaniline electrodes. Lab on a Chip,2010,10(14):1869-1872
    [158]Floris A, Staal S, Lenk S, et al. Aprefilled, ready-to-use electrophoresis based lab-on-a-chip device for monitoring lithium in blood. Lab on a Chip,2010, 10(14):1799-1806
    [159]Kuban P, Hauser P C. Evaluation of microchip capillary electrophoresis with external contactless conductivity detection for the determination of major inorganic ions and lithium in serum and urine samples. Lab on a Chip,2008, 8(11):1829-1836
    [160]Woolley A T, Lao K Q, Glazer AN, et al. Capillary electrophoresis chips with integrated electrochemical detection. Analytical Chemistry,1998,70(4):684-688
    [161]Wang J, Chatrathi M P, Tian B M. Micromachined separation chips with a precolumn reactor and end-column electrochemical detector. Analytical Chemistry,2000,72(23):5774-5778
    [162]Bi H Y, Weng X X, Qu H Y, et al. Strategy for allosteric analysis based on protein-patterned stationary phase in microfluidic chip. Journal of Proteome Research,2005,4(6):2154-2160
    [163]Kang C M, Joo S, Bae J H, et al. In-channel electrochemical detection in the middle of microchannel under high electric field. Analytical Chemistry,2012, 84(2):901-907
    [164]Chen C P, Hahn J H. Dual-channel method for interference-free in-channel amperometric detection in microchip capillary electrophoresis. Analytical Chemistry,2007,79(18):7182-7186
    [165]Piccin E, Dossi N, Cagan A, et al. Rapid and sensitive measurements of nitrate ester explosives using microchip electrophoresis with electrochemical detection. Analyst,2009,134(3):528-532
    [166]Ertl P, Emrich C A, Singhal P, et al. Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system. Analytical Chemistry, 2004,76(13):3749-3755
    [167]Jiang L, Lu Y, Dai Z P, et al. Mini-electrochemical detector for microchip electrophoresis. Lab on a Chip,2005,5(9):930-934
    [168]Xue Q F, Foret F, Dunayevskiy Y M, et al. Multichannel microchip electrospray mass spectrometry. Analytical Chemistry,1997,69(3):426-430
    [169]Ramsey R S, Ramsey J M. Generating electrospray from microchip devices using electroosmotic pumping. Analytical Chemistry,1997,69(6):1174-1178
    [170]Zhang B, Liu H, Karger B L, et al. Microfabricated devices for capillary electrophoresis-electrospray mass spectrometry. Analytical Chemistry,1999, 71(15):3258-3264
    [171]Chambers A G, Mellors J S, Henley W H, et al. Monolithic integration of two-dimensional liquid chromatography-capillary electrophoresis and electrospray ionization on a microfluidic device. Analytical Chemistry,2011, 83(3):842-849
    [172]Chambers A G, Ramsey J M. Microfluidic dual emitter electrospray ionization source for accurate mass measurements. Analytical Chemistry,2012,84(3): 1446-1451
    [173]Effenhauser C S, Paulus A, Manz A, et al. High-speed separation of antisense oligonucleotides on a micromachined capillary electrophoresis device. Analytical Chemistry,1994,66(18):2949-2953
    [174]Kaigala G V, Hoang V N, Stickel A, et al. An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis. Analyst,2008,133(3):331-338
    [175]Kaigala G V, Hoang V N, Backhouse C J. Electrically controlled microvalves to integrate microchip polymerase chain reaction and capillary electrophoresis. Lab on a Chip,2008,8(7):1071-1078
    [176]Kaigala G V, Behnam M, Bidulock A C E, et al. A scalable and modular lab-on-a-chip genetic analysis instrument. Analyst,2010,135(7):1606-1617
    [177]Hashimoto M, Barany F, Soper S A. Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations. Biosensors and Bioelectronics, 2006,21(10):1915-1923
    [178]Yeung S H I, Liu P, Bueno N D, et al. Integrated sample cleanup-capillary electrophoresis microchip for high-performance short tandem repeat genetic analysis. Analytical Chemistry,2009,81(1):210-217
    [179]Zhou X M, Shao S J, Xu G D, et al. Highly sensitive determination of the methylated p16 gene in cancer patients by microchip electrophoresis. Journal of Chromatography B,2005,816(1-2):145-151
    [180]Liedert R, Amundsen L K, Hokkanen A, et al. Disposable roll-to-roll hot embossed electrophoresis chip for detection of antibiotic resistance gene mecA in bacteria. Lab on a Chip,2012,12(2):333-339
    [181]Liu P, Li X J, Greenspoon S A, et al. Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification. Lab on a Chip,2011,11(6):1041-1048
    [182]Koutny L B, Schmalzing D, Taylor T A, et al. Microchip electrophoretic immunoassay for serum cortisol. Analytical Chemistry,1996,68(1):18-22
