用户名: 密码: 验证码:
藏南金锑多金属成矿带成矿模式与找矿前景研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以藏南金锑成矿带的查拉普金矿、马扎拉金锑矿、车穷卓布锑矿、扎西康铅锌多金属矿为典型矿床,在野外地质调查的基础上,通过详细的成矿期次阶段分析、矿相学观察、流体包裹体研究、矿物H-O-S-Pb同位素分析,锆石U-Pb年代学和含钾矿物Ar-Ar年代学分析、区域成矿规律总结分析,得出以下结论:
     1、总结了藏南金锑成矿带典型矿床的矿床地质特征和成矿地质条件。
     查拉普金矿矿体主要受近东西向断裂构造控制,产出蚀变岩型、破碎带型和石英脉型矿石,发育自然金和不可见金,后者主要赋存与毒砂和黄铁矿中。主要发育有石英、绢云母、伊利石、绿泥石等蚀变矿物以及毒砂、黄铁矿等金属矿物。成矿温度在164℃~308℃之间,盐度在2.7wt%Nac1~9.3wt%Nac1之间,形成深度大约为1.1~3.8Km范围,为浅成环境。矿流体具有变质水相似的特征,有地表水的加入。热液蚀变是造成金属沉淀的主要机制,其次为冷却降温和流体混合。
     马扎拉金锑矿矿体主要受控于地层层间破碎带,产出的矿石类型主要为含金辉锑矿-石英脉。主要发育石英、碳酸盐、绢云母、绿泥石等蚀变矿物以及毒砂、辉锑矿、黄铁矿等金属矿物。金以自然金形式产出为主,极少量以不可见金出现为毒砂、辉锑矿和黄铁矿中。成矿温度在134℃~324℃之间,盐度在0.41wt%Nac1~7.81wt%Nac1之间,形成深度大约为1.1~2.8Km范围,为浅成环境。金属沉淀机制、流体来源与查拉普金矿相似,具有与变质水相似的特征,有地表水的加入。热液蚀变、冷却降温和流体混合是矿质的沉淀机制。
     车穷卓布锑矿矿体主要受控于近南北向高角度正断层,产出的矿石类型主要为辉锑矿石英脉和辉锑矿方解石脉。主要发育有石英、方解石等蚀变矿物,金属矿物主要为辉锑矿。主要的锑矿化温度在121℃~234.5℃之间,盐度在1.40wt%Nac1~4.65wt%Nac1之间,成矿深度大约为0.6~1.9Km范围,为超浅成环境。成矿流体主要为地表水,显示与建造水混合的趋势。流体混合和冷却降温是造成锑金属沉淀的主要机制。
     扎西康铅锌多金属矿主要受控于近南北向高角度正断层,产出的矿石类型主要为闪锌矿-铁锰碳酸盐脉、方铅矿-铁锰碳酸盐脉、辉锑矿-石英脉和辰砂-辉锑矿-石英脉。主要发育石英、菱锰矿、方解石、菱铁矿、云母等蚀变矿物,金属矿物主要为闪锌矿、方铅矿、辉锑矿、毒砂、黄铁矿等。主要金属矿化的温度分布在211℃~328℃之间,盐度在0.70wt%Nac1~12.51wt%Nac1之间,成矿深度大约为0.4~1.1Km范围,为超浅成环境。成矿流体主要为建造水,并有与西藏地表水混合的趋势。金属沉淀机制与锑矿相似,主要为流体混合和冷却降温。
     2、限定了藏南金锑成矿带的成矿和成岩时代。利用锆石U-Pb年代学,确定了沙拉岗锑矿的闪长岩形成于23.6±0.8Ma,间接限定了切割闪长岩的辉锑矿-石英脉的形成时间小于23.6±0.8Ma。利用伊利石Ar-Ar年代学方法,限定了查拉普金矿热液活动的时间大约在20.43Ma。利用锆石U-Pb年代学方法限定了扎西康矿床辉绿岩脉形成于133.1Ma,远早于金锑成矿时间,与区域地层中广泛分布的辉绿岩墙形成时代一致,新特提斯洋晚期大规模扩张的产物。
     3、根据本文年代学资料,在前人研究基础上,将藏南金锑多金属成矿作用划分为两阶段:(1)同碰撞阶段与韧性剪切相关的金矿,矿体受控于近东西向韧性剪切带及其次级断裂,发育有以含自然金-石英脉为典型特征的矿体,以邦布、马攸木等造山型金矿为代表,形成于59.3Ma~42.0Ma。(2)后碰撞阶段与伸展变形有关的金矿、金锑矿、锑矿和铅锌多金属矿,矿体主要受控于近南北向的高角度正断层和近东西向的层间破碎带,发育有蚀变型金矿体、热液脉状金属矿体,以沙拉岗、车穷卓布、扎西康等为代表,形成于23.6Ma-18.7Mao
     4、建立了特提斯喜马拉雅金锑多金属控矿构造格架。提出以近东西向的拉孜—邛多江缝合带(北)、绒布生长断层(中)、洛扎生长断层(南)与近SN向的勒金康桑走滑断裂带(西)、下坝走滑断裂带(中)和泽日—洞嘎伸展走滑断裂带(东)围限,构成的羊卓雍错—哲古错—拿日雍错被动大陆边缘裂谷(断陷)盆地周缘的盆山转换部位是成矿有利的地区。金、金锑矿床主要受近东西向拆离构造及其次级构造控制;锑、铅锌多金属矿床主要受近南北向走滑正断系统及其次级构造控制,特别是东西向拆离断裂与南北向走滑正断系统的交汇部位更是寻找锑、铅锌多金属矿的最有利部位。
     5、在特提斯喜马拉雅划分出三大成矿作用期、三大成矿系列、五大矿床成因类型。三大成矿作用期:(1)被动大陆边缘裂谷(裂陷)喷流(热水)沉积、浊流沉积、有机质富集的同沉积期;(2)大陆边缘弧前增生楔中的动力变质、韧-脆性剪切的同碰撞期;(3)伸展拆离、正断系统及中酸性次火山岩浆热液(包括热泉水)叠加改造的后碰撞期。三大成矿系列:(1)与喷流-沉积-改造有关的AuAs、CuZn、PbZnAg、 PbZnAgMnFe矿床系列;(2)与增生杂岩中与韧-脆性剪切带相关的造山型HgSb、AuSb、AuAs矿床系列;(3)与次火山岩浆热液(包括热泉)有关的Hg→AsSb→AuAg→PbZnAg→PbZn→Cu矿床系列。五大矿床成因类型:(1)喷流沉积-改造型:包括喷流沉积-热泉水改造型(如扎西康、则日铅锌多金属矿)、喷流沉积-次火山岩浆热液改造型(如马扎拉、哲古、姜仓金锑矿);(2)次火山岩浆热液型(如沙拉岗、得龙锑矿);(3)热泉型(如车穷卓布、勇日锑矿);(4)卡林型-类卡林型(如查拉普、熊曲金矿);(5)造山型(如邦布、洗贡金矿)。
     6、总结了藏南金锑成矿带的成矿规律和控矿要素,提出特提斯喜马拉雅“四要素”找矿模式。成矿物质主要来源于中生代沉积盆地的黑色岩系,其次为变质基底。成矿流体主要为盆地卤水、下渗的地表水、变质水、岩浆水等流体不同程度的混合。以羊卓雍错盆地为中心,矿床沿区域性近东西向和近南北向断裂带成群分布、分段集中,形成了金矿、金锑矿、锑矿和铅锌多金属矿。同沉积期黑色碳硅泥岩系和中基性脉岩、同碰撞期的韧脆性剪切及动力变质、后碰撞期EW向拆离构造或近SN走滑正断系统、中新世的中酸性次火山岩浆或地表发育的热泉活动遗迹的“四要素”,是特提斯喜马拉雅地区最重要的找矿标志。
     7、在研究区划分了成矿远景区6个,其中A类远景区2个,分别为马扎拉—扎西康金锑多金属找矿远景区(A1)和洛扎-措美锑成矿远景区(A2)。B类成矿远景区3个,分别为浪卡子金成矿远景区(B1)、沙拉岗-康马锑成矿远景区(B2)和查拉普-三安曲林金成矿远景区(B3)。C类远景区1个,为邦布-白露金成矿远景区(C1)。
This thesis, metallogenic model and prospecting potential in Southern Tibet Au-Sb Polymetallic Belt, take the Chalapu Au deposit, Mazhala Au-Sb deposit, Cheqiongzhuobu Sb deposit, and Zhaxikang Pb-Zn polymetallic deposit as representative deposits of Southern Tibet Au-Sb metallogenic belt. The author operate series of field and laboratory work on field geological investigation, detailed mineralization stages, metallogenic structural survey, mineralographical observations, fluid inclusions analysis, mineral H-O-S-Pb isotopic analysis, zircon U-Pb and potassium-bearing mineral Ar-Ar dating geochronology. The detailed conclusions are described as follows:
     1. This thesis systematically summarized the geological characteristics and metallogenic conditions of the typical deposits in Southern Tibet Au-Sb metallogenic belt.
