用户名: 密码: 验证码:
梅毒螺旋体膜蛋白的表达、纯化及其免疫活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的
     梅毒螺旋体膜蛋白在细胞间接触、表面识别、信号转导、酶活性和运输等方面都扮演着重要的角色,通过对梅毒螺旋体重组抗原的研究有利于鉴别并筛选可用于梅毒早期实验室诊断及疫苗研制的候选抗原,同时对于深入研究梅毒的发病机制、了解在梅毒螺旋体感染过程中宿主-病原菌的相互关系,具有重要意义。然而,资料表明,对梅毒螺旋体膜蛋白的研究一直较为困难,研究结果也存在着争议,为此我们利用基因工程技术,采用大肠杆菌表达系统,分别对Tp0965、Tp0136及Tp0608三种蛋白进行表达,对表达出的蛋白进行相关免疫活性的检测,并探讨重组蛋白Tp0965作为包被抗原建立间接ELISA的方法应用于梅毒诊断的可行性。
     研究方法
     使用Tp Nichols标准株接种家兔睾丸,制备Tp Nichols菌株DNA, PCR扩增Tp0965、Tp0608基因,Tp0136基因采用全基因合成的方法;构建重组质粒pET-28a/Tp0965、Tp0136及Tp0608,分别进行BamHI/SaI1、BamHI/Hindlll及Ndel/Xhol双酶切鉴定,鉴定正确后大肠杆菌转化,IPTG诱导表达,用SDS-PAGE和Western blot鉴定,并纯化重组蛋白,BCA法检测重组蛋白浓度。用纯化的重组蛋白Tp0965、p0136免疫新西兰兔,并以该重组蛋白作为包被抗原建立间接ELISA法以检测免疫兔的多克隆抗体效价;Western blot检测重组的Tp0965、Tp0136及Tp0608与梅毒阳性血清的免疫反应。以重组蛋白Tp0965为包被抗原建立间接ELISA检测各期梅毒患者血清。
     研究结果
     (1)成功构建目的基因与E. coli表达质粒载体pET28,成功表达和纯化出具有较高纯度和浓度的膜蛋白Tp0965、Tp0136及Tp0608。(2)用重组蛋白Tp0136免疫新西兰兔,在免疫2周后即能检测到抗体的产生,免疫3次后产生高效价抗体;而重组蛋白Tp0965只有在免疫3次以后,才能刺激兔产生较低效价的抗体。(3) Westernblot实验显示三种重组蛋白Tp0965、Tp0136及Tp0608均能与梅毒阳性血清发生特异性反应,在电泳图上有特异性条带出现。(4)以重组蛋白Tp0965作为包被抗原建立间接ELISA诊断各期梅毒,阳性率高达94.6%,而与梅毒阴性血清不能结合。
     结论
     (1)能够通过大肠杆菌表达系统重组出具有全基因片段长度的膜蛋白Tp0965、 Tp0136及Tp0608; Tp0965可以高表达,但Tp0136及Tp0608纯化较为困难。(2)Tp0136能刺激机体产生多克隆抗体,具有较强的免疫原性,而Tp0965的免疫原性较弱。(3) Tp0965、Tp0136及Tp0608均具有一定的免疫反应性,能够与梅毒阳性血清反应。(4)重组蛋白Tp0965有作为候选抗原应用于梅毒血清学检测的可能,需要进一步扩大样本验证。
Background and Objective
     T. pallidum subsp. pallidum (T. pallidum) is the causative agent of syphilis. The membrane proteins of T. pallidum play an important role in the intercellular contact, surface identification, signal transduction, enzymatic activity and material transportation. Analysis of recombinant antigens of T. pallidum led to the identification of potential candidate antigens for vaccine development and syphilis serodiagnosis, and have significance in intensive study the pathogenesis of syphilis and the interaction of host-pathogen during infection. Previous studies have shown that such research was difficult for many reasons, and the results of research were also disputable. We use genetic engineering technique to produce recombinant membrane proteins Tp0965, Tp0136and Tp0608via vector bacteria E. coli, and then assess their antigenicity and immunoreactivity, also to evaluate the possibility of recombinant Tp0965as coating antigen in detecting syphilis.