    [183]Pan Q, Hong S, Zhu X C, et al. On-line electrophoretic sample clean-up for sensitive and reproducible μCE immunoassay. Lab on a Chip,2012,12(5):932-938
    [184]Mohamadi M R, Kaji N, Tokeshi M, et al. Online preconcentration by transient isotachophoresis in linear polymer on a poly(methyl methacrylate) microchip for separation of human serum albumin immunoassay mixtures. Analytical Chemistry,2007,79(10):3667-3672
    [185]Park C C, Kazakova I, Kawabata T, et al. Controlling data quality and reproducibility of a high-sensitivity immunoassay using isotachophoresis in a microchip. Analytical Chemistry,2008,80(3):808-814
    [186]Bromberg A, Mathies R A. Homogeneous immunoassay for detection of TNT and its analogues on a microfabricated capillary electrophoresis chip. Analytical Chemistry,2003,75(5):1188-1195
    [187]Reichmuth D S, Wang S K, Barrett L M, et al. Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus. Lab on. a Chip,2008,8(8):1319-1324
    [188]Zhang S H, Cao W, Li J,et al. MCE enzyme immunoassay for carcinoembryonic antigen and alpha-fetoprotein using electrochemical detection. Electrophoresis, 2009,30(19):3427-3435
    [189]Chiem N H, Harrison D J. Microchip system for immunoassay:an integrated immunoreactor with electrophoretic sepration for serum theophylline determination. Clinical Chemistry,1998,44(3):591-598
    [190]Wang J, Ibanez A, Chatrathi M P. On-chip integration of enzyme and immunoassays:simultaneous measurements of insulin and glucose. Journal of the American Chemical Society,2003,125(28):8444-8445
    [191]Dishinger J F, Reid K R, Kennedy R T. Quantitative monitoring of insulin secretion from single islets of langerhans in parallel on a microfluidic chip. Analytical Chemistry,2009,81(8):3119-3127
    [192]Ye F G, Shi M, Huang Y, et al. Noncompetitive immunoassay for carcinoembryonic antigen in human serum by microchip electrophoresis for cancer diagnosis. Clinica Chimica Acta,2010,411(15-16):1058-1062
    [193]Shi M, Zhao S L, Huang Y, et al. Microchip fluorescence-enhanced immunoaasay for simultaneous quantification of multiple tumor markers. Journal of Chromatography B,2011,879(26):2840-2844
    [194]Mora M F, Greer F, Stockton A M, et al. Toward total automation of microfluidics for extraterrestial in situ analysis. Analytical Chemistry,2011, 83(22):8636-8641
    [195]Chiesl T N, Chu W K, Stockton A M, et al. Enhanced amine and amino acid analysis using pacific blue and the mars organic analyzer microchip capillary electrophoresis system. Analytical Chemistry,2009,81(7):2537-2544
    [196]Cellar N A, Burns S T, Meiners J C, et al. Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids. Analytical Chemistry,2005,77(21):7067-7073
    [197]Wu J F, Ferrance J P, Landers J P, et al. Integration of a precolumn fluorogenic reaction, separation, and detection of reduced glutathione. Analytical Chemistry, 2010,82(17):7267-7273
    [198]Girardot M, Li H Y, Descroix S, et al. Determination of binding parameters between lysozyme and its aptamer by frontal analysis continuous microchip electrophoresis (FACMCE). Journal of Chromatography A,2011,1218(26): 4052-4058
    [199]Sikanen T, Aura S, Franssila S, et al. Microchip capillary electrophoresis-electrospray ionization-mass spectrometry of intact proteins using uncoated Ormocomp microchips. Analytica Chimica Acta,2012,711(1): 69-76
    [200]Sun Y, Lu M, Yin X F, et al. Intracellular labeling method for chip-based capillary electrophoresis fluorimetric single cell analysis using liposomes. Journal of Chromatography A,2006,1135(1):109-114
    [201]Shi B X, Huang W H, Cheng J K. Determination of neurotransmitters in PC 12 cells by microchip electrophoresis with fluorescence detection. Electrophoresis, 2007,28(10):1595-1600
    [202]Hellmich W, Greif D, Pelargus C, et al. Improved native UV laser induced fluorescence detection for single cell analysis in poly(dimethylsiloxane) microfluidic devices. Journal of Chromatography A,2006,1130(2):195-200
    [203]王文雷,金文睿,微流控芯片电泳/电化学检测人单个肝癌细胞中的谷胱甘肽.色谱,2007,25(6):799-803
    [204]Xia F, Jin W, Yin X F, et al. Single-cell analysis by electrochemical detection with a microfluidic device. Journal of Chromatography A,2005,1063(1-2):227-233
    [205]Cheng H, Huang W H, Chen R S, et al. Carbon fiber nanoelectrodes applied to microchip electrophoresis amperometric detection of neurotransmitter dopamine in rat pheochromocytoma (PC12) cells. Electrophoresis,2007,28(10):1579-1586