     Ore bodies in Chalapu Au deposit are mainly controlled by E-W faults. Three different ore type, alteration type, breccia type and quartz vein type, are exsit in Chalapu Au deposit. The gold appears in native gold and invisible gold minerals, later of which are exist in arsenopyrite and pyrite. The main alteration minerals are quartz, sericite, illite, chlorite, the main metal minerals are arsenopyrite and pyrite. The ore-forming fluid temperature rang from164℃to308℃, with salinities of2.7wt%NaCl-9.3wt%NaCl, The ore-forming depth is about1.1~3.8Km (hypabyssal environment). The characteristic of ore-forming fluid in Chalapu Au deposit is similar with metamorphic water, but added with some earth surface water. Hydrothermal alteration is the key factor to cause metal precipitation, secondly are fluid cooling and fluid mixing.
     Mazhala Au-Sb deposit is controlled by interlaminar fracture zone. The mainly ore type are quartz (calcite) vein and alteration type. The main alteration minerals are quartz, carbonate, sericite, chlorite; where main metal minerals are arsenopyrite, stibnite, pyrite, etc. gold mainly appears in native gold, only a litter of gold exist in arsenopyrite, stibnite, pyrite as invisible gold. The temperature of ore-forming fluid in Mazhala Au-Sb deposit rang from134℃to324℃, with salinities of0.41wt%NaCl-7.81wt%NaCl, estimated ore-forming depth is about1.1~2.8Km (hypabyssal environment). The mechanism of metal precipitation and ore-forming fluid source are similar with Chalapu deposit. Characteristic of ore-forming fluids are similar with metamorphic water, but mixed with earth surface water. The hydrothermal alteration, cooling and fluid mixing are the main factors to cause mineralization.
     Cheqiongzhuobu Sb deposit is controlled by S-N high-angle normal faults. The mainly ore types are stibnite quartz vein and stibnite calcite vein. The main alteration minerals in this deposit are quartz and calcite; the main metal mineral is stibnite. The temperature of ore-forming fluid is between121℃and234.5℃, with salinities of1.40wt%NaCl-4.65wt%NaCl. Estimated depth of Sb mineralization is about0.6-1.9Km (ultra-hypabyssal environment). The ore-forming fluids are mainly earth surface water, but appeared trend of mixing with organic water. The cooling and fluid mixing are the main factors for Sb metal deposits.
     Zhaxikang Pb-Zn polymetallic deposit are controlled by S-N high-angle normal faults. The ore types contain sphalerite-Fe-Mn carbonate vein, galena-Fe-Mn carbonate vein, stibnite quartz vein and cinnabar stibnite quartz vein. The main alteration minerals are quartz, rhodochrosite, calcite, siderite, mica; main metal minerals are sphalerite, galena, stibnite, arsenopyrite and pyrite. The temperature of ore-forming fluid is between211℃and328℃, with salinities of0.70wt%NaCl-12.51wt%NaC. Estimated mineralization depth is about0.4~1.1Km (ultra-hypabyssal environment). The ore-forming fluids are mainly organic water, but mixed with Tibet surface water. The mineralization mechanism is similar with stibnite deposits, which are mainly caused by cooling and fluid mixing.
     2. Constrains the metallogenic epoch of Southern Tibet Au-Sb metallogenic belt. The diorite in Shalagang Sb deposit is formed at ca.23.6±0.8Ma, constrained by zircon U-Pb geochronology. This data indirectly restrict that mineralization time of stibnite-quartz veins, which cross cut diorite, is younger than23.6±0.8Ma. The hydrothermal activity time of Chalapu Au deposit is ca.20.43Ma, constrained by illite Ar-Ar geochronology. Zircon U-Pb geochronological age of diabase dike in Zhaxikang deposit is133.1Ma, which is consistent with the age of diabase dikes widely distributed in Tethyan Himalayan, indicate that Tethyan Himalaya was in a strong extension tectonic environment.
     3. Combined with previous study, there are two mineralization stages in Southern Tibet Au-Sb mellogenic zone:(l)Shear-zone related Au deposit in sy-collision stage. The ore-bodies are controlled by shear-zone and secondary faults, charactered with natural gold-quartzs veins. The representative deposits of this stage are Bangbu and Mayoumu Au orogenic deposits, which are formed during59Ma-42Ma.(2) Extention-relared Au, AuSb, Sb and PbZnAg polymetal mineralization in post-collision. The ore bodies are controlled by N-S high angle normal fault and E-W interlayer fragmentized fault belt, charactered with alteration type gold ore and hydrothermal vein type ore. The represented deposits of this stage are Shalagang, Cheqiongzhuobu and Zhaxikang deposits, which are formed during23.6Ma-18.7Ma.
     4. Tethyan Himalaya metallogenic structures model are established. The basin-orogeny transition district in Yamzho Yum Tso-zhegucuo-Puma Yun Tso passive continent rift basin, which are consisted by E-W striking faults (Lazi-Qiongduojiang suture belt, Rongbu fault, Luozha fault) and N-S striking stike-slip fault belt (Lejingkangsang, xiaba stike-slip fault belt and Zeri-Dongga extension stike-slip fault), are the favorable place for mineralization. The regional E-W structure and its secondary faults controlled the distribution of major Au and Au-Sb deposits; the regional N-S faults mainly controlled the distribution of Sb and Pb-Zn polymetallic deposits. The places, N-S faults interwith E-W faults, are potentional locations for Sb,Pb-Zn polymetallic deposits exploration.
     5. Three mineralization stage, three metallogenic series and five genetic deposit type are identified in Tethyan Himalaya. The three mineralization stage are (1) passive margin rift sy-sedimentary stage with organic-rich exhalative sediments and turbidite sediments;(2) Continent margin accretionary wedge sy-collision stage with dynamic metamorphism and ductile-brittle shear;(3) Post-collision stage with extension detachment, normal faults, and intermediate-felsic volcanic magmatic hydrothermal (include hot spring water) superimposition and rework. Three metallogenic series are (1) exhalative-sediment-rework related AuAs, CuZn, PbZnAg, PbZnAgMnFe metallogenic series;(2) orogenic HgSb、AuSb、AuAs metallogenic series related with ductile-brittle shear zone in accretionary complex rock;(3) Sub-volcanic magmatic hydrothermal (hot spring) related Hg→AsSb→AuAg→PbZnAg→PbZn→Cu metallogenic series. Five genetic deposit type are (1) exhalative sediment-rework type: including exhalative sediments-hot spring water superimposition rework type (Zhaxikang Zeri Pb-Zn polymetal mineralization), exhalative sediments-Sub-volcanic magmatic hydrothermal superimposition rework (Mazhala, zhegu, Jiangcang AuSb deposits);(2) Sub-volcanic magmatic hydrothermal type(Shalagang,Delong Sb deposits);(3) hot spring type (Cheqiongzhuobu, Yongri sb deposits);(4)Calin, Calin-ke type (Chalapu Au, Xiongqu Au deposit);(5) orogenic type (Bangbu, Xigong Au deposits).
     6. The metallogenic regularity, ore-controlling factors and "four factors of prospecting model" are summarized. Ore-forming materials are mainly derived from the black rock formation of Mesozoic sedimentary basins, only a litter comes from regional metamorphic basement. Ore-forming fluids are from different partly mixed basin brine fluid, infiltrated surface water, metamorphic fluid and magma fluid. The Au, Au-Sb, Sb, Pb-Zn polymetallic deposits are distributed as a group and segment concentrate surrounded with Yamzho Yum Tso basin, and along the E-W and N-S regional fault belts. The most important prospecting criterias are the "four factors":sy-sediments black carborndum mudstone suits and mafic dikes; sy-collsion ductile-brittle shear and dynamic metamorphism; post-collision extension detachment or S-N strike slip normal faults; Miocene neutral-acidic volcanic magmatic rock or hot Springs activities.
     7. The study area are subdivided the into6metallogenic prospective areas.1. two class A prospective area:Mazhala-Zhaxikang Au-Sb polymetallic metallogenic prospective area (A1) and Luozha-Cuomei Sb metallogenic prospective area (A2).2. three class B metallogenic prospects:Langkazi Au metallogenic prospective area (B1), Shalagang-Kangma Sb metallogenic prospective area (B2) and Chalapu-Sananqulin Au metallogenic prospective area (B3).3. one class C prospective area:Bangbu-Bailu Au prospective area (C1).
引文
[1]Ahmad T, Harris N, Bickle M, et al.2000. Isotopic constraints on the structural relationships between the lesser Himalayan series and the high Himalayan crystalline series, Garhwal Himalaya. Geological Society of America Bulletin,112:467-477.
    [2]Arribas A and Gumiel P.1987. Antimony deposits in the Iberian Peninsula. Economic Geology 82:1453-1463.
    [3]Ashely PM, Cook NDJ, Hill RL, et al.1994. Shoshonitic lamprophyre dykes and their relation to mesothermal Au-Sb veins at Hill-groves, New South Wales Australia. Lithos, 32(3-4):349-272.
    [4]Assadi HH, Voncken JHL, Kuhnel RA, et al.2000. Petrography, mineralogy and geochemistry of the Zarshuran Carlin-like gold deposit, northwest Iran. Miner Deposita,35: 656-671.
    [5]Bakken BM, Hochella MF, Jr, et al.1989. High-resolution microscopy of gold in unoxidized ore from the Carlin mine, Nevada. Economic Geology,84:171-179.
    [6]Baptiste PJ and Fouquet Y.1996. Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13°N.Geochim Cosmochim Acta,60: 87-93.
    [7]Barbarin B.1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos,46(3):605-626.
    [8]Bardet M, Gerbaud G, Pape LL, et al.,2009. Nuclear Magnetic Resonance and Electron Paramagnetic Resonance as Analytical Tools To Investigate Structural Features of Archaeological Leathers. Anal. Chem.,81:1505-1511.