     Methods
     T. pallidum subsp. pallidum (Nichols strain) was propagated and isolated and the genomic DNA was extracted. The genes of Tp0965and Tp0608were amplified by PCR from the genomic DNA. The complete gene of Tp0136was synthesized. Then the genes were subcloned into the expression vector pET28a to construct a recombinant plasmid, which were subsequently transfected into E. coli Rosetta for protein expression. These three recombinant proteins were expressed and purified by Ni-NTA affinity chromatography, and identified by using sodium dodecyl sulfate polyacrylamide gel electropheresis (SDS-PAGE) and Western blot. The reactivities of protein Tp0965were examined by immunoblot analysis. New Zealand rabbits were immunized with the recombinant Tp0965and Tp0136, and the polyclonal antibodies in sera of immunized rabbits were examined by indirect enzyme-linked immunosorbent assay (ELISA) to evaluate its immunogenicity. Also, the positive sera of patients with syphilis were examined by Western blot to identify the ability of their immunoreactions. At last, we conduct the indirect ELISA which was coated with recombinant Tp0965as the antigen to detect syphilis serum.
     Results
     The E. coli expression vectors of pET28with target genes were constructed successfully, and the recombinant proteins Tp0965,Tp0136and Tp0608were also successfully expressed with a higher purity and concentration. The higher titre of antibodies of ant-Tp0136in immuned rabbits was detected after the second time of immunization, however, only a low titer of antiserum against Tp0965in immune rabbits was detected after the third time of immunization. Western blot showed that there were specific bands appeared in gel which demonstrated the specific reactions of these three recombinant proteins with positive sera of syphilis. Furthermore, immunoblot assay showed that the recombinant protein Tp0965could be recognized by human syphilitic sera of all stages. Indirect enzyme-linked immunosorbent assay showed there were only4of74human syphilitic sera that failed to show reactivity to recombinant antigen Tp0965, and lack of reactivity of Tp0965to all28uninfected sera.
     Conclusions
     The recombinant membrane protein Tp0965,Tp0136and Tp0608with complete genes could be successfully expressed through E. coli expression system, and the recombinant Tp0965could be expressed with high level, however, the others expressed with lower level. The recombinant Tp0136has strong antigenicity, but Tp0965showed weak antigenicity during the rabbit immune test. All these three proteins showed immunoreactivity with human serum infected with T. pallidum. And the recombination Tp0965could be a candidate antigen which could be used to detect syphilitic serum.
引文
[1]王晓春,王千秋,郑和义.性传播感染.北京:科学出版社,2010:58-81.
    [2]World Health Organization.2001. Global prevalence and incidence of selected curable sexually transmitted diseases:overview and estimates. WHO/HIV_AIDS/2001.02. World Health Organization, New York, NY.
    [3]中国疾病预防控制中心性病控制中心.2010年全国梅毒与淋病疫情概况.性病情况简报,2011,25(2):1-2.
    [4]中国疾病预防控制中心性病控制中心.2011年全国梅毒与淋病疫情分析报告.性病情况简报,2012,26(1):7-15.
    [5]Tucker JD, Chen XS, Peeling RW. Syphilis and social upheaval in China. N Engl J Med,2010,362(18):1658-1661.
    [6]Treponema Pallidum Polypeptide Research Group.Norris SJ. Polypeptides of Treponema pallidum:progress toward understanding their structural, functional, and immunologic roles. Microbiol Rev,1993,57(3):750-779.
    [7]中华人民共和国卫生部.卫生部关于印发《中国预防与控制梅毒规划(2010-2020年)》的通知.http://www.moh.gov.cn/publicfiles/business/htmLfiles/mohjbyfkzj/s3585/201006/477 78.htm,2010-06-21.
