用户名: 密码: 验证码:
几类平面微分系统的Hopf分支与可积性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本篇博士论文主要研究平面微分自治系统的可积性、等时性与极限环分支问题,全文由七章组成.
     第一章全面综述了平面多项式微分自治系统的极限环分支、中心与可积性、等时中心与可线性化等问题的历史背景和研究现状,并简单介绍了一下本文的特色工作.
     第二章研究了复平面拟解析四次系统的中心与等时中心问题.所采用的技巧是通过同胚变换把拟解析四次系统转换为解析系统来处理.运用计算机代数系统Mathematica,计算了新系统原点的焦点量和周期常数并且得到了其为中心与等时中心的必要条件.最后,我们通过多种方法证明了这些条件的充分性.已有的一些四次系统原点的中心与等时中心条件是本章结果的特例.
     第三章研究了一类拟解析的七次系统的原点的中心条件与拟等时中心条件.首先通过同胚变换和复变换将系统的原点化为复域中的初等奇点,然后借助于计算机代数系统Mathematica推导出了该系统原点的前55个奇点量,得到了系统原点的中心条件.最后通过其周期常数的计算,得到了系统原点为拟等时中心的判据.并利用一些有效途径一一证明了这些条件的充分性.
     第四章研究了一类拟解析的七次系统的无穷远点的中心条件与等时中心条件.首先通过同胚变换和复变换将拟解析系统的无穷远点化为复域中的初等原点,然后借助于计算机代数系统Mathematica推导出了该系统无穷远点的前77个奇点量,从而导出了无穷奇点为中心的条件.最后,通过计算系统的周期常数得到了系统的拟等时中心条件,并利用一些有效途径一一证明了这些条件的充分性.
     在第五章中,分别研究了具有三次幂零奇点的四次、五次、以及七次的平面多项式微分系统的中心条件与极限环分支.应用计算机代数系统Mathematica,分别计算了系统的前11,12,14个拟Lyapunov常数,在此基础上得到了原点为中心的充分必要条件,并且证明了从三类系统的幂零奇点分别可以分支出11,12,14个极限环.
     在第六章中,研究了一类Lienard系统的焦点量的计算方法,给出了一种计算这类Lienard系统的焦点量的新方法,并运用该方法计算了一类特殊多项式Lienard系统的焦点量,研究了该系统的中心条件与极限环分支.
     在第七章中,研究一类三次Kolmogrov系统,计算出其前5个奇点量,得到了奇点为中心的必要条件.并利用一些有效途径一一证明了这些条件的充分性,同时证明了其可以分支出5个极限环.
This Ph.D. thesis is devoted to the problems of center-focus、isochronicity and bifurcation of limit cycles for planar polynomial autonomous differential systems. It is composed of seven chapters.
     In Chapter1, the historical background and the present progress of problems con-cerned with centers, integrability, isochronous centers, linearizability and bifurcation of limit cycles for planar polynomial autonomous differential systems are introduced and summarized. Meanwhile, the main work of this paper is simply concluded.
     In Chapter2, we deal with the problem of characterizing center and isochronous centers for complex planar quasi-analytic quardraic system. The technique is based on transforming the quasi-analytic quardraic analytic system into an analytic system. With the help of the computer algebra system-Mathematica, we compute the singular values and period constants of the origin and obtain the necessary center and isochronous center conditions for the transformed system. Finally, we give a proof of the sufficiency by various methods. Our work consists of the existing results related to cubic polynomial system as a special case.
     In Chapter3, the conditions of center and pseudo-isochronous center conditions at origin for a class of non-analytic septic system are investigated. Firstly, the origin of non-analytic septic system is transferred into the origin of an analytic system by a homeomorphic transformation and a complex transformation. Furthermore, with the help of computer algebra system-Mathematica, we derive the first55singular point quantities at origin of new system and get the center conditions at the origin. Finally, we find necessary conditions for pseudo-isochronous centers by computing its period constants, then the sufficiency of these conditions are proved by some effective methods.
     In Chapter4, the conditions of center and pseudo-isochronous center conditions at infinity for a class of non-analytic septic system are investigated. Firstly, the infinity is transferred into the origin by a homeomorphic transformation and a complex transfor-mation. Furthermore, with the help of computer algebra system-Mathematica, we derive the first77singular point quantities at infinity and get the center conditions at infinity. Finally, we find necessary conditions for pseudo-isochronous centers by computing its period constants, then the sufficiency of these conditions are proved by some effective methods.