    [9]Barker LL, Hickey KA, Cline JS et al.2009. Uncloaking invisible gold:use of nanosims to evaluate gold, trace element, and sulfur isotopes in pyrite form carlin-type gold deposits. Economic Geology,104:897-905.
    [10]Bartos PJ.1987. Quiruvilca, Peru:Mineral zoning and timing of wall-rock alteration relative to Cu-Pb-Zn-Ag vein-fill deposition. Economic Geology,82:1431-1452.
    [11]Bartos PJ.1989. Prograde and retrograde base metal lode deposits and their relationship to underlying porphyry copper deposits. Economic Geology,84:1671-1683.
    [12]Baumgartner R, Fontbote L and Vennemann T.2008. Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at Cerro de Pasco, Peru. Economic Geology,103:493-537.
    [13]Bendezu R, Fontbote L and Cosca M.2003. Relative age of Cordilleran base metal lode and replacement deposits, and high sulfidation Au-(Ag) epithermal mineralization in the Colquijirca mining district, central Peru. Mineralium Deposita,38:683-694.
    [14]BergerB R and Henry RW.1989. Advances in the understanding of epithermal gold-silver deposits, with special reference to the Western United State[J]. Economic Geology,6: 405-423.
    [15]Brown LD, et al.1996. Bright Spots, Structure, and Magmatism in Southern Tibet from INDEPTH Seismic Reflection Profiling. Science,274:1688-1690
    [16]Burchfiel BC and Royden LH.1985. North-south extension within the convergent Himalayan region. Geology,13:679-682.
    [17]Burchfiel BC, Chen Z, Hodges KV, et al.1992. The south Tibetan detachment system, Himalayan orogen, extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geol. Soc. Amer. Special Paper 269:1-41.
    [18]Burg JP and Chen JM.1984. Tectonics and structural zonation of southern Tibet, China. Nature,311:219-223.
    [19]Chen Z, Liu Y, Hodges KV, et al.1990. Structural evolution of the Kangmar dome:a metamorphic core complex in southern Xizang (Tibet). Science,250:1552-1556.
    [20]Chung SL, Chu MF, Zhang YQ, et al.2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews,68: 173-196.
    [21]Chung SL, Liu DY, Ji JQ, et al.2003. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology,31:1021-1024.
    [22]Cline JS and Hofstra AA.2000. Ore-fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA. Eur J Mineral,12:195-212.
    [23]Cline JS, Bodnar RJ and Rimstidt JD.1992. Numerical simulation of fluid flow and silica transport and deposition in boiling hydrothermal solutions:application to epithermal gold deposits.J Geophys Res,96(B6):9085-9103.
    [24]Cline JS, Hofstra AH, Muntean JL, et al.2005. Carlin-type gold deposits in Nevada, USA:Critical geologic characteristics and viable models, in Hedenquist J and Thompson J, eds.100th Anniversary Volume:Society of Economic Geologists, Littleton, CO:451-484.
    [25]Cline JS.2001. Timing of gold and arsenic sulfide mineral deposition at the Getchell Carlin-type gold deposit, north-central Nevada. Economic Geology,96:75-89.
    [26]Coleman M and Hodges K.1995. Evidence for Tibetan plateau uplift before 14 Myr age from a new minimum age for east-west extension. Nature,374:49-52.
    [27]Corbett G.2002.Eithermal gold for explorationists. AIGJournal-Applied Geoscientific Practice and Research in Australia.1-26.
    [28]Craw D, Teagle DAH and Belocky R.1993. Fluid immiscibility in late-Alpine gold-bearing veins, Eastern and Northwestern European Alps. Mineral Deposita,28:28-36.
    [29]Crofu F, Hanchar JM, Hoskin PW, et al.2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry,53:469-495.
    [30]Daniel CG, Hollister LS, Parrish RR, et al.2003. Exhumation of the Main Central Thrust from lower crustal depths, Eastern Bhutan Himalaya. Journal of Metamorphic Geology,21: 317-334.
    [31]DeCelles P, Gehrels G, Quade J, et al.2000. Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science,288:497-499.
    [32]Dehm RM, Klemm DD, Muller C, et al.1983. Exploration for antimony deposits in southern Tuscany, Italy. Mineralium Deposita,18:423-434.
    [33]Dill HG.1998. Evolution of Sb mineralization in modern fold belts:A comparison of the Sb mineralization in the central Andes(Bolivia)and the western Carpathians(slovakia). Mineralium Deposita,33:359-378.
    [34]Dill HG and Horn EE.1996. The origin of a hypogene sarabauite-calcite mineralization at the Lucky Hill Au-Sb mine Sarawak, Malaysia. Journal of Southeast Asian Earth Sciences, 14:29-35.
    [35]Dill HG, Melcher F and Botz R.2008. Meso- to epithermal W-bearing Sb vein-type deposits in calcareous rocks in western Thailand; with special reference to their metallogenetic position in SE Asia. Ore Geology Reviews,34:242-262.
    [36]Dill HG, Pertold Z, et al.1997. Sediment-hosted and volcanic-hosted Sb vein minera lization in the Potosi region, Central Bolivia. Economic Geology,92:623-632.
    [37]Dill HG.1985. Antimoniferous mineralization from the Mid-European Saxothuringian Zone: mineralogy,geology,geochemistry and ensialic origin. Geologische Rundschau 74:447-466.
    [38]Ding L, Kapp P, Zhong DL, et al.2003. Cenozoic volcanism in Tibet:evidence for a transition from oceanic to continental subduction. Journal of Petrology,44:1833-1865.
    [39]Ding L, Zhong DL, Yin A, et al.2001. Cenozoic st ructural and metamorphic evolution oft he eastern Himalayan syntaxis (NamcheBarwa). Earth and Planetary Science Letters,192: 423-438.
    [40]Edwards MA, Harrison TM.1997. When did the roof collapse Late Miocene north south extension in t he High Himalaya revealed by Th-Pb monazite dating of t he Khula Kangri granite. Geology,25:543-546.
    [41]Emsbo P and Hofstra AH.2003. Origin and significance of post dissolution collapse breccias cemented with calcite and barite at the Meikle gold deposit, northern Carlin trend, Nevada. Economic Geology,98:1243-1252.
    [42]Englin B, Kapan Y, Ilyurt S, et al.2006. ESR dating of Soma (Manisa, West Anatolia, Turkey) fossil gastropoda shells:Nuclear Instruments and Methods in Physics Research B, 243:397-406.
    [43]England PC and Houseman GA.1989. Extension during continental convergence, with application to the Tibetan Plateau. J Geophys Res,94:17561-17579.
    [44]England PC and Houseman GA.1988. The mechanics of the Tibetan plateau. Phil Tans R Soc Lond,326:301-320.
    [45]Fard M, Rastad E and Ghaderi M.2006. Epithermal Gold and Base Metal Mineralization at Gandy Deposit, North of Central Iran and the Role of Rhyolitic Intrusions. Journal of Sciences Islamic Republic of Iran 17(4):327-335.
    [46]Frank W, Grasemann B, Guntli P, et al.1995. Geological map of the Kishwar Chamba Kulu region (NW Himalayas India). Jahrbuch der Geologischen Bundesanstalt,138:299-323.
    [47]Gaetani M and Garzanti E. Multicyclic history of the northern India continental margin (northwestern Himalaya). The American Association of Petroleum Geologists Bulletion, 1991,75:1427-1446.
    [48]Gammons CH and Williams-Jones AE.1997. Chemical mobility of gold in the porphyry-epithermal environment. Economic Geology,92:45-59.
    [49]Gansser A.1964. The geology of the Himalayas. New York; Wiley Interscience:1-289.
    [50]Gariepy C, Allegre C, Xu R.1985. The Pb isotope geochemistry of granitoids from the Himalaya-Tibet collision zone:imp lications for crustal evolution. Earth and Planetary Science Letters,74:220-234.
    [51]Goldfarb RJ, Baker T, Dube B, et al.2005. Distribution, character, and genesis of gold deposits in metamorphic terranes. Economic Geology,100th Anniveraery Volume:407-450.
    [52]Goldfarb RJ, Groves DI and Gardoll S.2001. Orogenic gold and geologic time:a global synthesis. Ore Geology Reviews,18:1-75.
    [53]Groves DI and Vielreicher NM.2001. The Phalabowra (Palabora) carbonatite-hosted magnetite-copper sulphide deposit, South Africa:An end member of the iron oxide copper-gold-rare earth element group? Mineralium Deposita,36:189-194.
    [54]Groves DI, Goldfarb RJ, Gebre-Mariam H, et al.1998. Orogenic gold deposits-a proposed classification in the context of their crustal distribution and relationship to other gold deposit type. Ore Geology Review,13:7-27.
    [55]Groves DI, Goldfarb RJ, Robert F, et al.2003. Gold deposits in metamorphic belts: Overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology,98:1-29.
    [56]Groves DI.1993. The crustal continuum model for late-Archaean lode gold deposits of the Yilgarn block, Western Australia. Mineralium Deposita,28:366-374.
    [57]Grujic D, Hollister LS, Parrish RR.2002. Himalayan metamorphic sequence as an orogenic channel:insight from Bhutan. Earth and Planetary Science Letters,198:177-191.