    [8]Salazar JC, Hazlett KR, Radolf JD. The immune response to infection with Treponema pallidum, the stealth pathogen. Microbes Infect,2002,4(11):1133-1140.
    [9]Johnson RC, Ritzi DM, Livermore BP. Outer envelope of virulent Treponema pallidum,1973,8(2):291-295.
    [10]Blanco DR, Miller JN, Lovett MA. Surface antigens of the syphilis spirochete and their potential as virulence determinants. Emerg Infect Dis,1997,3(1):11-20.
    [11]Walker EM, Zampighi GA, Blanco DR, et al. Demonstration of rare protein in the outer membrane of Treponema pallidum subsp. pallidum by freeze-fracture analysis. J Bacteriol,1989,171(9):5005-5011.
    [12]Schroder NW, Eckert J, Stubs G, et al. Immune responses induced by spirochetal outer membrane lipoproteins and glycolipids. Immunobiology,2008,213(3-4): 329-340.
    [13]Lafond RE, Lukehart SA. Biological basis for syphilis. Clin Microbiol Rev, 2006,19(1):29-49.
    [14]Brinkman MB, McGill MA, Pettemson J, et al. A novel Treponema pallidum antigen, Tp0136, is an outer membrane protein that binds human fibronectin. Infect Immun 2008,6(5):1848-1857.
    [15]Fraser CM, Norris SJ, Weinstock GM, et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science,1998,281(5375):375-388.
    [16]Cox DL, Luthra A, Dunham-Ems S, et al. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun,2010,78(12):5178-5194.
    [17]Cameron CE. Identification of a Treponema pallidum lamininbinding protein. Infect Immun,2003,71(5):2525-2533.
    [18]Centurion-Lara A, Castro C, Barrett L, et al. Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and the protective immune response. J Exp Med,1999,189(4):647-656.
    [19]Houston S, Hof R, Francescutti T, et al. Bifunctional role of the Treponema pallidum extracellular matrix binding adhesin Tp0751. Infect Immun,2011, 79(3):1386-1398.
    [20]Liu S, Wang S, Wu Y, et al. Production of pro inflammatory cytokines in the human THP-1 monocyte cell line following induction by Tp0751, a recombinant protein of Treponema pallidum. Sci China Life Sci,2010,53(2):229-233.
    [21]杨珺,沈琳,张小贤,等.梅毒螺旋体Tp0136活性肽段的可溶性表达、纯化及鉴定.中华微生物学和免疫学杂志,2011,31(2):119-123.
    [22]McGill MA, Edmondson DG, Carroll JA, et al. Characterization and serologic analysis of the Treponema pallidum proteome. Infect Immun,2010,78(6):2631-2643.
    [23]黄国钧,黄勤挽.医学实验动物模型-制作与应用[M].1版.北京:化学工业出版社,2008:775.
    [24]P Collart, P Franceschini, P Durel. Experimental rabbit syphilis. Br J Vener Dis,1971,47:389-400.
    [25]Cox DL, Akins DR, Porcella SF, Norgard MV, Radolf JD. Treponema pallidum in gel microdroplets:a novel strategy for investigation of treponemal molecular architecture. Mol Microbiol 1995; 15:1151-1164.
    [26]Lukehart SA, Baker-Zander SA, Sell S. Characterization of lymphocyte responsiveness in early experimental syphilis. I. In vitro response to mitogens and Treponema pallidum antigens. J Immunol 1980; 124:454-460.
    [27]Giacani L, Godornes C, Puray-Chavez M, et al. TP0262 is a modulator of promoter activity of tpr Subfamily II genes of Treponema pallidum ssp. pallidum. Mol Microbiol.2009,72(5):1087-1099.
    [28]Giacani L, Sun ES, Hevner K, Molini BJ, Van Voorhis WC, Lukehart SA, Centurion-Lara A. Tpr homologs in Treponema paraluiscuniculi Cuniculi A strain. Infect Immun 2004;72:6561-6576.