    [206]Gao J, Yin X F, Fang Z L. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab on a Chip,2004,4(1):47-52
    [207]Ling Y Y, Yin X F, Fang Z L. Simultaneous determination of glutathione and reactive oxygen species in individual cells by microchip electrophoresis. Electrophoresis,2005,26(24):4759-4766
    [208]Sun Y, Yin X F, Ling Y Y, et al. Determination of reactive oxygen species in single human erythrocytes using microfluidic chip electrophoresis. Analytical and Bioanalytical Chemistry,2005,382(7):1472-1476
    [209]Sun Y, Yin X F. Novel multi-depth microfluidic chip for single cell analysis. Journal of Chromatography A,2006,1117(2):228-233
    [210]Wu H K, Wheeler A, Zare R N. Chemical cytometry on a picoliter-scale integrated microfluidic chip. Proceedings of the National Academy of Sciences of the United States of America,2004,101(35):12809-12813
    [211]Huang B, Wu H K, Bhaya D, et al. Counting low-copy number proteins in a single cell. Science,2007,315(5808):81-84
    [212]Lieber M R. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. BioEssays,1997,19(3):233-240
    [213]Gite S U, Shankar V. Single-strand-specific nucleases. Critical Reviews in Microbiology,1995,21(2):101-122
    [214]Roberts R J. Restriction enzymes and their isoschizomers. Nucleic Acids Research,1990,18(Suppl):2331-2365
    [215]Bath A J, Milsom S E, Gormley N A, et al. Many type Ⅱs restriction endonucleases interact with two recognition sites before cleaving DNA. The Journal of Biological Chemistry,2002,277(6):4024-4033
    [216]Xu X Y, Han M S, Mirkin C A. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. Angewandte Chemie International Edition,2007,46(19):3468-3470
    [217]Joyner J C, Reichfield J, Cowan J A, et al. Factors influencing the DNA nuclease activity of iron, cobalt, nickel, and copper chelates. Journal of the American Chemical Society,2011,133(39):15613-15626
    [218]McLaughlin L W, Benseler F, Graeser E, et al. Effects of functional group changes in the EcoRI recognition site on the cleavage reaction catalyzed by the endonuclease. Biochemistry,1987,26(23):7238-7245
    [219]Jeltsch A, Fritz A, Alves J, et al. A fast and accurate enzyme-linked immunosorbent assay for the determination of the DNA cleavage activity of restriction endonucleases. Analytical Biochemistry,1993,213(2):234-240
    [220]Rosenthal A L, Lacks S A. Nuclease detection in SDS-polyacrylamide gel electrophoresis. Analytical Biochemistry,1977,80(1):76-90
    [221]Li J J, Geyer R, Tan W H. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Research, 2000,28(11):e52
    [222]Li J, Yan H F, Wang K M, et al. Hairpin fluorescence DNA probe for real-time monitoring of DNA methylation. Analytical Chemistry,2007,79(3):1050-1056
    [223]Ma C B, Tang Z W, Wang K M, et al. Real-time monitoring of restriction endonuclease activity using molecular beacon. Analytical Biochemistry,2007, 363(2):294-296
    [224]Liu G L, Yin Y D, Kunchakarra S, et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nature Nanotechnology, 2006,1(1):47-52
    [225]Feng F, Tang Y. He F, et al. Cationic conjugated polymer/DNA complexes for amplified fluorescence assays of nucleases and methyltransferase. Advanced Materials,2007,19(21):3490-3495
    [226]Feng X L, Duan X R, Liu L B, et al. Fluorescent logic-signal-based multiplex detection of nucleases with the assembly of cationic conjugated polymer and branched DNA. Angewandte Chemie International Edition,2009,48(29):5316-5321
    [227]Li W, Liu Z L, Lin H, et al. Label-free colorimetric assay for methyltransferase activity based on a novel methylation-responsive DNAzyme strategy. Analytical Chemistry,2010,82(5):1935-1941
    [228]Liu T, Zhao J, Zhang D M, et al. Novel method to detect DNA methylation using gold nanoparticles coupled with enzyme-linkage reactions. Analytical Chemistry,2010,82(1):229-233
    [229]Ghadiali J E, Stevens M M. Enzyme-responsive nanoparticle systems. Advanced Materials,2008,20(22):4359-4363
    [230]Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Physical Science,1973,241(1):20-22
    [231]Jameson D M, Ross J A. Fluorescence polarization/anisotropy in diagnostics and imaging. Journal of American Chemistry Reviews,2010,110(5):2685-2708
    [232]McCarroll M E, Billiot F H, Warner I M. Fluorescence anisotropy as a measure of chiral recognition. Journal of the American Chemical Society,2001,123(13): 3173-3174.