    [58]Grim R and Beaumont P.2001. Border Cave revisited:a revised ESR chronology. Journal of Human Evolution,40:46-482.
    [59]Grun R, Beaumont PB and Stringer CB.1990. ESR dating evidence for early modern humans at Border Cave in South Africa. Nature:344,537-539.
    [60]Grun R.1989. Electron Spin Resonance (ESR) Dating. Quaternary International,1:65-109.
    [61]Giggenbach WF.1992. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495-510
    [62]Hacker BR, Ratshbacher L,Webb L, et al.1998. U/Th Zircon ages constrain the architecture of the ultrahigh-pressure Qinlin-Dabie Orogen, China. Earth Planet Sci Lett,161:215-230.
    [63]Hagemann SG, Luders V.2003. P-T-X conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits, Western Australia:conventional and infrared microthermometric constraints. Mineralium Deposita 38:936-952.
    [64]Hanchar JM and Miller CF.1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images:Implications for interpretation of complex crustal histories. Chemical geology,110:1-13.
    [65]Hanchar JM and Rudnick RL.1995. Revealing hidden structures:The application of cathodoluminescence and back-scatter electrical imaging to dating zircons from lower crustal xenoliths. Lithos,36:289-303.
    [66]Harrison TM, Copeland P and Kidd Wand Lovera O M.1995. Activation of the Nyainqentanglha Shear Zone, applications for uplift of the southern Tibet Plateau. Tectonics, 14:658-676.
    [67]Harrison TM, Copeland P, Kidd W S F, et al.1992. Raising Tibet. Science,255:1663-1670.
    [68]Harrison TM, Grove M, McKeegan KD, et al.1999. Origin and episodic emplacement of the Manaslu instrusive complex, Central Himalaya. Journal of Petrology,40:3-19.
    [69]Harrison TM, Mckeegan KD and Le Fort P.1995. Detection of inherited Monazite in the Manaslu leucogranite by 208Pb-232Th ionmicroprobe dating, crystallization age and tectonic implication. Earth Planet. Sci. Lett,133:271-282.
    [70]Hayashi K and Ohmoto H.1991. Solubility of gold in NaCl and H2S-bearing aqueous solutions at 250℃~350℃. Geochim Cosmochim Acta,55:2111-2126.
    [71]Heald P, Foley NK, Hayba DO. Comparative anatomy of volcanic -hosted ep ithermal deposits:acid-sulfate and adularia-sericite types. Economic Geology,1987,82 (1):1-26.
    [72]Hedenquist JW and Lowenstern JB.1994. The role of magmas in the formation of hydrothermal ore deposits. Nature,370:519-527.
    [73]Hedenquist JW, Arribas A, Jr, et al.1998. Evolution of an intrusion-centered hydrothermal system:Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Economic Geology,93:373-404.
    [74]Heinrich CA, Driesner T, Stefansson A, et al.2004. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology,32: 761-764.
    [75]Hennig GJ and Grun R.1983. ESR dating in Quaternary geology. Quaternary Science Reviews,2:157-238.
    [76]Hodges KV, Hames WE, Olszewski WJ, et al.1994. Thermobarometric and Ar/Ar geochronologic constraint on Eohimalayan metamorphism in the Dinggy area, southern Tibet. Contributions to Mineralogy Petrology,117:151-163.
    [77]Hodges KV.2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geol. Sco. Am. Bull,112:324-350.
    [78]Hofstra AH and Cline JS.2000. Characteristics and models for Carlin type gold deposits. Reviews in Economic Geology,13:163-220.
    [79]Hofstra AH, Leventhal JS, Northrop HR, et. al.1991. Genesis of sediment-hosted disseminated gold deposits by fluid mixing and sulfidation:Chemical reaction path modeling of ore-depositional process documented in the JerrittCanyon district, Nevada. Geology,19:36-40.
    [80]Honfstra AH and Cline JS.2000. Characteristics and models for Carin-type gold depists. Reviews in Economic Geology,13:163-220.
    [81]Hou ZQ and Nigel JC.2009. Metallogenesis of the Tibetan collisional orogen:A review and introduction to the special issue. Ore Geology Reviews,36:2-24.
    [82]Hou ZQ, Gao YF, Qu XM, et al.2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220:139-155.
    [83]Hu RZ, Burnard PG, Turner G, et al.1998. Helium and argon isotope systematics in fluid inclusions of Machangqing copper deposit in west Yunnan Province, China. Chem Geol, 146:55-63.
    [84]Ikeya M and Ohmura K.1981. Dating of fossil shells with electron spin resonance. Journal of Geology,89:247-251.
    [85]Ilchik RP and Barton MD.1997. An amagmatic origin of Carlin-type gold deposits. Economic Geology,92:269-288.
    [86]Jeffrey Mervis.1995. The Right Ties Can Save LIVES and Move Mountains. Science, 270:1144-1145
    [87]Jia YF, Kerrich R and Goldfarb RJ.2003. Metamorphic origin of ore-forming fluids for orogenic gold-bearing quartz vein systems in the North American Cordillera:constraints from a reconnaissance study of δ15N,δD, and δ18O. Economic Geology,98(1):109-123.
    [88]Jiang SH, Nie FJ, Hu P et al.2009. Mayum:an orogenic gold deposit in Tibet, China. Ore Geology Reviews,36:160-173.
    [89]Jiang SH, Nie FJ, Hu P, et al.2006. An important spreading event of the Neo-Tethys ocean during late Jurassic and early Cretaceous:evidence from the zircon U-Pb SHRIMP dating on the diabase in Nagarze, southern Tibet. Acta Geologica Sinica.80:522-527.
    [90]Jiang SH. and Nie FJ.2010. Two stages of gold mineralization in Tibet. Goldschmidt Conference Abstracts. A465
    [91]Jiang SY, Slack JF and Palmer MR.2000. Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit, British Columbia. Geology,28:751-754.
    [92]Johnston MK and Ressel MW.2004. Controversies on the origin of world-class gold deposits, Pt. Ⅰ:Carlin-type gold deposits in Nevada, Ⅱ. Carlin-type and distal disseminated Au-Ag deposits:Related distal expressions of Eocene intrusive centers in north-central Nevada. Society of Economic Geologists Newsletter,59:12-14.
    [93]Joraleman P.1951. The occurrence of gold at the Getchell mine, Nevada. Economic Geology,46:276-310.
    [94]Kerrich R, Goldfarb RJ, Groves DI, et al.2000. The characteristics, oringins and geodynamic setting of superigiant gold metallogenic provinces. Science in China Series D, 43 (Supp.):1-68.
    [95]Khan MA, Lal JK, Chandra S, et al.1991. Geochemical appraisal of possible mineralization of noble metals in the rocks of Bijawar Group in Sonbhandra district, Uttar Pradesh. Records Geological Survey of India:124-8,111-113.
    [96]Kishida A, Kerrich R.1987. Hydrothermal alteration zoning and gold concentration at the Kerr-Addison Archean lode deposit, Kirkland Lake, Ontario.Econ Geol,82:649-690.
    [97]Kolb J, Hellmann A, Rogers A, et al.2004. The role of a transcrustal shear zone in orogenic gold mineralization at the Ajjanahalli Mine, Dharwar Craton, south India. Economic Geology,99(4):743-759.
    [98]Koppers AAP.2002. ArArCALC-software for 40Ar/39Ar age calculations. Computers & Geosciences,28(5):605-619.
    [99]Kretshmar U. and Scott SD.1976. Phase relations involving arsenopyrite in the system Fe-As-S and their application. Canadian Mineralogist,14:364-386.
    [100]Krupp RE, Seward TM.1990. Transport and deposition of metals in the Rotokawa geothermal system, New Zealand. Mineral Deposita,25:73-81.
    [101]Leach DL, Hofstra AH, Church SE, et al.1998. Evidence for Proterozoic and Late Cretaceous-early Tertiary ore-forming events in the Coeurd'Alene District, Idaho and Montana. Economic Geology; 93:347-359. DOI:10.2113/gsecongeo.93.3.347
    [102]Lee J, Hacker BR, Dinklage WS, et al.2000. Evolution of the Kangmar Dome, southern Tibet:structural, petrologic and thermochronologic constraints. Tectonics,19: 872-895.
    [103]Lefort P.1975. Himalayas-collided range-present knowledge of continental arc. American Journal of Science, A275:1-44.
    [104]Lefort P.1996. Evolution of the Himalaya[M]//Yin A, Harrison TM. The Tectonics of Asia. New York:Cambridge University Press:95-106.
    [105]Li JW, Vasconcelos PM and Zhang J,2003.40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold province, eastern China. Journal of Geology,111:741-751.
    [106]Li JW, Vasconcelos PM, Zhang W, et al.2007. Timing and duration of supergene mineralization at the Xinrong manganese deposit, western Guangdong Province, South China:cryptomelane 40Ar/39Ar dating. Mineralium Deposita,42:361-383.
    [107]Liao ZL, Mo XX, Pan GT, et al.2007. Spatial and Temporal Distribution of Peraluminous Granites in Tibet and Its Tectonic Significance. Journal of Asian Earth Sciences.29(2-3):378-389.