     In Chapter5, for the three-order nilpotent critical point of classes of quardraic,quintic, septic Lyapunov systems, the center problem and bifurcation of limit cycles are inves-tigated. With the help of computer algebra system-Mathematica, the first11,12,14quasi-Lyapunov constants are deduced respectively. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact of there exist11,12,14small amplitude limit cycles created from the three-order nilpotent critical point is also proved respectively.
     In Chapter6, we give a method to compute the singular values for a class of Lienard system. By using this new method, the center conditions and bifurcations of limit circles are investigated for a special Lienard system.
     In Chapter7, we are interested in a cubic Kolmogrov system, the first five singular values are calculated, and the the center conditions are obtained and proved by some technical transformations. Furthermore, five limit circles could be bifurcated from the neighborhood of the origin.
引文
[1]Poincare H. Jour. Math. Pures et Appl.1881,7:375-422; 1882,8:251-296; 1885,1:167-244; 1886,2:151-217
    [2]Hilbert D.1900 Mathematische problem(lecture):The Second Intern. Congress of Mathe-maticians Paris 1900 Nachr. Ger. Wiss. Gottingen. Math. Phy. K1. pp 253-297
    [3]Smale S. Dynamics retrospective:great problems attempts that failed. Physica D,1954,51: 261-273
    [4]Smale S. Mathematical problem for the next century. Mathematical Intelligencer,1998,20 (2):7-15
    [5]Bautin N. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Amer. Math. Soc. Trans.1954,100: 397-413
    [6]Farr W W, Li C, Labouriau I S, Langford W F. Degenerate Hopf bifurcation formulas and Hilbert's 16th problem. SIAM. J. Math. Anal.,1989,20:13-30
    [7]Gobber F, Willamowski K D. Liapunov approach to multiple Hopf bifurcation. J. Math. Anal. Appl.,1979,71 (98):330-350
    [8]史松龄.关于平面二次系统的极限环.中国科学,1980,8:734-739
    [9]Shi S. On the structure of Poincare-Liapunov constants for the focus of polynomial vector fields. J. Differential Equations,1984,52:52-57
    [10]Chavarriga J. Integrable systems in the plane with center type linear part. Applicationes Mathematicae,1994,22:285-309
    [11]杜乃林,曾宪武.计算焦点量的一类递推公式.科学通报,1994,39(19):1742-1745
    [12]Gine J. Conditions for the existence of a center for the Kukles homogeneous systems. Com-puters & Mathematics with Applications.2002,43:1261-1269
    [13]Lloyd N G, Pearson J M. Symmetry in planar dynamical systems. J. Symbolic Computation, 2002,33:357-366
    [14]秦元勋,刘尊全.微分方程公式的机器推导(III).1981,7:388-391
    [15]刘一戎.一类平面三次系统的焦点量公式、中心条件和中心积分.科学通报,1987.2:85-97
    [16]Francoise J P. Successive derivatives of first-return map, application to quatratic vector fields. Ergodic Theory Dynamical Systems,1996,16:87-96
    [17]李承治.关于平面二次系统的两个问题.中国科学,1982,12:1087-1096
    [18]刘一戎,李继彬.论复自治系统的奇点量.中国科学A.1989.32(3):245-255
    [19]刘一戎,陈海波.奇点量公式的机器推导与一类三次系统的前10个鞍点量.应用数学学报,2002,25(2):295-302
    [20]Sibirskii K S. On the number of limit cycles in a neighborhood of singular points. Diff. Equat.,1965,1:36-76 (in Russian)
    [21]Lloyd N G, Blows T R, Kalenge M C. Some cubic systems with several limit cycles. Non-linearity,1988,1:65-69
    [22]James E M, Lloyd N G. A cubic system with eight small-amplitude limit cycles. LM. A. J. Applied Math.,1991,47:163-171
    [23]Ning S C, Ma S L, Keng H K, Zheng Z M. A cubic system with eight small amplitude limit cycles. Appl. Math. Lect.,1994,4:23-27
    [24]Ma S, Ning S. Derive some new conditions on existence of eight limit cycles for a cubic system. Computers & Mathematics with Applications,1997,33:59-64
    [25]Han M, Lin Y, Yu P. A study on the existence of limit cycles of a planar system with 3rd-degree polynomials. Int. J. Bifurcation and Chaos,2004,14:65-78