    [29]J.萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南(第3版)[M].黄培堂等译.北京:科学出版社,2002.
    [30]部东旭,陈新民等,利用超声波粉碎机快速乳化佐剂、抗原混合物,中国免疫学杂志,1993,9(3):143.
    [31]SignalP 4.0:discriminating signal peptides from transmembrane regions. Petersen TN., Brunak S., von Heijne G. & Nielsen H. Nature Methods,8:785-786,2011
    [32]Radolf JD, Norgard MV, Schulz WW.Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Proc Natl Acad Sci USA,1989, 86(6):2051-2055.
    [33]Van Voorhis WC, Barrett LK, Lukehart SA, Schmidt B, Schriefer M, Cameron CE. Serodiagnosis of syphilis:antibodies to recombinant Tp0453, Tp92, and Gpd proteins are sensitive and specific indicators of infection by Treponema pallidum. J Clin Microbiol 2003; 41:3668-3674.
    [34]Hagedorn HJ, Kraminer-Hagedorn A, De Bosschere K, Hulstaert F, Pottel H, Zrein M. Evaluation of INNO-LIA syphilis assay as a confirmatory test for syphilis. J Clin Microbiol 2002; 40:973-978.
    [35]Sun A, Fan X, Shen X, Tang R, Yan J. Recombinant expression of the fusion antigen based on Treponema pallidum TpN17 and TpN47 epitope peptides and establishment and application of the associated ELISA. Sheng Wu Gong Cheng Xue Bao (Chin) 2009; 25(8):1187-1194.
    [36]Sambri V, Marangoni A, Simone MA, D'Antuono A, Negosanti M, Cevenini R. Evaluation of recomWell Treponema, a novel recombinant antigen-based enzyme-linked immunosorbent assay for the diagnosis of syphilis. Clin Microbiol Infect 2001; 7:200-205.
    [37]Young H, Moyes A, Seagar L, McMillan A. Novel recombinant-antigen enzyme immunoassay for serological diagnosis of syphilis. J Clin Microbiol 1998; 36: 913-917.
    [38]Zrein M, Maure I, Boursier F, Soufflet L. Recombinant antigen-based enzyme immunoassay for screening of Treponema pallidum antibodies in blood bank routine. J Clin Microbiol 1995; 33:525-527.
    [39]McKevitt M, Brinkman MB, McLoughlin M, Perez C, Howell JK, Weinstock GM, et al. Genome scale identification of Treponema pallidum antigens. Infect Immun 2005; 73:4445-4450.
    [40]Brinkman MB, McKevitt M, McLoughlin M, Perez C, Howell J, Weinstock GM, et al. Reactivity of antibodies from syphilis patients to a protein array representing the Treponema pallidum proteome. J Clin Microbiol 2006; 44:888-891.
    [41]伍宁,刘双全,吴移谋.梅毒螺旋体部分膜蛋白的研究现状.微生物学免疫学进展,2009,37(1):59-62.
    [42]刘双全,汪世平,肖勇健,等.梅毒螺旋体Tp0319重组蛋白的表达及免疫活性研究.中华皮肤科杂志,2010,43(5):332-335.
    [43]Van Voorhis WC, Barrett LK, Lukehart SA, et al. Serodiagnosis of syphilis: antibodies to recombinant Tp0453, Tp92, and Gpd proteins are sensitive and specific indicators of infection by Treponema pallidum. J Clin Microbiol,2003, 41(8):3668-3674.
    [44]Hoover KW, Radolf JD. Serodiagnosis of syphilis in the recombinant era:reversal of fortune. J Infect Dis.2011,204(9):1295-1296.
    [45]Tomson FL, Conley PG, Norgard MV,et al. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins. Microbes Infect,2007,9(11):1267-1275.
    [46]Liu S, Wang S, Wu Y, et al. Production of proinflammatory cytokines in the human THP-1 monocyte cell line following induction by Tp0751, a recombinant protein of Treponema pallidum.. Sci China Life Sci,2010,53(2):229-233.