    [233]Pingoud A, Jeltsch A. Recognition and cleavage of DNA by type-II restriction endonucleases. European Journal of Biochemistry,1997,246(1):1-22
    [234]Chen Z F, Liu Y C, Liu L M, et al. Potential new inorganic antitumour agents from combining the anticancer traditional Chinese medicine (TCM) liriodenine with metal ions, and DNA binding studies. Dalton Transactions,2009, (2):262-272
    [235]Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature,1990,346(6287):818-822
    [236]Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science,1990,249(4968): 505-510
    [237]Hermann T, Patel D J. Adaptive recognition by nucleic acid aptamers. Science, 2000,287(5454):820-825
    [238]Navani N K, Li Y F. Nucleic acid aptamers and enzymes as sensors. Current Opinion in Chemical Biology,2006,10(3):272-281
    [239]Famulok M, Hartig J S, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chemical Reviews,2007,107(9):3715-3743
    [240]Fang X H, Tan W H. Aptamers generated from cell-SELEX for molecular medicine:A chemical biology approach. Accounts of Chemical Research,2010, 43(1):48-57
    [241]Liu J W, Cao Z H, Lu Y. Functional nucleic ccid sensors. Chemical Reviews, 2009,109(5):1948-1998
    [242]Zuo X L, Song S P, Zhang J, et al. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. Journal of the American Chemical Society,2007,129(5):1042-1043
    [243]Du Y, Li B L, Wang F, et al. Au nanoparticles grafted sandwich platform used amplified small molecule electrochemical aptasensor. Biosensors Bioelectronics, 2009,24(7):1979-1983
    [244]Feng K J, Sun C H, Kang Y, et al. Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement. Electrochemistry Communications,2008,10(4):531-535
    [245]Xiao Y, Lubin A A, Heeger A J, et al. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie International Edition,2005,117(34):5592-5595
    [246]Zheng J, Li J, Jiang Y, et al. Design of aptamer-based sensing platform using triple-helix molecular switch. Analytical Chemistry,2011,83(17):6586-6592
    [247]Qiu L P, Wu Z S, Shen G L, et al. Highly sensitive and selective bifunctional oligonucleotide probe for homogeneous parallel fluorescence detection of protein and nucleotide sequence. Analytical Chemistry,2011,83(8):3050-3057
    [248]Huang J, Chen Y, Yang L, et al. Amplified detection of cocaine based on strand-displacement polymerization and fluorescence resonance energy transfer. Biosensors and Bioelectronics,2011,28(1):450-453
    [249]Zheng A X, Wang J R, Li J, et al. Nicking enzyme based homogeneous aptasensors for amplification detection of protein. Chemical Communications, 2012,48(3):374-376
    [250]Liu J W, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nature Protocols,2006,1(1): 246-252
    [251]Zhu Z, Wu C C, Liu H P, et al. An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angewandte Chemie International Edition,2010,49(6):1052-1056
    [252]Bai J G, Wei H, Li B L, et al. [Ru(bpy)2(dcbpy)NHS] labeling/aptamer-based biosensor for the detection of lysozyme by increasing sensitivity with gold nanoparticle amplification. Chemistry An Asian Journal,2008,3(11):1935-1941
    [253]Zhang D P, Lu M L, Wang H L. Fluorescence anisotropy analysis for mapping aptamer-protein interaction at the single nucleotide level. Journal of the American Chemical Society,2011,133(24):9188-9191
    [254]Gokulrangan G, Unruh J R, Holub D F, et al. DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy. Analytical Chemistry,2005,77(7):1963-1970
    [255]Fang X H, Cao Z H, Beck T,et al. Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Analytical Chemistry,2001,73(23):5752-5757
    [256]Cruz-Aguado J A, Penner G. Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Analytical Chemistry,2008,80(22):8853-8855
    [257]Ruta J, Perrier S, Ravelet C, et al. Noncompetitive fluorescence polarization aptamer-based assay for small molecule detection. Analytical Chemistry,2009, 81(17):7468-7473
    [258]Perrier S, Ravelet C, Guieu V, et al. Rationally designed aptamer-based fluorescence polarization sensor dedicated to the small target analysis. Biosensors and Bioelectronics,2010,25(7):1652-1657
    [259]Stoeva S I, Lee J S, Thaxton C. S, et al. Multiplexed DNA detection with biobarcoded nanoparticle probes. Angewandte Chemie International Edition, 2006,45(20):3303-3306
    [260]Zhang L, Li Y, Li D W, et al. Single gold nanoparticles as real-time optical probes for the detection of NADH-dependent intracellular metabolic enzymatic pathways. Angewandte Chemie International Edition,2011,123(30):6921-6924
    [261]Wang J. Nanomaterial-based amplified transduction of biomolecular interactions. Small,2005,1(11):1036-1043
    [262]Yang X R, Xu J, Tang X M, et al. A novel electrochemical DNAzyme sensor for the amplified detection of P2+ ions. Chemical Communications,2010,46(18): 3107-3109
    [263]Dong X C, Lau C M, Lohani A, et al. Electrical detection of femtomolar DNA via gold-nanoparticle enhancement in carbon-nanotube-network field-effect transistors. Advanced Materials,2008,20(12):2389-2393
    [264]Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. Journal of the American Chemical Society,2004,126(38):11768-11769