    [26]韩茂安,朱德明.微分方程分支理论.煤炭工业出版社,1984
    [27]Han M. Stability of the equator and bifurcation of limit cycles. World Scientific,1993
    [28]Blows T R, Rousseau C. Bifurcation at infinity in polynomial vector fields. J. Differ. Equa-tions.1993,104:215-242
    [29]刘一戎.一类高次奇点与无穷远点中心焦点理论.中国科学(A辑),2001,31(1):37-48
    [30]陈海波.刘一戎.一类平面三次多项式系统的赤道极限环分支.中南工业大学学报(自然科学版),2003,34:325-327
    [31]Liu Y, Chen H. Stability and bifurcations of limit cycles of the equator in a class of cubic polynomial systems. Comput. Math. Appl.,2002,44:997-1005
    [32]黄文韬,刘一戎.一个在无穷远点分支出6个极限环的三次多项式系统.中南大学学报(自然科学版),2004.35:690-693
    [33]Lin Y. Huang W. Seven large-amplitude limit cycles in a cubic polynomial system. Inter-national Journal of Bifurcation and Chaos,2006,16 (2):473-485
    [34]Zhang Q, Liu Y. A cubic polynomial system with seven limit cycles at infinity. Appl. Math. Comput.,2006,177:319-329
    [35]Wang Q, Liu Y. Bifurcaiton and isochronicity at infinity in a class of cubic polynomial vector fields. Acta Mathematicae Applicatae Sinica,2007,23 (3):451-466
    [36]刘一戎,赵梅春.一类五次系统赤道环的稳定性与极限环分枝.数学年刊,2002,23A:75-78
    [37]陈海波,刘一戎.一类平面五次系统的赤道极限环问题.数学年刊,2003,24A:219-224
    [38]Huang W, Liu Y. Bifurcations of limit cycles from infinity for a class of quintic polynomial system. Bull. Sci. Math.,2004,128:291-302
    [39]Huang W, Zhang L. Limit cycles of infinity in a quintic polynomial system. Natural Science Journal of Xiangtan University,2006,28 (3):12-16
    [40]Huang W, Zhang W. The large-amplitude limit cycles in a quintic polynomial system. Advances in Mathematics,2008,37 (2):227-236
    [41]Zhang Q, Liu Y. A quintic polynomial differential system with eleven limit cycles at the infinity. Comput. Math. Appl.,2007,53:1518-1526
    [42]陈海波,罗交晚.一类七次系统赤道环的稳定性与极限环分支.应用数学,2002,15:22-25
    [43]黄文韬,刘一戎.一个在无穷远点分支出八个极限环的多项式微分系统.数学杂志,2004,24(5):551-556
    [44]Huang W, Liu Y. A polynomial differential system with nine limit cycles at infinity. Comput. Math. Appl.,2004,48:577-588
    [45]张理,黄文韬.一类在无穷远点分支出十个极限环的多项式微分系统.重庆大学学报(自然科学版),2006,29(8):146-149
    [46]张齐,刘一戎.一类七次多项式微分系统的中心条件与赤道极限环分支.系统科学与数学,2008,28(3):275-281
    [47]Zhang Q, Gui W, Liu Y. Bifurcation of limit cycles at the equator for a class of polynomial differential system. Nonlinear Analysis:Real World Applications,2009,10:1042-1047
    [48]Devlin J, Lloyd N G, Pearson J M. Cubic systems and Abel equation. J. Differ. Equations, 1998,147:435-454
    [49]Pons R, Salish N. Center conditions for a lopsided quartic polynomial vector field. Bull. Sci. Math.,2002,126:369-378
    [50]Ye W, Ye Y. On the conditions of a center and general integrals of quaratic differential systems. Acta Math. Sin.,2001,17:229-236
    [51]Moussu R. Symetrie et forme normale des centres et foyers degeneres. Ergodic Theory Dynam. Systems,1982,2:241-251
    [52]Alvarez M J, Gasull A. Momodromy and stability for nilpotent critical points. Internat. J. Bifur. Chaos,2005,15:1253-1265
    [53]Takens F. Singularities of vector fields. Inst. Hautes Etudes Sci. Publ. Math.,1974,43: 47-100
    [54]Strozyna E, Zoladek H. The analytic and formal normal form for the nilpotent singularity. J. Differential Equations 2002,179:479-537
    [55]Alvarez M J, Gasull A. Generating limit cycles from a nilpotent critical point via normal forms. J. Math. Anal. Appl.,2006,318:271-287
    [56]M.Han, J, Jiang, H.Zhu, Limit cycles bifurcations in near-hamiltonian systems by perturbing a nilpotent center, Int. J. Bifurcation and Chaos 18,2008:3013-3027
    [57]J,Jiang, J.Zhang, M.Han, Limit cycles for a class of quintic near-hamiltonian systems near a nilpotent center, Int. J. Bifurcation and Chaos 19,2009:2107-2113.