    [108]Ludwig KR.1999. Using Isoplot/EX, Version2, A Geochronolgical Toolkit for Microsoft Excel.Berkeley:Berkeley Geochronological Center Special Publication, la:47
    [109]Ludwig KR.2001. Squid 1.02:A user manual.Berkeley:Berkeley Geochronological Center Soecial Publication,2-19
    [110]Ludwig KR. Squid 1.02:A user manual.Berkeley:Berkeley Geochronological Center Soecial Publication,2001.2-19
    [111]Mao JW, Yang JM, Qu WJ, et.al.2003. Re-Os Age of Cu-Ni Ores from the Huangshandong Cu-Ni Sulfide Deposit in the East Tianshan Mountains and Its Implication for Geodynamic Process. Acta Geologic Sinica,77(2):220-226.
    [112]Masterman GJ, Cooke DR, Berry RF, et al.2005. Fluid chemistry, structural Setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northern Chile. Economic Geology,100:835-862.
    [113]McCafery R and Nabelek J.1998. Role of oblique convergence in the active deformation of the Himalaya and southern Tibetan Plateau. Geology,26:691-694.
    [114]Miao LC, Qiu YM, McNaughton N, et al.2002. SHRIMP U-Pb zircon geochronology of granitoids from Dongping area, Hebei province, China:constraints on tectonic evolution and geodynamic setting for gold metallogeny. Ore Geology Reviews,19:187-204.
    [115]Mo X, Zhao Z, Zhou S, et al.2002. Evidence for timing of the initiation of India-Asia collision from igneous rocks in Tibet. EOS Trans,83:47.
    [116]Molnar P and Tapponnier P.1974. Active tectonics of Tibet. Jour. Geophys. Res.,83: 5361-5375.
    [117]Molodkov A.1989. The problem of long-term fading of absorbed palaeodose on ESRdating of Quaternary mollusc shells. Applied Radiation and Isotopes,40:1087-1093.
    [118]Muntean JL and Einaudi MT.2000. Porphyry gold deposits of the Refugio district, Maricunga belt, northern Chile. Economic Geology,95:1445-1472.
    [119]Muntean JL., and Einaudi, M.T.,2001. Porphyry-epithermal transition:Maricunga belt, northern Chile:Economic Geology, v.96, p.743-772.
    [120]Murphy MA, Harrsion TM, Durr SB, et al.1997. Significant crustal shortening in southcentral Tibet prior to the Indo-Asian collision. Geology,25:719-722.
    [121]Murphy MA, Yin A, Kapp P, et al.2002. Structural evolution of the Gurla Mandhata detachment system, southwest Tibet:implications for the eastward extent of t he Karakoram fault system. Geological Society of America Bulletin,114:428-447.
    [122]Nelson KD, Cogan M, Wu C, et al.1996. Partially molten middle crust beneath southern Tibet; Synthesis of Project INDEPTH results. Science,274(5293),1684-1688.
    [123]Nesbitt K, Muehlenbachs and Murowchick JB.1989. Genetic implications of stable isotope characteristics of mesothermal Au deposits and related Sb and Hg deposits in Canadian Cordillera, Econ. Geol.84:1489-1506.
    [124]Nutman AP, Green DH, Cook CA, et al.2001. SHRIMP U-Pb zircon dating of exhumation of the Lizard peridotite and its emplacement over crustal rocks:Constraints for tectonic models. Journal of the Geological Society,158:809-820.
    [125]Nutman AP, Green DH and Cook CA.2001. SHRIMP U-Pb zircon dating of exhumation of the Lizard peridotite and its emplacement over crustal rocks:Constraints for tectonic models. Journal of the Geological Society,158:809-820.
    [126]Pan GT and Ding J.2004. Geological map (1:1500000) of Qinghai-Xizang (Tibetan) Plateau and adjacent areas. Chengdu Cartographic Publising House, Chengdu:1-133.
    [127]Pan Y and Kidd WSF.1993. Nyainqentanghla shear zone:A late Miocene extensional detachment in the southern Tibetan Plateau. Geology,20:775-778.
    [128]Parrish R and Hodges V.1996. Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. Geological Society of America Bulletin,108:904-911.
    [129]Patino Douce AE and McCarthy TC.1998. Melting of crustal rocks during continental collision and subduction. In:When continents collide:Geodynamics and Geochemistry of Ultra-high Pressure Rocks, edited by B.R. Hacker and J.G. Liou, Kluwer Academic Publishers, Dordrecht,27-55.
    [130]Qin KZ, Tosdal R, Li GM, et al.2005. Formation of the Miocene porphyry Cu (Mo-Au) deposits in the Gangdese arc, southern Tibet, in a transitional tectonic setting. In:Zhao CS and Guo BJ editors:Mineral Deposit Research:Meeting the Global Challenge. China land publishing House,3:44-47.
    [131]Reich M, Kesler SE, Utsunomiya S, et al.2005. Solubility of gold in arsenic pyrite. Geochimicaet Cosmochimica Acta,69(11):2781-2796.
    [132]Reich M, Kesler SE, Utsunomiya S., et al.2005. Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta,69:2781-2796.
    [133]Richards A, Parrish R, Harris N, et al.2006. Correlation of lithotectonic units across the eastern Himalaya, Bhutan. Geology,34:341-344.
    [134]Robyr M, Vannay JC, Epard JL, et al.2002. Thrusting, extension, and doming during the polyphase tectonometamorphic evolution of the High Himalayan Crystalline Zone in NW India. Journal of Asian Earth Sciences,21:221-239.
    [135]Rowley DB, Xue F and Tucker RD.1997. Ages of ultra-high pressure metamorphic and source orthognisses from the eastern Dabie Shan:U-Th zircon geochronology. Earth Planet Sci Lett,151:191-203.
    [136]Rye RO.2005. A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chemical Geology,215: 5-36.
    [137]Sheppard SMF.1986. Characterization and isotopic variations in natural waters. In: Valley JW, Taylor HP Jr, O'Neil JR (eds) Stable isotopes in high temperature geological processes. Mineral Soc Am Rev Mineral 16:165-184
    [138]Salier BP, Groves DI, McNaughton NJ, et al.2005. Geochronological and stable isotope evidence for widespread orogenic gold mineralization from a deep-seated fluid source at ca 2.65Ga in the Laverton Gold Province, Western Australia. Economic Geology, 100(7):1363-1388.
    [139]Satarugsa P and Johnson RA.2000. Cenozoic tectonic evolution of the Ruby Mountains metamorphic core complex and adjacent valleys, northeastern Nevada:Rocky Mountain. Geology,35:205-230.
    [140]Sawkins FJ.1972. Sulfide ore deposits in relation to plate tectonics. Journal of Geology,80:377-397.
    [141]Scharer U, Xu RH and Allegre CJ.1986. U-(Th)-Pb systematic and ages of Himalayan leucogranites, South Tibet. Earth and Planetary Science Letters,77:35-48.
    [142]Searle M, Windley B, Coward M, et al.1987. The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin,98:678.
    [143]Searle M.1995. The rise and fall of Tibet. Nature,347:17-18.
    [144]Searle MP, Parrish RR, Hodges KV, et al.1997. Shisha Pangma leucogranite, South Tibetan Himalaya:Field relations, geochemistry, age, origin and emplacement. Journal of Geology,105:295-317.
    [145]Searle MP. 1996. Cooling history, erosion, eztbamalion, and kinematics of Hinzalaya-Karakoram-Tibet orogenic belt //Yin A, Harrison TM. The tectonics of Asia. New York:Cambridge University Press:109-137.
    [146]Searle MP. 1999. Extensional and compressional fault s in t he Everest Lhot se massif, Khumbu Himalaya, Nepal. Journal of the Geological Society, London,156:227-240.
    [147]Seeber L and Pecher A.1998. Strain partitioning along the Himalayan arc and the Nanga Parbat antiform. Geology,26:791-794.
    [148]Seward T M.1984. The transport and deposition of gold in hydrothermal system. Geol Soc Of Zimbabwe, Special publication, (1):165-181.
    [149]Sillitoe RH and Bonham HF.1990. Sediment-hosted gold deposits:Distal products of magmatic-hydrothermal systems. Geology,18:157-161.
    [150]Sillitoe RH and Hedenquist JW.2003. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious-metal deposits. Society of Economic Geologists and Geochemical Society, Special Publications,10:315-343.
    [151]Sillitoe RH.1973. The tops and bottoms of porphyry copper deposits. Economic Geology,68:799-815.
    [152]Sillitoe RH.1983. Enargite-bearing massive sulphide deposits high in porphyry copper systems. Economic Geology,78:348-352.
    [153]Sillitoe RH.1989. Gold deposits in Western Pacific Arcs:the magmatic connection. In: the geology of gold deposits:the perspective in 1988. Econ Geol Mono,6:274-291.
    [154]Sillitoe RH.2010. Porphyry Copper Systems. Economic Geology,105:3-41.
    [155]Simmons SF, Sawkins FJ and Schlutter DJ.1987. Mantle-derived helium in two Peruvian hydrothermal ore deposits. Nature,329:429-432.
    [156]Simon G, Kesler SE and Chryssoulis S.1999. Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada:Implications for the deposition of gold in Carlin-type deposits. Economic Geology,94:405-421.
    [157]Skinner AR.2000. ESR dating:is it still an "experimental" technique? Applied Radiation and Isotopes,52:1311-1316.
    [158]Spratt JE, Jones AG, Nelson KD. et al.2005. Crustal structure of the India-As ia collision zone, southern Tibet, from Indepth Mt investigations. Physic of the Earth and Planetary Interiors,150:227-237.
    [159]Springer JS.1985. Carbon in Archean rocks of the Abitibi belt (Ontario-Quebec) and its relation to gold distribition. CanJ Earth Sci,22:1945-1951.