    [265]Weizmann Y, Patolsky F, Willner I. Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst,2001,126(9):1502-1504
    [266]Zhou X C, O'Shea S J, Li S F Y. Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides. Chemical Communications,2000, (11):953-954
    [267]Bi S, Zhou H, Zhang S S. Bio-bar-code functionalized magnetic nanoparticle label for ultrasensitive flow injection chemiluminescence detection of DNA hybridization. Chemical Communications,2009, (37):5567-5569
    [268]Niazov T, Pavlov V, Xiao Y, et al. DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Letters,2004, 4(9):1683-1687
    [269]Wu Y F, Chen C L, Liu S Q. Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Analytical Chemistry,2009,81(4):1600-1607
    [270]Hu J, Zhang C. Sensitive detection of nucleic acids with rolling circle amplification and surface-enhanced raman scattering spectroscopy. Analytical Chemistry,2010,82(21):8991-8997
    [271]Ye B C, Yin B C. Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles. Angewandte Chemie International Edition,2008,47(44):8386-8389
    [272]Weizmann Y, Patolsky F, Lioubashevski O, et al. Magneto-mechanical detection of nucleic acids and telomerase activity in cancer cells. Journal of the American Chemical Society,2004,126(4):1073-1080
    [273]Liu F, Zhang J, Chen R, et al. Highly effective colorimetric and visual detection of ATP by a DNAzyme-aptamer sensor. Chemistry biodiversity,2011,8(2):311-316
    [274]Li N, Ho C M. Aptamer-based optical probes with separated molecular recognition and signal transduction modules. Journal of the American Chemical Society,2008,130(8):2380-2381
    [275]Tang Z W, Mallikaratchy P, Yang R, et al. Aptamer switch probe based on intramolecular displacement. Journal of the American Chemical Society,2008, 130(34):11268-11269
    [276]Zhen S J, Chen L Q, Xiao S J, et al. Carbon nanotubes as a low background signal platform for a molecular aptamer beacon on the basis of long-range resonance energy transfer. Analytical Chemistry,2010,82(20):8432-8437
    [277]Li N, Ho C-M. Aptamer-based optical probes with separated molecular recognition and signal transduction modules. Journal of the American Chemical Society,2008,130(8):2380-2381
    [278]Spitzer S, Eckstein F. Inhibition of deoxyribonucleases by phosphorothioate groups in oligodeoxyribonucleotides. Nucleic Acids Research,1988,16(24): 11691-11704
    [279]Biggins J B, Prudent J R, Marshall D J, et al. A continuous assay for DNA cleavage:The application of "break lights" to enediynes, iron-dependent agents, and nucleases. Proceedings of the National Academy of Sciences of the United States of America,2000,97(25):13537-13542
    [280]Jennings T L, Singh M P, Strouse G F. Fluorescent lifetime quenching near d=1.5nm gold nanoparticles:Probing NSET validity. Journal of the American Chemical Society,2006,128(16):5462-5467
    [281]Pingoud A, Jeltsch A. Structure and function of type Ⅱ restriction endonucleases. Nucleic Acids Research,2001,29(18):3705-3727
    [282]Galburt E A, Stoddard B L. Catalytic mechanisms of restriction and homing endonucleses. Biochemistry,2002,41(47):13851-13860
    [283]Mucke M, Kruger D H, Reuter M. Diversity of type Ⅱ restriction endonucleases that require two DNA recognition sites. Nucleic Acids Research,2003,31(21): 6079-6084
    [284]Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science,2005,307(5709):538-544
    [285]Zhang C Y, Johnson L W. Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows. Analytical Chemistry, 2006,78(15):5532-5537
    [286]Biju V, Itoh T, Ishikawa M. Delivering quantum dots to cells:bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chemical Society Reviews,2010,39(8):3031-3056
    [287]Medintz I L, Clapp A R, Brunel F M, et al. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nature Materials,2006,5(7):581-589
    [288]Sugawa M, Nishikawa S, Iwane A H, et al. Single-molecule FRET imaging for enzymatic reactions at high ligand concentrations. Small,2010,6(3):346-350
    [289]Zhang C Y, Yeh H C, Kuroki M T, et al. Single-quantum-dot-based DNA nanosensor. Nature Materials,2005,4(11):826-831
    [290]Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials,2005,4(6):435-446
    [291]Snee P T, Somers R C, Nair G, et al. A ratiometric CdSe/ZnS nanocrystal pH sensor. Journal of the American Chemical Society,2006,128(41):13320-13321
    [292]Goldman E R, Medintz I L, Whitley J L, et al. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. Journal of the American Chemical Society,2005,127(18):6744-6751
    [293]Patolsky F, Gill R, Weizmann Y, et al. Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. Journal of the American Chemical Society,2003,125(46):13918-13919
    [294]Wu S M, Tian Z Q, Zhang Z L, et al. Direct fluorescence in situ hybridization (FISH) in Escherichia coli with a target-specific quantum dot-based molecular beacon. Biosensors and Bioelectronics,2010,26(2):491-496
    [295]Han K C, Ahn D R, Yang E G. An approach to multiplexing an immunosorbent assay with antibody-oligonucleotide conjugates. Bioconjugate Chemistry,2010, 21(12):2190-2196