    [58]Liu, Y.R.,Li, J.B, New Study On The Center Problem and Bifurcations of Limit Cycles For The Lyapunov System (Ⅰ), Int. J. Bifurcation and Chaos,19(11),3791-3801.
    [59]Liu, Y.R.,Li, J.B, New Study On The Center Problem and Bifurcations of Limit Cycles For The Lyapunov System (Ⅱ), Int. J. Bifurcation and Chaos,19(9),3087-3099.
    [60]Liu Y, Li J. On the study of three-order nilpotent critical points:Integral Factor Method. Int. J. Bifurcation and Chaos,19,2009:2107-2113.
    [61]Liu Y, Li J., Bifurcations of limit cycles and center problem for a class of cubic nilpotent system, Int. J. Bifurcation and Chaos,8,2010:2579-2584.
    [62]F.Li Y.Liu, H.Li, Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a septic Lyapunov system,Math. and Comp. in Simu,81,2011:2595-2607
    [63]Zhang Q, Liu Y, Chen H. Bifurcation at the equator for a class of quintic polynomial differential system. Appl. Math. Comput.,2006,181:747-755
    [64]Liu, Y.R.,Li, J.B, Z2 Equivariant Cubic System With 13 Limit Cycles. Acta Mathematicae Applicatae Sinica (English Series).to appear.
    [65]J.Yang, M. Han, J.Li, P. Yu. Existence conditions of thirteen limit cycles in a cubic sys-tem.Int. J. Bifurcation and Chaos,8,2010:2569-2577.
    [66]Li, C., Liu, C., Yang, J.,A cubic system with thirteen limit cycles, J. Diff. Eqs.246,2009: 3609-3619.
    [67]Y.Wu, Y. Gao,M.Han,On the nueber and distributions of limit cycles in a quintic planar vector field,Int. J. Bifurcation and Chaos,18,2008:1939-1955.
    [68]Gasull A, Torregrosa J. Center problem for several differential equations via Cherkas' method. J. Math. Anal. Appl.,1998,228:322-343
    [69]Jager P De. An example of a quadratic system with a bounded separatrix cycle having at least two limit cycles in its interior. Delft Progr. Rep.,1986-1987,11:141-150
    [70]Gasull A, Torregrosa J. A new algorithm for the computation of the Lyapunov constans for some degenerated critical points. Nonlin. Anal.:Proc. Ⅲrd World Congress on Nonlinear Analysis,2001,47:4479-4490
    [71]Liu Y, Li J, Huang W. Singular Point Values, Center Problem and Bifurcation of Limit Cycles of Two Dimensional Differential Autonomous Systems. Science Press, Printed in Beijing,2008
    [72]Liu Y, Li J. Period constants and Time-Angle difference of isochronous centers for complex analytic systems. Internat. J. Bifur. Chaos.2006,16 (12):3747-3757
    [73]Y. Liu, J. Li, some classical problems about planar vector fields (in Chinese), Science press (China),2010.