    [160]Stefansson A and Seward TM.2004. Gold (I) complexing in aqueous sulphide solutions to.500℃ at 500 bar. Geochimica et Cosmochimica Acta 68(20):4121.
    [161]Stuart F, Turner G and Taylor R.1994. He-Ar isotope systematics of fluid inclusions: resolving mantle and crustal contributions to hydrothermal fluid. In:Noble Gas Geochemistry and Cosmochemistry. Tokyo Terra Scientific Publishing Company:261-277.
    [162]Stuart FM, Burnard PG, Taylor RP, et al.1995. Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, South Korea. Geochim Cosmochim Acta,59:4663-4673.
    [163]Stuart FM, Turner G, Duckworth RC, et al.1994. Helium isotopes as tracers of trapped hydrothermal fluids in ocean floor sulfides. Geology,22:823-826.
    [164]Sun XM, Wei HX, Zhai W, et al.2010. Ore-forming fluid geochemistry and metallogenic mechanism of Bangbu large-scale orogenic gold deposit in southern Tibet, China. ACTA PETROLOGICA SINICA 26(6):1672-1684.
    [165]Sylvester PJ.1998. post-collision strongly peraluminous granites[J]. Lithos.45:29-44.
    [166]Tappennier P, Mercier JL and ArmijoR.1986. On the mechanics of the collision between India and Asia. Collision Tectonics:115-157.
    [167]Tapponnier P, Peltzer G, Le Dain A, et al.1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology,10:611-616.
    [168]Taylor HP Jr.1974.The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69:843-883
    [169]Turner G and Stuart F.1992. Helium/ heat ratios and deposition temperatures of sulfides from the ocean floor. Nature,357:581-583.
    [170]Turner G, Wang SS.1992. Excess argon, crustal fluid and apparent isochrons from crushing Kfeldspar. Earth Planet Sci Lett,110:193-211.
    [171]Valencia VA, Eastoe C, Ruiz J, et al.2008. Hydrothermal evolution of the porphyry copper deposit at La Caridad, Sonora,. Mexico, and the Relationship with a Neighboring High-Sulfidation Epithermal Deposit. Economic Geology,103:473-491
    [172]Walker JD, Martin MW, Bowring SA, et al.1999. Metamorphism, melting, and extension:age constraint s from the High Himalayan slab of southeast Zanskar and northwest Lahaul. Journal of Geology,107:473-495.
    [173]Wan X, Jansa LF and Sarti M.2002. Cretaceous and Tertiary boundary stratain southern Tibet and their implication for India Asia collision. Lethaia,35(2):131-146.
    [174]Wei HX, Sun XM, Zhai W, et al.2010. He-Ar-S isotopic compositions of ore-forming fluids in the Bangbu large-scale gold deposit in southern Tibet, China. ACTA PETROLOGICA SINICA 26(6):1685-1691.
    [175]Wells JD and Mullens TE.1973. Gold-bearing arsenian pyrite determined by microprobe analysis, Cortez and Calin gold mines, Nevada. Econimic Geology,68:187-201.
    [176]Willems H, Zhou Z, Zhang B,et al.1996. Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet(Tingriarea, China). Geol Rundsch, 85:723-754.
    [177]Williams H, Turner S, Kelley S, et al.2001. Age and composition of dikes in Southern Tibet:New constraints on the timing of east-west extension and its relationship to postcollisionalvolcanism. Geology,29:339-342.
    [178]Williams IS and Claesson S.1987. Isotopic evidence for Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. II Ionmicroprobe zircon U-Th-Pb. Contribution to Mineralogy and Petrology, 97:205-207.
    [179]Williams IS.1998. U-Th-Pb geochronology by ion microprobe. In:Mickibben M A, Shanks W C, Ridley W I,eds., Applications of microanalytical techniques to understanding mineralizing processes,7:1-35.
    [180]Wu C, Nelson KD, Wortman G, et al.1998. Yadong cross structure and South Tibetan detachment in the east central Himalaya (89°-90°E). Tectonics,17:28-45.
    [181]Wu Jiada.1993. Antimony vein deposits of China. Ore Geology Reviews,8:213-232.
    [182]Xu WC, Zhang HF, Guo L, et al.2009. Miocene high Sr/Y magmatism, south Tibet: Product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos,114:293-306.
    [183]Yang SX, Blum N.1999. Arsenic as an indicator element for gold exploration in the region of the Xiangxi Au-Ab-W deposit, NW Hunan, PR China. Journal of Geochemical Exploration,66:441-456.
    [184]Yang ZS, Hou ZQ, Meng XJ, et al.2009. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen. Ore Geology Reviews, doi:10.1016/j.oregeorev.2009.03.005
    [185]Yang ZS, Hou ZQ, Meng XJ, et al.2009. Post-collisional Sb and Au mineralization related to the South Tibetan detachment system, Himalayan orogen. Ore Geology Reviews. DOI 10.1016/j.oregeorev.2009.03.005.
    [186]Yigit O.2009. Mineral deposits of turkey in relation to tethyan metallogeny: implications for future mineral exploration. Economic Geology,104:19-51.
    [187]Yin A and Harrison TM.2000. Geologic evolution of the Himalayan Tibetan orogen. Annual Review of Earth and Planetary Sciences,28:211-280.
    [188]Yin A, Harrison TM, Ryerson FJ, et al.1994. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. Jourmal of Geophysical Researth,99(B9): 18175-18207.
    [189]YIN A, Harrison TM.2000. Geologic evolution of the Himalayan-Tibet. Orogen Annu Rev Earth Planet Sci,28:211-280.
    [190]Yin A.2006. Cenozoic tectonic evolution of the Himalayan orogen as comtrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews,76:1-131.
    [191]Zen EA.1988. Phase relations of peraluminous granitic rocks and their petrogenetic implications. Ann. Rew. Earth Planet. Sci,16:21-51.
    [192]Zeng LS, Gao L, Dong CY, et al.2012. High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif, Southern Tibet. Gondwana Research.
    [193]Zhang JJ and Ding L.2003. Eas-west extension in Tibetan Plateau and its significance to tectonic evolution. Chinese Jour. Geol.,38(2):179-189.
    [194]Zhang JJ and Guo L.2007. Structure and geochronology of the southern Xamza-Dinggye rift and its relationship to the south Tibetan detachment system. Journal of Asian Earth Sciences,29:722-736.
    [195]Zhang JJ, Ding L, Zhong D, et al.2000. Orogen parallel extension in Himalaya, Is it the indicator of collapse or the product in process of compressive up lift. Chinese Sci. Bull, 45:114-119.
    [196]Zhang JJ, Guo L and Ding L.2002. Structural characteristics of middle and southern Xainza-Dinggye Normal Fault System and its relationship to Southern Tibetan Detachment System. Chinese Sci. Bull.,47:1063-1069.
    [197]Zhang ZM, Dong X, Santosh M, et al.2012. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet:Constraints on the origin and evolution of the north-eastern margin of the Indian Craton. Gondwana Research.
    [198]Zhao WJ, et al.1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet, Nature,366,557-559.
    [199]Zheng YY, Xue YX and Gao SB.2003. Copper-Polymetal Metallogenic Series and Prospecting Perspective of Eastern Section of Gangdise. Journal of China University of Geosciences,14(4):349-355.
    [200]Zheng YY, Zhang GY, Xu RK, et al.2007a. Geochronologic constraints on magmatic intrusions and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet. Chinese Science Bulletin,52(22):3139-3147.
    [201]Zhu DC, Chung SL, Mo XX, et al.2009. The 132 Ma Comei-Bunbury large igneous province:Remnants identified in present-day SE Tibet and SW Australia. Geology,37(7): 583-586.
    [202]安徽省地质调查院,2002.1:32万洛扎幅区域地质调查.
    [203]边千韬,丁林.2006.特提斯喜马拉雅带东段哲古错含金(砷)细粒石英闪长岩的发现及其意义.岩石学报,22(04):977-988.
    [204]陈静,何林.2007.西藏自治区隆子县查拉普岩金矿普查报告.1-70
    [205]陈懋弘,毛景文,陈振宇,等.2009.滇黔桂“金三角”卡林型金矿含砷黄铁矿和毒砂的矿物学研究.矿床地质,28(5):539-557.
    [206]陈衍景,陈华勇,刘玉琳,等.1999.碰撞造山过程内生矿床成矿作用的研究历史和进展.科学通报,44(16):1691-1689.
    [207]陈衍景.2006.造山型矿床、成矿模式及找矿潜力.中国地质,33:1181-1196.
    [208]陈智梁,刘宇平.藏南拆离系.特提斯地质,1996,20:31-51.
    [209]邓晋福,赵海玲,等.1994.白云母/二云母花岗岩形成与陆内俯冲作用.地球科学:中国地质大学学报,19(2):139-147.
    [210]杜安道,屈文俊,王登红,等.2007.辉钼矿亚晶粒范围内Re和187Os的失耦现象.矿床地质,26(5):572-581.
    [211]杜安道,赵敦敏,王淑贤,等.2001Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,20(4):247-252.
    [212]杜觉树,冯喜良,陈福忠,等.1993.西藏金矿地质.成都:西南交通大学出版社:1-177.
    [213]杜泽忠,顾雪祥,李关清,等.2011.藏南拉木由塔锑(金)矿床S、Pb同位素组成及指示意义.矿床地质,25(5):853-861.