    [296]Khoronenkova S V, Tishkov V I. D-Amino acid oxidase:Physiological role and applications. Biochemistry (Moscow),2008,73(13):1511-1518
    [297]Gonzalez-Hernandez J C. Aguilera-Aguirre L, Perez-Vazquez V, et al. Effect of D-amino acids on some mitochondrial functions in rat liver. Amino Acids,2003, 24(1-2):163-169
    [298]Bai L, Romanova E V, Sweedler J V. Distinguishing endogenous d-amino acid-containing neuropeptides in individual neurons using tandem mass spectrometry. Analytical Chemistry,2011,83(7):2794-2800
    [299]Segal M, Shalita B. Effect of D-tyrosine on chronic stress-induced hypertension in the rat. Research Communications in Psychology, Psychiatry & Behavior, 1981,6(3):285-288
    [300]Bruckner H, Schieber A. Ascertainment of D-amino acids in germ-free, gnotobiotic and normal laboratory rats. Biomedical Chromatography,2001, 15(4):257-262
    [301]Bruckner H, Schieber A. Determination of free D-amino acids in mammalia by chiral gas chromatography-mass spectrometry. Journal of High Resolution Chromatography,2000,23(10):576-582
    [302]Young G A, Kendall S, Brownjohn A M. D-Amino acids in chronic renal failure and the effects of dialysis and urinary losses. Amino Acids,1994,6(3):283-293
    [303]Patzold R, Schieber A, Bruckner H. Gas chromatographic quantification of free D-amino acids in higher vertebrates. Biomedical Chromatography,2005,19(6): 466-473
    [304]Armstrong D W, Gasper M, Lee S H, et al. Factors controlling the level and determination of D-amino acids in the urine and plasma of laboratory rodents. Amino Acids,1993,5(2):299-315
    [305]Armstrong D W, Gasper M, Lee S H, et al. D-Amino acids levels in human physiological fluids. Chirality,1993,5(5):375-378
    [306]Huang Y, Shi M, Zhao S L. Quantification of D-Asp and D-Glu in rat brain and human cerebrospinal fluid by microchip electrophoresis. Journal of Separation Science,2009,32(17):3001-3006
    [307]Tsukagoshi K, Hashimoto M, Nakajima R, et al. Application of microchip capillary electrophoresis with chemiluminescence detection to an analysis for transition-metal ions. Analytical Sciences,2000,16(11):1111-1112
    [308]聂舟,何治柯,庞代文,等.微流控芯片化学发光检测系统研究.分析科学学报,2003,19(4):321-323
    [309]Zhao S L, Li X T, Liu Y M. Integrated microfluidic system with chemiluminescence detection for single cell analysis after intracellular labeling. Analytical Chemistry,2009,81(10):3873-3878
    [310]Sano A, Nakamura H. Chemiluminescence detection of thiols by high-performance liquid chromatography using o-phthalaldehyde and n-(4-aminobutyl)-n-ethylisoluminol as precolumn derivatization reagents. Analytical Sciences,1998,14(4):731-735
    [311]Brodie M J, Dichter M A. Established antiepileptic drugs. Seizure,1997,6(3): 159-174
    [312]Gilman J T, Gal P, Duchiwny M S, et al. Rapid sequential phenobarbital treatment of neonatal seizures. Pediatrics,1989,83(5):674-678
    [313]Vlasses P H, Rocci M L, Koffer H, et al. Combined phenytoin and phenobarbital overdose. Drug Intelligence Clinical Pharmacy,1982,16(6):487-488
    [314]Rogvi-Hansen B, Gram L. Adverse effects of established and new antiepileptic drugs:An attempted comparison. Pharmacology & Therapeutics,1995,68(3): 425-434
    [315]Jones J J, Kidwell H, Games D E. Application of atmospheric pressure chemical ionisation mass spectrometry in the analysis of barbiturates by high-speed analytical countercurrent chiomatography. Rapid Communications in Mass Spectrometry,2003,17(14):1565-1572
    [316]Budakova L, Brozmanova H, Grundmann M, et al. Simultaneous determination of antiepileptic drugs and their two active metabolites by HPLC. Journal of Separation Science,2008,31(1):1-8
    [317]Bugamelli F, Sabbioni C, Mandrioli R, et al. Simultaneous analysis of six antiepileptic drugs and two selected metabolites in human plasma by liquid chromatography after solid-phase extraction. Analytica Chimica Acta,2002, 472(1-2):1-10
    [318]Rukhadze M D, Tsagareli S K, Sidamonidze N S, et al. Cloud-point extraction for the determination of the free fraction of antiepileptic drugs in blood plasma and saliva. Analytical Biochemistry,2000,287(2):279-283
    [319]Levert H, Odou P, Robert H. Simultaneous determination of four antiepileptic drugs in serum by high-performance liquid chromatography. Biomedical Chromatography,2002,16(1):19-24
    [320]Moriyama M, Yamashita S, Domoto H, et al. Determination of plasma phenobarbital concentration by high-performance liquid chromatography in rat offspring. Journal of Chromatography B,1999,723(1-2):301-305
    [321]Bereczki A, Horvath V, Horvai G. Immunoassay-based determination of phenobarbital using size-exclusion chromatography. Journal of Chromatography B,2000,749(2):215-223
    [322]Vermeij T A C, Edelbroek P M. Robust isocratic high performance liquid chromatographic method for simultaneous determination of seven antiepileptic drugs including lamotrigine, oxcarbazepine and zonisamide in serum after solid-phase extraction. Journal of Chromatography B,2007,857(1):40-46