    [74]Andreev A F. Investigation of the behavior of the integral curves of a system of two differ-ential equations in the neighbourhood of a singular point. Transl. Amer. Math. Soc.,1958. 8:183-207
    [75]Andronov A A, Leontovich E A, Gordon II, Maier A G. Theory of Bifurcations of Dynamical Systems on a Plane. Wiley, New York,1973
    [76]Chavarriga J, Giacomini H, Gine J, Llibre J. Local analytic integrability for nilpotent cen-ters. Ergodic Theory Dynam. Systems,2003,23:417-428
    [77]Chavarriga J, Garcia I, Gine J. Integrability of centers perturbed by quasi-homogeneous polynomials. J. Math. Anal. Appl.,1997,211:268-278
    [78]Andreev A F, Sadovskii A P. Tsikalyuk V A. The center-focus problem for a system with homogeneous nonlinearities in the case of zero eigenvalues of the linear part. Differential Equations,2003,39:155-164
    [79]李继彬.关于弱化的Hilbert第16问题的研究.昆明工学院学报,1988.13(1):94-109
    [80]Li J. Hilbert's 16th problem and bifurcations of planar polynomial vector fields. Internat. J. Bifur. Chaos.,2003,13:47-106
    [81]Ilyashenko Yu. Centennial history of Hilbert's 16th problem. Bull. Amer. Math. Soc., (N.S.) 2002,39 (3):301-354
    [82]Gine J. On some open problems in planar differential systems and Hilbert's 16th problem. Chaos, Solitons & Fractals,2007,31 (5):1118-1134
    [83]Petrovskii I G, Landis E M. On the number of limit cycles of the equation dy/dx= P(x,y)/Q(x,y), where P and Q are polynomials of the second degree (Russian). Mat. Sb. N. S.,1955,37 (79):209-250
    [84]Petrovskii I G, Landis E M. On the number of limit cycles of the equation dy/dx= P(x,y)/Q(x,y), where P and Q are polynomials of the second degree (Russian). Mat. Sb. N. S.,1957,85:209-250
    [85]史松龄.平面二次系统存在四个极限环的具体例子.中国科学,1979,11(6):1051-1056
    [86]Shi S. A method of constructing cycles without contact around a weak focus. J. Differential Equations,1980,41:301-312
    [87]陈兰荪,王明淑.二次微分系统极限环的相对位置和数目.数学学报,1979,22(6):751-758
    [88]秦元勋,史松龄,蔡燧林.关于平面二次系统的极限环.中国科学,1981,8:929-938
    [89]Zoladek H. Eleven small limit cycles in a cubic vector field. Nonlinearity,1995,8:843-860
    [90]Li J, Huang Q. Bifurcation set and limit cycles forming compound eyes in the cubic system. Chin. Ann. of Math.,1987,8B:391-403
    [91]Li J, Liu Z. Bifurcation set and limit cycles forming compound eyes in a perturbed Hamil-tonian system. Publ. Math.,1991,35:487-506
    [92]Zhang T, Zang H, Han M. Bifurcations of limit cycles in a cubic system. Chaos, Solitons & Fractals,2004,20:629-638
    [93]Levandovskyy V, Romanovski V, Shafer D. The cyclicity of a cubic system with nonradical Bautin ideal. Journal of Differential Equations,2009,246 (3):1274-1287
    [94]Yu P, Han M. Twelve limit cycles in cubic case of the Hilbert problem. Int. J. Bifurcation & Chaos,2005,15 (7):2191-2205
    [95]Yu P. Han M. Small limit cycles bifurcating from fine focus points in cubic order Z2-equivariant vector fields. Chaos, Solitons & Fractals,2005,24:329-348
    [96]Liu Y, Huang W. A cubic system with twelve small amplitude limit cycles. Bull. Sci. Math.. 2005,129:83-98
    [97]Zhang T, Han M, Zang H, Meng X. Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations. Chaos, Solitons & Fractals,2004,22:1127-1138
    [98]Wang Q, Liu Y, Du C. Small limit cycles bifurcating from fine focus points in quartic order Z3-equivariant vector fields. Journal of Mathematical Analysis and Applications,2008,337 (1):524-536
    [99]Wu Y, Gao Y, Han M. Bifurcations of the limit cycles in a Z3-equivariant quartic planar vector field. Chaos, Solitons & Fractals,2008,38 (4):1177-1186
    [100]Li J, Chan H, Chung K. Bifurcations of limit cycles in a Z6-equivariant planar vector field of degree 5. Sci. China Ser. A,2002,45:817-26
    [101]Wu Y, Han M. New configurations of 24 limit cycles in a quintic system. Computers, Mathematics with Applications,2008,55 (9):2064-2075
    [102]Y. Wu, C. Zhang,Bifurcation of Limit Cycles and Pseudo-Isochronicity at Degenerate Sin-gular Point in a Septic System,R esults. Math.57 (2010):97-119