    [1]Treponema Pallidum Polypeptide Research Group.Norris SJ. Polypeptides of Treponema pallidum:progress toward understanding their structural, functional, and immunologic roles. Microbiol Rev,1993,57(3):750-779.
    [2]Blanco DR, Miller JN, Lovett MA. Surface antigens of the syphilis spirochete and their potential as virulence determinants. Emerg Infect Dis,1997,3(1):11-20.
    [3]Radolf JD, Norgard MV, Schulz WW,Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum. Proc Natl Acad Sci USA,1989, 86(6):2051-2055.
    [4]Salazar JC, Hazlett KR, Radolf JD. The immune response to infection with Treponema pallidum, the stealth pathogen. Microbes Infect,2002,4(11):1133-1140.
    [5]Walker EM, Zampighi GA, Blanco DR, et al. Demonstration of rare protein in the outer membrane of Treponema pallidum subsp. pallidum by freeze-fracture analysis. J Bacteriol,1989,171(9):5005-5011.
    [6]Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006,124(4):783-801.
    [7]Sela MN, Bolotin A, Naor R, et al. Lipoproteins of Treponema denticola:their effect on human polymorphonuclear neutrophils. J Periodontal Res.1997,32(5):455-466.
    [8]Radolf, JD, Norgard MV, Brandt ME, et al. Lipoproteins of Borrelia burgdorferi and Treponema pallidum activate cachectin/tumor necrosis factor synthesis. Analysis using a CAT reporter construct. J Immunol,1991,147(6):1968-1974.
    [9]Schroder NW, Eckert J, Stubs G, et al. Immune responses induced by spirochetal outer membrane lipoproteins and glycolipids. Immunobiology,2008,213(3-4): 329-340.
    [10]Lafond RE, Lukehart SA. Biological basis for syphilis. Clin Microbiol Rev, 2006,19(1):29-49.
    [11]Brinkman MB, McGill MA, Pettersson J, et al. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun,2008,76(5):1848-1857.
    [12]Cullen PA, Cameron CE. Progress towards an effective syphilis vaccine:the past, present and future. Expert Rev Vaccines,2006,5(1):67-80.
    [13]Cullen PA, Haake DA, Adler B. Outer membrane proteins of pathogenic spirochetes. FEMS Microbiol Rev,2004,28(3):291-318.
    [14]Christiansen S. Protective layer covering pathogenic treponemata. Lancet,1963, 1(7278):423-425.
    [15]Tomson FL, Conley PG, Norgard MV, et al. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins. Microbes Infect,2007,9(11):1267-1275.
    [16]Alderete JF, Baseman JB. Surface characterization of virulent Treponema pallidum. Infect Immun,1980,30(3):814-823.
    [17]Baughn RE, Musher DM. Secondary syphilitic lesions. Clin Microbiol Rev, 2005,18(1):205-216.
    [18]Blanco DR, Champion CI, Exner MM, et al. Recombinant Treponemapallidum rare outer membrane protein 1 (Trompl) expressed in Escherichia coli has porin activity and surface antigenic exposure. J Bacteriol,1996,178(23):6685-6692.
    [19]Cox DL, Akins DR, Porcella SF, et al. Treponema pallidum in gel microdroplets:a novel strategy for investigation of treponemal molecular architecture. Mol Microbiol,1995,15(6):1151-1164.
    [20]Cunningham TM, Walker EM, Miller JN, et al. Selective release of the Treponema pallidum outer membrane and associated polypeptides with Triton X-114. J Bacteriol,1988,170(12):5789-5796.
    [21]Hsu PL, Chamberlain NR, Orth K,. Norgard.1989. Sequence analysis of the 47-kilodalton major integral membrane immunogen of Treponema pallidum. Infect Immun,1989,57(1):196-203.
    [22]Jones SA, Marchitto KS, Miller JN, et al. Monoclonal antibody with hemagglutination, immobilization, and neutralization activities defines an immunodominant,47,000 mol wt, surface-exposed immunogen of Treponema pallidum (Nichols). J Exp Med,1984,160(5):1404-1420.