    [323]Saka K, Uemura K, Shintani-Ishida K, et al. Determination of amobarbital and phenobarbital in serum by gas chromatography-mass spectrometry with addition of formic acid to the solvent. Journal of Chromatography B,2008,869(1-2):9-15
    [324]Zhao H, Wang L, Qiu Y, et al. Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography-tandem mass spectrometry (GC/MS/MS) following microwave assisted derivatization. Analytica Chimica Acta,2007,586(1-2):399-406
    [325]Iwai M, Hattori H, Arinobu T, et al. Simultaneous determination of barbiturates in human biological fluids by direct immersion solid-phase microextraction and gas chromatography-mass spectrometry. Journal of Chromatography B,2004, 806(1):65-73
    [326]Lu-Steffes M, Pittluck G W, Jolley M E, et al. Fluorescence polarization immunoassay IV. Determination of phenytoin and phenobarbital in human serum and plasma. Clinical Chemistry,1982,28(11):2278-2282
    [327]Zhang J, Heineman W R, Halsall H B. Capillary electrochemical enzyme immunoassay (CEEI) for phenobarbital in serum. Journal of Pharmaceutical and Biomedical Analysis,1999,19(1-2):145-152
    [328]Bordes A L, Schollhorn B, Limoges B, et al. Simultaneous detection of three drugs labeled by cationic metal complexes at a nafion-loaded carbon paste electrode. Talanta,1999,48(1):201-208
    [329]Bordes A L, Limoges B, Brossier P, et al. Simultaneous homogeneous immunoassay of phenytoin and phenobarbital using a Nafion-loaded carbon paste electrode and two redox cationic labels. Analytica Chimica Acta,1997, 356(2-3):195-203
    [330]Chang W B, Zhang B L, Li Y Z, et al. Double-label simultaneous time-resolved fluoroimmunoassay of phenytoin and phenobarbital. Microchemical Journal, 1997,55(3):287-295
    [331]Wang R Y, Lu X N, Ma W Y. Non-competitive immunoassay for alpha-fetoprotein using micellar electrokinetic capillary chromatography and laser-induced fluorescence detection. Journal of Chromatography B,2002, 779(2):157-162
    [332]Miller K K, Rosner W, Lee H, et al. Measurement of free testosterone in normal women and women with androgen deficiency:Comparison of methods. The Journal of Clinical Endocrinology & Metabolism,2004,89(2):525-533
    [333]Bhasin S, Wu F. Making a diagnosis of androgen deficiency in adult men:what to do until all the facts are in? Nature Clinical Practice Endocrinology& Metabolism,2006,2(10):529-529
    [334]Basaria S, Dobs A S. Hypogonadism and androgen replacement therapy in elderly men. The American Journal of Medicine,2001,110(7):563-572
    [335]Herold, D A, Fitzgerald R L. Immunoassays for testosterone in women:better than a guess? Clinical Chemistry,2003,49(8):1250-1251
    [336]Brinkmann A O, Jenster G, Kuiper G G, et al. The human androgen receptor: Structure/function relationship in normal and pathological situations. The Journal of Steroid Biochemistry and Molecular Biology,1992,41(3-8):361-368
    [337]Juniewicz P E, Berry S J, Coffey D S, et al. The requirement of the testis in establishing the sensitivity of the canine prostate to develop benign prostatic hyperplasia. The Journal of Urology,1994,152(3):996-1001
    [338]Huenerbein A, Marques M A S, Pereira A D S, et al. Improvement in steroid screening for doping control with special emphasis on stanozolol. Journal of Chromatography A,2003,985(1-2):375-386
    [339]Salameh W A, Redor-Goldman M M, Clarke N J, et al. Validation of a total testosterone assay using high-turbulence liquid chromatography tandem mass spectrometry:total and free testosterone reference ranges. Steroids,2010,75(2): 169-175
    [340]Licea-Perez H, Wang S, Szapacs M E, et al. Development of a highly sensitive and selective UPLC/MS/MS method for the simultaneous determination of testosterone and 5 a-dihydro testosterone in human serum to support testosterone replacement therapy for hypogonadism. Steroids,2008,73(6):601-610
    [341]Singh R J. Validation of a high throughput method for serum/plasma testosterone using liquid chromatography tandem mass spectrometry (LC-MS/MS). Steroids,2008,73(13):1339-1344
    [342]Borrey D, Moerman E, Cockx A, et al. Column-switching LC-MS/MS analysis for quantitative determination of testosterone in human serum. Clinica Chimica Acta,2007,382(1-2):134-137
    [343]Aguilera R, Catlin D H, Becchi M, et al. Screening urine for exogenous testosterone by isotope ratio mass spectrometric analysis of one pregnanediol and two androstanediols. Journal of Chromatography B,1999,727(1-2):95-105
    [344]Aguilera R, Hatton C K, Catlin D H. Detection of epitestosterone doping by isotope ratio mass spectrometry. Clinical Chemistry,2002,48(4):629-636
    [345]Dechaud H, Lejeune H, Garoscio-Cholet M, et al. Radioimmunoassay of testosterone not bound to sex-steroid-binding protein in plasma. Clinical Chemistry,1989,35(8):1609-1614
    [346]Hendriks L, Gielen B, Pottie G, et al. Matrix effects in the radioimmunoassay of estradiol and testosterone in plasma of veal calves and how to avoid them. Analytica Chimica Acta,1993,275(1-2):113-122
    [347]Mitchell J S, Lowe T E. Matrix effects on an antigen immobilized format for competitive enzyme immunoassay of salivary testosterone. Journal of Immunological Methods,2009,349(1-2):61-66