    [103]Wang S, Yu P. Bifurcation of limit cycles in a quintic Hamiltonian system under a sixth-order perturbation. Chaos, Solitons & Fractals,2005,26:1317-1335
    [104]Li J, Zhang M. Bifurcation of limit cycles in a Z8-equivariant vector field. J. Diff. Eqs. Dyn. Syst.,2004,16:1123-1139
    [105]Wang S, Yu P, Li J. Bifurcation of limit cycles in a Z10-equivariant vector field of degree 9. Int. J. Bifurcation and Chaos,2006,16 (8):2309-2324
    [106]Wang S, Yu P. Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11. Chaos, Solitons & Fractals,2006,30 (3):606-621
    [107]Christopher C, Lloyd N G. Polynomial systems:A lower bound for the Hilbert numbers. Proc. Royal Soc. London Ser.,1995 450 (A):219-224
    [108]Itenberg I. Shustin E. Singular points and limit cycles of planar polynomial vector fields. Duke Math. J.,2000,102 (1):1-37
    [109]Li J, Chan H, Chung K. Some lower bounds for H(n) in Hilbert's 16th problem. Qualitative Theory of Dynamical systems,2003,3 (44):345-360
    [110]Ilyashenko Yu S. Finiteness for limit cycles. Transl. Math. Monographs, vol 94,1991
    [111]Ecalle J. Introduction aux Functions Analysables et Preuve Constructive de la Conjecture de Dulac. Hermann Pulb, Paris,1992
    [112]黄文韬.微分自治系统的几类极限环分支与等时中心问题:[博士学位论文].长沙:中南大学,2004
    [113]Chen H, Liu Y, Zeng X. Center conditions and bifurcation of limit cycles at degenerate singular points in a quintic polynomial differential system. Bull. Sci. Math.,2005,129: 127-138
    [114]Gine J. Sufficient conditions for a center at a completely degenerate critical point. Internat. J. Bifur. Chaos,2002,12:1659-1666
    [115]Gine J, Llibre J. Integrability, degenerate centers, and limit cycles for a class of polynomial differential systems. Comput. Math. Appl.,2006,51:1453-1462
    [116]Manosa V. On the center problem for degenerate singular points of planar vector fields. Internat. J. Bifur. Chaos,2002,12:687-707
    [117]Poincare H. Memoire surles courbes defines par les equations differentielles. J. Math. Pures Appl.,1885,4:167-244
    [118]Zoladek H. Quadratic systems with centers and their perturbations. J. Differential Equa-tions,1994,109:223-273
    [119]Dulac H. Determination et integration dune certaine classe dequations differentielles ayant pour point singulier un center. Bull. Sci. Math.,1908,32:230-252
    [120]Kapteyn W. Over de middeopunten der integral krlnnen van differential vergelijkingen van de eerste orde en den eerstengraad. Kon. Ned. Akad. Wet. Versl.,1911,19:1446-1457
    [121]Lunkevich V A, Sibirskii K S. Integrals of a general quadratic differential systems in cases of a center. Differential Equations,1982,18 (5):563-568
    [122]Schlomiuk D. Algebraic particular integrals, integrability and the problem of center. Trans. Amer. Math. Soc.,1993,338:799-845
    [123]Schlomiuk D. Elementary first integrals and invariant algebraic curves of differential equa-tions. Expositiones Mathematicae,1993,11:433-454
    [124]Malkin K E. Criteria for the center for a differential equation. Volz. Math. Sb.,1964,2: 87-91
    [125]Lunkevich V A, Sibirskii K S. Conditions of a center in homogeneous nonlinearities of third degree. Differential equations,1965,1:1164-1168
    [126]Sibirskii K S. Introduction to the Algebraic Theory of Invariants of Differential Equations. Manchester University Press. Manchester 1988
    [127]Rousseau C, Schlomiuk D. Cubic systems symmetric with respect to a center. J. Differential Equations,1995,123:388-436
    [128]Kukles I S. Sur quelques cas de distinction entre un foyer et un center. Dokl. Akad. Nauk., 1944,42:653-669
    [129]Jin X, Wang D. On the conditions of Kukles for the existence of a center. Bull. London Math. Soc.,1990,22:1-4
    [130]Lloyd N G, Pearson J M. Conditions for a center and the bifurcation of limit cycles in a class of cubic systems. Berlin:Springer,1990, LNM 1455,230-242