    [23]Purcell BK, Chamberlain NR, Goldberg MS, et al. Molecular cloning and characterization of the 15-kilodalton major immunogen of Treponema pallidum. Infect Immun,1989,57(12):3708-3714.
    [24]Radolf JD, Chamberlain NR, Clausell A, et al. Identification and localization of integral membrane proteins of virulent Treponema pallidum subsp. pallidum by phase partitioning with the nonionic detergent Triton X-114. Infect Immun,1988, 56(2):490-498.
    [25]Stamm LV, Hodinka RL, Wyrick PB, et al. Changes in the cell surface properties of Treponema pallidum that occurduring in vitro incubation of freshly extracted organisms. Infect Immun,1987,55(9):2255-2261.
    [26]Stamm LV, Bassford PJ Jr.. Cellular and extracellular protein antigens of Treponema pallidum synthesized during in vitro incubation of freshly extracted organisms. Infect Immun,1985,47(3):799-807.
    [27]Swancutt MA, Riley BS, Radolf JD, et al. Molecular characterization of the pathogen-specific,34-kilodalton membrane immunogen of Treponema pallidum. Infect Immun,1989,57(11):3314-3323.
    [28]Cox DL, Chang P, McDowall AW, et al. The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum. Infect Immun, 1992,60(3):1076-1083.
    [29]Cox DL, Luthra A, Dunham-Ems S, et al. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun,2010,78(12):5178-5194.
    [30]Cox DL, Akins DR, Porcella SF, et al. Treponema pallidum in gel microdroplets:a novel strategy for investigation of treponemal molecular architecture. Mol Microbiol,1995,15(6):1151-1164.
    [31]Decaffmeyer M, Bennett MP, Desrosiers DC, et al. TP0453, a concealed outer membrane protein of Treponema pallidum, enhances membrane permeability. J Bacteriol,2005,187(18):6499-6508.
    [32]Luthra A, Zhu G, Desrosiers DC, et al. The transition from closed to open conformation of Treponema pallidum outer membrane-associated lipoprotein TP0453 involves membrane sensing and integration by two amphipathic helices. J Biol Chem. 2011,286(48):41656-41668.
    [33]Desrosiers DC, Anand A, Luthra A, et al. TP0326, a Treponema pallidum β-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol,2011,80(6):1496-515.
    [34]Blanco DR, Giladi M, Champion CI, et al. Identification of Treponema pallidum subspecies pallidum genes encoding signal peptides and membrane-spanning sequences using a novel alkaline phosphatase expression vector. Mol Microbiol,1991, 5(10):2405-2415.
    [35]Hardham JM, Stamm LV. Identification and characterization of the Treponema pallidum tpn50 gene, an ompA homolog. Infect Immun,1994,62(3):1015-1025.
    [36]Huang ZY, Wang YN, Zhu JL, et al. [Expression and purification of membrane immunogens of Treponema pallidum in Pichia pastoris]. [Article in Chinese] Wei Sheng Wu Xue Bao,2006,46(5):831-834.
    [37]Cameron CE. Identification of a Treponema pallidum lamininbinding protein. Infect Immun,2003,71(5):2525-2533.
    [38]Centurion-Lara A, Castro C, Barrett L, et al. Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and the protective immune response. J Exp Med,1999,189(4):647-656.
    [39]Houston S, Hof R, Francescutti T, et al. Bifunctional role of the Treponema pallidum extracellular matrix binding adhesin Tp0751. Infect Immun,2011, 79(3):1386-1398.
    [40]Liu S, Wang S, Wu Y, et al. Production of proinflammatory cytokines in the human THP-1 monocyte cell line following induction by Tp0751, a recombinant protein of Treponema pallidum. Sci China Life Sci,2010,53(2):229-233.