    [348]Tateishi K, Yamamoto H, Ogihara T, et al. Enzyme immunoassay of serum testosterone. Steroids,1977,30(1):25-32
    [349]Luppa P, Bruckner C, Schwab I, et al.7a-Biotinylated testosterone derivatives as tracers for a competitive chemiluminescence immunoassay of testosterone in serum. Clinical Chemistry,1997,43(12):2345-2352
    [350]Eguilaz M, Moreno-Guzman M, Campuzano S, et al. An electrochemical immunosensor for testosterone using functionalized magnetic beads and screen-printed carbon electrodes. Biosensors and Bioelectronics,2010,26(2): 517-522
    [351]Lu H, Kreuzer M P, Takkinen K, et al. A recombinant Fab fragment-based electrochemical immunosensor for the determination of testosterone in bovine urine. Biosensors and Bioelectronics,2007,22(8):1756-1763
    [352]Dishinger J F, Kennedy R T. Serial immunoassays in parallel on a microfluidic chip for monitoring hormone secretion from living cells. Analytical Chemistry, 2007,79(3):947-954
    [353]Reid K R, Kennedy R T. Continuous operation of microfabricated electrophoresis devices for 24 hours and application to chemical monitoring of living cells. Analytical Chemistry,2009,81(16):6837-6842
    [354]Shackman J G, Dahlgren G M, Peters J L, et al. Perfusion and chemical monitoring of living cells on a microfluidic chip. Lab on a Chip,2005,5(1):56-63
    [355]Phillips T M, Wellner E. Measurement of neuropeptides in clinical samples using chip-based immunoaffinity capillary electrophoresis. Journal of Chromatography A,2006,1111(1):106-111
    [356]Phillips T M. Rapid analysis of inflammatory cytokines in cerebrospinal fluid using chip-based immunoaffinity electrophoresis. Electrophoresis,2004,25(10-11):1652-1659
    [357]Wellner E F, Kalish H. A chip-based immunoaffinity capillary electrophoresis assay for assessing hormones in human biological fluids. Electrophoresis,2008, 29(16):3477-3483
    [358]Wang J N, Ren J C. A sensitive and rapid immunoassay for quantification of CA125 in human sera by capillary electrophoresis with enhanced chemiluminescence detection. Electrophoresis,2005,26(12):2402-2408
    [359]Wilson M S, Nie W. Multiplex measurement of seven tumor markers using an electrochemical protein chip. Analytical Chemistry,2006,78(18):6476-6483
    [360]Rowe C A, Tender L M, Feldstein M J, et al. Array biosensor for simultaneous identification of bacterial, viral, and protein analytes. Analytical Chemistry,1999, 71(17):3846-3852
    [361]Sapsford K E, Charles P T, Patterson C H, et al. Demonstration of four immunoassay formats using the array biosensor. Analytical Chemistry,2002, 74(5):1061-1068
    [362]Delehanty J B, Ligler F S. A microarray immunoassay for simultaneous detection of proteins and bacteria. Analytical Chemistry,2002,74(21):5681-5687
    [363]Taitt C R, Anderson G P, Lingerfelt B M, et al. Nine-analyte detection using an array-based biosensor. Analytical Chemistry,2002,74(23):6114-6120
    [364]Fall B I, Eberlein-Konig B, Behrendt H, et al. Microarrays for the screening of allergen-specific IgE in human serum. Analytical Chemistry,2003,75(3):556-562
    [365]Knecht B G, Strasser A, Dietrich R, et al. Automated microarray system for the simultaneous detection of antibiotics in milk. Analytical Chemistry,2004,76(3): 646-654
    [366]Wolter A, Niessner R, Seidel M. Detection of escherichia coli O157:H7, salmonella typhimurium, and legionella pneumophila in water using a flow-through chemiluminescence microarray readout system. Analytical Chemistry,2008,80(15):5854-5863
    [367]Shi M H, Peng Y Y, Zhou J, et al. Immunoassays based on microelectrodes arrayed on a silicon chip for high throughput screening of liver fibrosis markers in human serum. Biosensors and Bioelectronics,2006,21(12):2210-2216
    [368]Kojima K, Hiratsuka A, Suzuki H, et al. Electrochemical protein chip with arrayed immunosensors with antibodies immobilized in a plasma-polymerized film. Analytical Chemistry,2003,75(5):1116-1122
    [369]Blake C, Al-Bassam M N, Gould B J, et al. Simultaneous enzyme immunoassay of two thyroid hormones. Clinical Chemistry,1982,28(7):1469-1473
    [370]Fu Z F, Liu H, Ju H X. Flow-through multianalyte chemiluminescent immunosensing system with designed substrate zone-resolved technique for sequential detection of tumor markers. Analytical Chemistry,2006,78(19): 6999-7005
    [371]Eriksson S, Vehniainen M, Jansen T, et al. Dual-label time-resolved immunofluorometric assay of free and total prostate-specific antigen based on recombinant fab fragments. Clinical Chemistry,2000,46(5):658-666
    [372]Zhang S C, Zhang C, Xing Z, et al. Simultaneous determination of a-fetoprotein and free β-human chorionic gonadotropin by element-tagged immunoassay with detection by inductively coupled plasma mass spectrometry. Clinical Chemistry, 2004,50(7):1214-1221
    [373]Goldman E R, Clapp A R, Anderson G P, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Analytical Chemistry,2004,76(3): 684-688
    [374]Liu G D, Wang J, Kim J, et al. Electrochemical coding for multiplexed immunoassays of proteins. Analytical Chemistry,2004,76(23):7126-7130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700