    [131]Christopher C J, Lloyd N G. Invariant algebraic curves and conditions for a center. Proc. Roy. Soc. Edinburgh,1994,124A:1209-1229
    [132]Yasmin N. Closed orbits of certain two-dimensional cubic systems. Ph.D. Thesis Univ, College of Wales, Aberystwyth,1989
    [133]Lloyd N G, Christopher J, Devlin J, Pearson J M, Yasmin N. Quadratic like cubic systems. Differential Equations Dynamical Systems,1997,5 (3-4):329-345
    [134]Algaba A, Reyes M. Computing center conditions for vector fields with constant angular speed. Journal of Computational and Applied Mathematics,2003,154:143-159
    [135]Romanovski V G, SUBA A. Centers of some cubic systems. Ann. Diff. Eqns.,2001,17: 363-376
    [136]Chavarriga J, Giacomini H, Gine J. Polynomial inverse integrating factors. Ann. Diff. Eqns., 2000,16:320-329
    [137]Needham D J. A centre theorem for two-dimensional complex holomorphic systems and its generalizations. London:Proc. Roy. Soc.,1995, A450:225-232
    [138]Chicone C. Jacobs M. Bifurcation of critical periods for plane vector fields. Amer. Math. Soc. Trans.,1989,312:433-486
    [139]Urabe M. Potential forces which yield periodic motions of a fixed period. J. Math. Mech., 1961,10:569-578
    [140]Chavarriga J, Sabatini M. A survey of isochronous centers. Qual. Theory Dynam. Syst. 1999,1:1-70
    [141]Christopher C J, Devlin J. Isochronous centers in planar polynomial systems. SIAM. J. Math. Anal., 1997,28:162-177
    [142]Pleshkan I. A new method of investigating the isochronicity of a system of two differential equations. Differential Equations,1969,5:796-802
    [143]Cairo L, Chavarriga J, Gine J, Llibre J. A class of reversible cubic systems with an isochronous center. Comput. Math. Appl.,1999,38:39-53
    [144]Chavarriga J, Gine J, Garcia I. Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial. Bull. Sci. Math.,1999,123:77-96
    [145]Chavarriga J, Gine J, Garcia I. Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomial. J. Comput. Appl. Math.,2000,126:351-368
    [146]Gasull A, Manosa V. An explicit expression of the first Liapunov and period constants with applications, J. Math. Anal. Appl.,1997,211:190-212
    [147]Lin Y, Li J, Normal form and critical points of the period of closed orbits for planar autonomous systems, Acta Math. Sinica,1991,34:490-501 (in Chinese)
    [148]Hassard B, Wan Y H. Bifurcation formulae derived from center manifold theroy. J. Math. Anal. Appl.,1978,63:297-312
    [149]Loud W S. Behavior of the period of solutions of certain plane autonomous systems near centers. Contribut. Differential Equations,1964,3:21-36
    [150]Rousseau C, Toni B. Local bifurcation in vector fields with homogeneous nonlinearities of the-third degree. Canad. Math. Bull.,1993,36:473-484
    [151]Rousseau C, Toni B. Local bifurcation of critical periods in the reduced Kukles system. Canad. J. Math.,1997,49:338-358
    [152]Chavarriga J, Gine J, Garcia I. Isochronicity into a family of time-reversible cubic vector fields. Appl. Math. Comput.,2001,121:129-145
    [153]Mardesic P, Rousseau C, Toni B. Linearization of isochronous centers. J. Differential Equa-tions,1995.121:67-108
    [154]Mardesic P, Moser-Jauslin L, Rousseau C. Darboux linearization and isochronous centers with a rational first integral. J. Differential Equations,1997,134:216-268
    [155]Chavarriga J, Gine J, Garcia I. Isochronous centers of cubic systems with degenerate in-finity. Differential Equations Dynam. Syst.,1999,7 (2):221-238
    [156]Huang W, Liu Y. Conditions of infinity to be an isochronous center for a class of differential systems. In:Differential Equations with Symbolic Computation (Edited by D. Wang. Z. Zheng), pp.37-54. Birkhauser Press,2005
    [157]Huang W, Liu Y, Zhang W. Conditions of infinity to be an isochronous centre for a rational differential system. Math. Comput. Model.,2007.46:583-594
    [158]Liu Y. Huang W. Center and isochronous center at infinity for differential systems. Bull. Sci. Math.,2004,128:77-89.