    [214]范小平,多吉,温春齐,等.2005.西藏马攸木金矿床含金脉石英的40Ar/39Ar快中子活化定年及其地质意义.沉积与特提斯地质,25(4):33-36.
    [215]付伟,周永章,杨志军,等.2005.藏南多层位金锑含矿建造特征及其控矿因素制约.大地构造与成矿学,29(3):321-327.
    [216]高伟.2006.藏南拆离带沙拉岗锑矿床地质地球化学特征及成因机制研究.中国地质大学(北京)[硕士学位论文]:1-87.
    [217]郭磊,张进江,张波.2008.北喜马拉雅然巴穹隆的构造、运动学特征、年代学及演化.自然科学进展,18(6):640-651.
    [218]韩同林,P.达包尔叶,R.阿米尔饶.1984.试论藏南活动构造系与地热的关系.见:喜马拉雅地质.北京:地质出版社,45-56.
    [219]和钟铧,杨德明,王天武,等.2005.冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年.吉林大学学报(地球科学版),35(3):31-36.
    [220]侯增谦,吕庆田,王安建,等.2003.初论陆-陆碰撞与成矿作用.矿床地质,22(4):319-333.
    [221]侯增谦,曲晓明,王淑贤,等.2003.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用.中国科学(D辑),33(7):609-618.
    [222]侯增谦,高永丰,孟祥金,等.2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报,20(2):239-248.
    [223]侯增谦,李振清.2004.印度大陆俯冲前缘的可能位置:来自藏南和藏东活动热泉气体He同位素约束.地质学报,78(4):482-493.
    [224]侯增谦,杨竹森,徐文艺,等.2006a.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质,25(4):337-358.
    [225]侯增谦.曲晓明,杨竹森,等.2006b.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用.矿床地质,25(6):629-651.
    [226]侯增谦.2010.大陆碰撞成矿论.地质学报,84(1):30-59
    [227]胡瑞忠,毕献武,Turner G,等.1997.马厂箐铜矿床黄铁矿流体包裹体He-Ar同位素体系.中国科学D辑,27(6):503-508.
    [228]胡瑞忠,毕献武,Turner G,等.1997.云南马厂箐铜矿床氦同位素组成研究.科学通报,42(17):1542-1545.
    [229]胡瑞忠,钟宏,叶造军,等.1998.金顶超大型铅-锌矿床氦、氩同位素地球化学.中国科学D辑,28(3):208-213.
    [230]简平,刘敦一,张旗艺,等.2001.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年.地学前缘,10:439-456.
    [231]江思宏,聂凤军,胡朋,等.2007.藏南基性岩墙群的地球化学特征.地质学报,81(1):60-72.
    [232]江思宏,聂凤军,刘翼飞.2008.西藏马攸木金矿床的矿床类型讨论.矿床地质,(27)2:220-229.
    [233]江思宏,聂凤军,张义,等.浅成低温热液型金矿床研究最新进展.地学前缘,2004,11(2):401-411.
    [234]蒋映德,邱华宁,云建兵,等.2007.闪锌矿40Ar-39Ar真空击碎与阶段加热定年 技术.地球化学,36(5):457-466.
    [235]李德威,刘德民,廖群安,等.2003.藏南萨迎拉轨岗日变质核杂岩的厘定及其成因.地质通报,2003,22(5):303-307.
    [236]李光明,刘波,佘宏全,等.2006.西藏冈底斯成矿带南缘喜马拉雅早期成矿作用——来自冲木达铜金矿床的Re-Os同位素年龄证据.地质通报,25(12):1481-1487.
    [237]李光明,芮宗瑶.2004.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄.大地构造与成矿学,22(2):165-170.
    [238]李及秋,王柱念,叶万顺.2009.西藏自治区隆子县桑日则矿区铅锌多金属矿详查报告:1-127.
    [239]李金高,王全海,陈健坤,等.2002.西藏江孜县沙拉岗锑矿床成矿与找矿模式的初步研究.成都理工学院学报,29(5):533-538.
    [240]李金高,周祖翼,王全海.2001.西藏江孜县沙拉岗锑(金)矿区重力流沉积特征.成都理工学院学报,28(2):187-190.
    [241]李金高.2000.西藏中南部中生代大陆边缘复合式Sedex型锑、铜矿床研究成都理工学院博士学位论文.
    [242]李文博,黄智龙,王银喜,等.2004.会泽超大型铅锌矿田方解石Sm-Nd等时线年龄及其地质意义.地质论评,50(2):189-195.
    [243]梁兴中,高钧成.1999.断裂成矿年龄的α石英ESR研究.矿物岩石,1999,19(2):69-71.
    [244]廖忠礼,莫宣学,潘桂棠,等.2004.过铝花岗岩的研究动向和进展-兼论西藏过铝花岗岩.沉积与特提斯地质,24(2):22-29.
    [245]廖忠礼.2003.西藏南部过铝花岗岩的特征、成因及构造意义.北京:中国地质科学院博士学位论文.
    [246]林广春,马昌前.2003.过铝花岗岩的成因类型与构造环境研究综述.华南地质与矿产,2003(1):65-70.
    [247]刘琦胜,吴珍汉,叶培盛,等.2005.念青唐古拉花岗岩的同位素年龄测定及其地质意义.地质学报,79(3):44-50.
    [248]刘振声,王洁民.1994.青藏高原南部花岗岩地质地球化学.成都:西南交通大学出版社.
    [249]毛景文,杨建民,屈文俊,等.2002.新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义.床地质,21(4):323-330.
    [250]毛景文,张作衡,王义天,等.2002.华北克拉通周缘中生代造山型金矿床的氮同位素和氮含量记录.中国科学(D辑),32(9):705-716
    [251]孟祥金,杨竹森,戚学祥,等.2008.藏南扎西康锑多金属矿硅-氧-氢同位素组成及其对成矿构造控制的响应.岩石学报,24(07):1649-1655.
    [252]莫宣学,董国臣,赵志丹,等.2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,11(3):281-290.
    [253]莫宣学,赵志丹,邓晋福,等.2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘,10(3):135-148.
    [254]聂风军,胡朋,江思宏,等.2006.藏南邛多江地区二长花岗岩40Ar-39Ar同位素 年龄及其地质意义.岩石学报,22(11):2704-2710.
    [255]聂凤军,胡朋,江思宏,等.2005.藏南地区金和锑矿床(点)类型及其时空分布特征.地质学报,79(3):373-385.
    [256]聂凤军,胡朋,江思宏,等.2006.藏南邛多江地区花岗岩地球化学特征及成因类型[J].地质学报,80(9).1342-1354
    [257]潘桂棠,丁俊,姚冬生,等.2004.青藏高原及邻区1:150万地质图说明书.成都:成都地图出版社,1-130.
    [258]潘桂棠,莫宣学,侯增谦,等.2006.冈底斯造山带的时空结构及演化.岩石学报,22:521-533.
    [259]潘桂棠,王立全,朱弟成.2004.青藏高原区域地质调查中几个重大科学问题的思考.地质通报,23(1):12-19.
    [260]彭建堂,胡瑞忠,林源贤,等.锡矿山锑矿床热液方解石的SmNd同位素定年.科学通报,2002,47(10):759-792.
    [261]彭建堂,胡瑞忠.2001.湘中锡矿山超大型锑矿床的碳、氧同位素体系.地质论评,47(1):34-41
    [262]戚学祥,李天福,孟祥金,等.2009.藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用.岩石学报,24(7):1638-1648.
    [263]戚学祥,李天福,于春林.2008.藏南沙拉岗锑矿稀土和微量元素地球化学示踪及成矿物质来源.现代地质,22(2):162-172
    [264]邱华宁,彭良.1997.40A-39Ar年代学与流体包裹体定年.合肥:中国科学技术大学出版社:2426.
    [265]邱华宁,吴河勇,冯子辉,等.2009.油气成藏40Ar-39Ar定年难题与可行性分析.38(4):405-411.
    [266]裘碧波,朱弟成,赵志丹,等.2010.藏南措美残余大火成岩省的西延及意义.岩石学报26(07):2207-2216.
    [267]芮宗瑶,侯增谦,曲晓明,等.2003.冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质,22(30):217-225.
    [268]陕西省区调队,1995.1:20万加查幅区调报告.
    [269]宋彪,张玉海,万渝生,等.2002.锆石SHRIMP样品耙制作、年龄测定及有关现象讨论.地质论评,48(增刊):26-30.
    [270]孙晓明,陈文,王敏,等.2003.微细浸染型金矿激光微区40Ar/39Ar等时年龄测定:以长坑大型金矿为例.科学通报,48(12):1355-1358.
    [271]童劲松,刘俊,钟华明,等.2007.藏南洛扎地区基性岩墙群锆石U-Pb定年、地球化学特征及构造意义.地质通报,26(12):654-1665.
    [272]童劲松,钟华明,夏军,等.2003.藏南洛扎地区过铝质花岗岩的地球化学特征及构造背景.地质通报,22(5):308-318.
    [273]涂光炽,张玉泉,赵振华,等.1981.西藏南部花岗岩的特征和演化.地球化学,1981(1):1-7.
    [274]涂光炽,张玉泉,赵振华,等.1981.西藏南部花岗岩类的特征和演化.地球化学,10:1-7.
    [275]涂光炽,张玉泉.1982.西藏南部花岗岩类地球化学,北京:科学出版社.