    [41]Cameron CE, Brown EL, Kuroiwa JM, et al. Treponema pallidum fibronectin-binding proteins. J Bacteriol,2004,186(20):7019-7022.
    [42]Dickerson MT, Abney MB, Cameron CE, et al. Fibronectin binding to the Treponema pallidum adhesin protein fragment rTpO483 on functionalized self-assembled monolayers. Bioconjug Chem,2012,23(2):184-95.
    [43]Cameron CE. Identification of a Treponema pallidum laminin-binding protein. Infec Immun,2003,71(5):2525-2533.
    [44]Cameron CE, Kuroiwa JM, Yamada M, et al. Heterologous expression of the Treponema pallidum laminin-binding adhesin Tp0751 in the culturable spirochete Treponema phagedenis. J Bacteriol,2008,190(7):2565-2571.
    [45]Cameron CE, Brouwer NL, Tisch LM, et al. Defining the interaction of the Treponema pallidum adhesin Tp0751 with laminin. Infect Immun,2005, 73(11):7485-7494.
    [46]Leader BT, Hevner K, Molini BJ, et al. Antibody responses elicited against the Treponema pallidum repeat proteins differ during infection with different isolates of Treponema pallidum subsp. pallidum. Infect Immun,2003,71(10):6054-6057.
    [47]Morgan CA, Molini BJ, Lukehart SA, et al. Segregation of B and T cell epitopes of Treponema pallidum repeat protein K to variable and conserved regions during experimental syphilis infection. J Immunol,2002,169(2):952-957.
    [48]Sun ES, Molini BJ, Barrett LK, et al. Subfamily I Treponema pallidum repeat protein family:sequence variation and immunity. Microbes Infect,2004, 6(8):725-737.
    [49]Anand A, Luthra A, Dunham-Ems S, et al. TprC/D (Tp0117/131), a Trimeric, Pore-Forming Rare Outer Membrane Protein of Treponema pallidum, Has a Bipartite Domain Structure. J Bacteriol,2012,194(9):2321-2333.
    [50]Giacani L, Sambri V, Marangoni A, et al. Immunological evaluation and cellular location analysis of the TprI antigen of Treponema pallidum subsp. pallidum. Infect Immun,2005,73(6):3817-3822.
    [51]Giacani L, Hevner K, Centurion-Lara A. Gene organization and transcriptional analysis of the tprJ, tprI, tprG, and tprF loci in Treponema pallidum strains Nichols and Sea 81-4. J Bacteriol,2005,187(17):6084-6093.
    [52]Giacani L, Molini BJ, Kim EY, et al. Antigenic variation in Treponema pallidum: TprK sequence diversity accumulates in response to immune pressure during experimental syphilis. J Immunol,2010,184(7):3822-3829.
    [53]LaFond RE, Molini BJ, Van Voorhis WC, et al. Antigenic variation of TprK V regions abrogates specific antibody binding in syphilis. Infect Immun,2006, 74(11):6244-6251.
    [54]LaFond RE, Centurion-Lara A, Godornes C, et al. Sequence diversity of Treponema pallidum subsp. pallidum tprK in human syphilis lesions and rabbit-propagated isolates. J Bacteriol,2003,185(21):6262-6268.
    [55]Morgan CA, Lukehart SA, Van Voorhis WC. Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K. Infect. Immun.2003,71(10):5605-5612.
    [56]Morgan CA, Lukehart SA, Van Voorhis WC. Immunization with the N-terminal portion of Treponema pallidum repeat protein K attenuates syphilitic lesion development in the rabbit model. Infect Immun,2002,70(12):6811-6816.
    [57]Hazlett KR, Sellati TJ, Nguyen TT, et al. The TprK protein of Treponema pallidum is periplasmic and is not a target of opsonic antibody or protective immunity. J Exp Med,2001,193(9):1015-1026.
    [58]Centurion-Lara A, LaFond RE, Hevner K et al. Gene conversion:a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Mol Microbiol,2004,52(6):1579-1596.
    [59]Cameron CE, Lukehart SA, Castro C, et al. Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. J Infect Dis,2000,181(4):1401-1413.
    [60]Surana NK, Grass S, Hardy GG, et al. Evidence for conservation of architecture and physical properties of Omp85-like proteins throughout evolution. Proc Natl Acad Sci USA,2004,101(40):14497-14502.
    [61]Miller JN. Immunity in experimental syphilis. VI. Successful vaccination of rabbits with Treponema pallidum, Nichols strain, attenuated by gamma-irradiation. J Immunol,1973,110(5):1206-1215.
    [1]王晓春,王千秋,郑和义.性传播感染[M].1版.北京:科学出版社,2010:58-80.
    [2]Saunders JM, Folds JD. Humoral response of the mouse to Treponema pallidum. Genitourin Med,1985,61(4):221-229.
    [3]黄国钧,黄勤挽.医学实验动物模型-制作与应用[M].1版.北京:化学工业出版社,2008:775.
    [4]P Collart, P Franceschini, P Durel. Experimental rabbit syphilis. Br J Vener Dis,1971,47:389-400.
    [5]David Rodbard.The Role of Regional Body Temperature in the Pathogenesis of Disease.N Engl J Med,1981,305(14):808-814.
    [6]Saito K, Hasegawa A.Clinical features of skin lesions in rabbit syphilis:a retrospective study of 63 cases (1999-2003).J Vet Med Sci,2004,66(10):1247-1249.
    [7]Habib M. The discovery of penicillin:a revolution in the treatment of syphilis. Tunis Med.2009,87(6):369-371.
    [8]Saito K, Tagawa M, Mimura M, et al. Clinical features and rapid plasma reagin antibody titers in spontaneous and experimental rabbit syphilis. J Vet Med Sci, 2005,67(7):739-741.
    [9]Saito K, Hasegawa A. Chloramphenicol treatment for rabbit syphilis. J Vet Med Sci,2004,66(10):1301-1304.
    [10]Lukehart SA, Fohn MJ, Baker-Zander SA. Efficacy of azithromycin for therapy of active syphilis in the rabbit model. J Antimicrob Chemother,1990,25 Suppl A:91-99.
    [11]Hook EW 3rd, Behets F, Van Damme K, et al.A phase III equivalence trial of azithromycin versus benzathine penicillin for treatment of early syphilis. J Infect Dis, 2010,201(11):1729-1735.
    [12]Mabey,David Azithromycin Resistance in Treponema pallidum. Sexually Transmitted Diseases,2009,36(12),777-778.
    [13]Cecilia A, Morgan, Barbara J, et al. Segregation of B and T Cell Epitopes of Treponema pallidum Repeat Protein K to Variable and Conserved Regions During Experimental Syphilis Infection. J Immunol,2002,169(2):952-957.
    [14]Giacani L, Molini BJ, Kim EY, Godornes BC, et al. Antigenic variation in Treponema pallidum:TprK sequence diversity accumulates in response to immune pressure during experimental syphilis. J Immunol,2010,184(7):3822-9.
    [15]党倩丽,陆学东,张小艳,等.梅毒螺旋体感染兔模型中特异性抗体分析.中国皮肤性病学杂志2004,18(1):38-40.
    [16]Sanchez PJ, Wendel GD Jr, Grimprel E,et al. Evaluation of molecular methodologies and rabbit infectivity testing for the diagnosis of congenital syphilis and neonatal central nervous system invasion by Treponema pallidum. J Infect Dis, 1993,167(1):148-157.
    [17]Brinkman MB, McGill MA, Pettemson J, et al. A novel Treponema pallidum antigen, Tp0136, is an outer membrane protein that binds human fibronectin. Infect Immun,2008,6(5):1848-1857.
    [18]Cameron CE, Kuroiwa JM, Yamada M, et al. Heterologous expression of the Treponema pallidum laminin-binding adhesin Tp0751 in the culturable spirochete Treponema phagedenis. J Bacteriol,2008,190(7):2565-2571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700