    [276]涂光炽.2000.中国超大型矿床(Ⅰ).北京:科学出版社:147-153.
    [277]王根厚,周详,曾庆高,等.1997.西藏康马热伸展变质核杂岩构造研究.成都理工学院学报,24:62-67.
    [278]王军,张均,郑有业.2001.西藏南部马扎拉金锑矿成矿规律初探.黄金科学技术,9(4):5-11.
    [279]王军,张均.2001.西藏南部马扎拉金锑矿成矿特征及找矿方向.黄金地质,7(3):15-20.
    [280]王中刚,张玉泉,赵惠兰.1981.西藏南部花岗岩类的岩石化学研究.地球化学,10:19-25.
    [281]温春齐,多吉,孙燕,等.2004.西藏普兰县马攸木金矿床石英的40Ar/39Ar年龄及其地质意义.地质通报,23(7):686-688.
    [282]吴福元,黄宝春,叶凯,等.2008.青藏高原造山带的垮塌与高原隆升.岩石学报,24(01):1-30.
    [283]吴福元.2008.青藏高原造山带的垮塌与高原隆升.岩石学报,24:1-31.
    [284]吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,49(16):1589-1604.
    [285]西藏地勘局区域地质调查大队.2005.西藏自治区隆子县桑日则铅锌矿区地质普查报告:1-42.
    [286]西藏自治区地质矿产局.1993.西藏自治区区域地质志.北京:地质出版社,103-159.
    [287]西藏自治区地质矿产局.2004.1:25万隆子县幅区域地质调查报告.
    [288]肖庆辉,邓晋福,马大铨,等.2002.花岗岩研究思维与方法.北京:地质出版社:1-50.
    [289]徐永昌,沈平,陶明信,等.1996.东部油气区天然气中幔源挥发份的地球化学-氮资源的新类型沉积壳层幔源氮的工业储集.中国科学(D辑),26(1):1-8.
    [290]许志琴,杨经绥,姜枚等.1999.大陆俯冲作用及青藏高原周缘造山带的崛起.地学前缘,6(3):139-151.
    [291]许志琴,杨经绥,戚学祥等.2006.印度-亚洲碰撞-南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论.地质通报,25(1-2):1-14.
    [292]杨德明,黄映聪,戴琳娜,等.2005.西藏嘉黎县措麦地区含石榴子石二云母花岗岩锆石SHRIMP U-Pb年龄及其意义.地质通报,24(3):235-238.
    [293]杨坤光,梁兴中,谢建磊,等.2006.ESR定年:一种确定脆性断层活动年龄的方法原理与应用.地球科学进展,21(4):430-435.
    [294]杨奇荻.2011.藏南马扎拉成矿流体特征及矿床成因研究.中国地质大学工程硕士论文:1-60
    [295]杨竹森,侯增谦,高伟,等.2006.藏南拆离系锑金成矿特征与成因模式.地质学报,80(9):1377-1391.
    [296]业渝光.1992.电子自旋共振(ESR)测年方法简介.中国地质,(3):28-29.
    [297]尹安.2001.喜马拉雅-青藏高原造山带地质演化-显生宙亚洲大陆生长.地球学报, 22(3):193-230.
    [298]尹安.2006.喜马拉雅造山带新生代构造演化:沿走向变化的构造几何形态、剥露历史和前陆沉积的约束.地学前缘,13(5):416-516.
    [299]余正华.1991.青海省地球化学勘查队.浪卡子县幅H-46-25泽当幅H-46-2 1/20万地球化学图说明书:水系沉积物测量:1-72.
    [300]喻钢,杨刚,陈江峰,等.2005.辽东猫岭金矿中含金毒砂的Re-Os年龄及地质意义.科学通报,50(12):1248-1252.
    [301]翟裕生.1994.大型构造与超大型矿床.矿床地质,115-117.
    [302]张德全,党兴彦,佘宏全,等.2005.柴北缘-东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义.矿床地质,24(2):87-98.
    [303]张刚阳,张建芳,刘文浩,等.2008.西藏隆子县扎西康铅锌锑银多金属矿床野外地质调查报告:1-27.
    [304]张刚阳,郑有业,张建芳,等.2011.西藏沙拉岗锑矿控矿构造及成矿时代约束.岩石学报,027(7):2143-2149
    [305]张刚阳,郑有业,龚福志,等.2008.西藏吉如:与陆陆碰撞过程相关的斑岩铜矿成岩成矿时代约束.岩石学报,24(03):0473-0479
    [306]张宏飞,张利,赵志丹,等.2005.北喜马拉雅淡色花岗岩地球化学:区域对比,岩石成因及其构造意义.地球科学:中国地质大学学报,30:275-288.
    [307]张洪瑞,侯增谦,杨志明.2010.特提斯成矿域主要金属矿床类型与成矿过程.矿床地质,29(1):113-133.
    [308]张建芳,郑有业,张刚阳,等.2010.北喜马拉雅扎西康铅锌锑银矿床成因的多元同位素制约.地球科学,35(6):1000-1011.
    [309]张建芳.2010.北喜马拉雅扎西康铅锌锑银矿床成因研究.硕士学位论文:1-90.
    [310]张进江,丁林,钟大赉,等.1999.喜马拉雅平行于造山带伸展:是垮塌的标志还是挤压隆升过程的产物?科学通报,44:2031-2036.
    [311]张进江,丁林.2003.青藏高原东西向伸展及其地质意义.地质科学,38(2):179-189.
    [312]张进江,郭磊,丁林.2002.申扎-定结正断层体系中/南段构造特征及其与藏南拆离系的关系.科学通报,47:38-43.
    [313]张进江.2007.北喜马拉雅及藏南伸展构造综述.地质通报,26(6):639-650
    [314]张理刚.1985.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社.
    [315]张玉泉,戴橦谟,洪阿实.1981.西藏高原南部花岗岩类同位素地质年代学.地球化学,10:8-18.
    [316]张泽明,王金丽,赵国春,等.2008.喜马拉雅造山带东构造结南迦巴瓦岩群地质年代学和前寒武纪构造演化.岩石学报,24:1477-1487.
    [317]赵文津,赵逊,史大年,等.2002.喜马拉雅和青藏高原深剖面研究进展.地质通报,21(11):691-701.
    [318]赵振华,王一先,钱志鑫,等.1981.西藏南部花岗岩类稀土元素地球化学.地球化学,10:26-35.
    [319]郑明华等.1999西藏浪卡子地区岩金矿成矿地质条件、控矿因素及找矿模式研究 科研报告:1-98
    [320]郑淑蕙,张知非,倪葆龄,等.1982.西藏地热水的氢氧稳定同位素研究.北京大学学报,(1):99-106.
    [321]郑有业,陈静,赵永鑫,等.2001.西藏措美县马扎拉金锑矿控矿因素与成矿规律研究报告:1-121
    [322]郑有业,范文玉,张晓保,等.2003.西藏江孜-隆子金、锑多金属成矿带资源调查评价地质报告:1-98
    [323]郑有业,赵永鑫,王苹,等.2004.藏南金锑成矿带成矿规律研究及找矿取得重大进展.地球科学,29(1):44,68.
    [324]郑有业,高顺宝,程力军,等.2004.西藏冲江大型斑岩铜(铝金)矿床的发现及意义.地球科学,29(5):333-339.
    [325]郑有业,高顺宝,张大全,等.2006.西藏朱诺斑岩铜矿床发现的重大意义及启示.地学前缘,13(4):233-239.
    [326]郑有业,薛迎喜,程力军,等.2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学,29(1):103-108.
    [327]郑有业,张刚阳,许荣科,等.2007.西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束.科学通报,52(21):2542-2548.
    [328]郑有业,多吉,马国桃,等.2007.藏南查拉普岩金矿床特征、发现及时代约束.地球科学,32(2):185-189.
    [329]郑有业,多吉,马国桃,等.2007.藏南查拉普岩金矿床特征、发现及时代约束.地球科学,32(2):185-193.
    [330]中国地质大学(武汉)地调院,20031:25万定结县幅区调报告.
    [331]钟华明,夏军,童劲松,等.2004.洛扎县幅地质调查新成果及主要进展.地质通报,2004,23(526):451-457.
    [332]钟康惠,梁兴中,刘肇昌,等.2004.藏东三江构造带云南段α石英热活化ESR定年与新生代构造事件.地质通报,23(12):1231-1237.
    [333]周荣军,黄伟,龚宇,等.1996.1993年3月20日拉孜、昂仁间6.6级地震与西藏南北向地震构造带.四川地震,2:50-55.
    [334]周肃,方念乔,董国臣,等.2001.西藏林子宗群火山岩氩氩年代学研究.矿物岩石地球化学通报,20(4):317-319.
    [335]朱弟成,莫宣学,王立全,等.2008.新特提斯演化的热点与洋脊相互作用:西藏南部晚侏罗世-早白垩世岩浆作用推论.岩石学报,24(2):225-237.
    [336]朱弟成,莫宣学,赵志丹,等.2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘,16:1-20.
    [337]朱弟成,潘桂棠,莫宣学,等.2004.印度大陆和欧亚大陆的碰撞时代.地球科学进展,19:564-571.
    [338]朱弟成,潘桂棠,莫宣学,等.2005.特提斯喜马拉雅桑秀组英安岩锆石SHRIMP年龄及其意义.科学通报,50(4):375-379.
    [339]朱弟成,潘桂棠,王立全,等.2008.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报,27:458-468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700