    [159]Liu Y, Huang W. A new method to determine isochronous center conditions for polynomial differential systems. Bull. Sci. Math.,2003,127:133-148
    [160]肖萍.复平面多项式共振微分系统的奇点量与可积性条件:[博士学位论文].长沙:中南大学,2005
    [161]刘一戎.拟二次系统的广义焦点量与极限环分枝.数学学报,2002,45:671-682
    [162]Liu Y, Li J. Center and isochronous center problems for quasi analytic system. Acta Math. Sinica,2007,23:965-972
    [163]Amelkin V V, Lukashevich N A, Sadovskii A N. Nonlinear Oscillations in the Second Order Systems. BGU Publ., Minsk (in Russian)
    [164]叶彦谦.多项式微分系统定性理论.上海科学技术出版社,1995
    [165]Jaume Llibre, Claudia Valls, Classification of the centers, their cyclicity and isochronicity for a class of polynomial differential systems generalizing the linear systems with cubic homogeneous nonlinearities, J. Differential Equations.2009,246:2192-2204.
    [166]Jaume Llibre, Claudia Valls, Classification of the centers and isochronous centers for a class of quartic-like systems,Nonlinear Analysis.2009,71:3119-3128.
    [167]Jaume Llibre, Claudia Valls,Classification of the centers, their cyclicity and isochronicity for the generalized quadratic polynomial differential systems,J. Math. Anal. Appl..2009,357: 427-437.
    [168]Jaume Llibre, Claudia Valls, Classification of the centers, of their cyclicity and isochronicity for two classes of generalized quintic polynomial differential systems, Nonlinear Differ. Equ. Appl.2009,16:657-679.
    [169]J. Llibre, C. Valls, Centers and Isochronous Centers for Two Classes of Generalized Seventh and Ninth Systems.J. Dyn. Diff. Equat.22 (2010),657-675.
    [170]C. Xingwu et al., Linearizability conditions of a time-reversible quartic-like system, J. Math. Anal. Appl.,2011, doi:10.1016/j.jmaa.2011.05.018.
    [171]Yu ShuOXiang, Zhang JiOZhou, On the center of the Lienard equation.Differential Equation,102,1993.:53-65.
    [172]刘朝杰,邵先喜,广义Lienard系统的全局中心.数学学报,46(1),2003:29-36.
    [173]M.W. Hirsch, Systems of differential equations that are competitive or cooperative. V: Convergence in 3-dimensional systems, J. Differential Equations,80(1989),94-106.
    [174]Y. Ye, W. Ye, Cubic Kolmogorov differential systems with two limit cycles surrounding the same focus, Ann. Differential Equations,2(1985),201-207.
    [175]C.S. Coleman, Hilbert's 16 th problem:How many cycles?, In Differential Equations Mod-els, Volume 1, (Edited by W. Lucas), pp.279-297, Springer-Verlag,1978.
    [176]X.S. Liu, Z.H. Zhuo, Existence and uniqueness of limit cycles of a cubic Kolmogorov dif-ferential system, J. Biomath.,3(2001),266-271.
    [177]Xun C. Huang, Lemin Zhu, Limit cycles in a general Kolmogorov model, Nonlinear Anal-ysis,60(2005),1393-1414.
    [178]Lu Zhengyi, He Bi,Multiple stable limit cycles for a cubic Kolmogorov prey-predator sys-tem,工程数学学报,4,2001:115-117.
    [179]Saze E, Szanto I, Limit cycles of a cubic Kolmogorov system,Appl Math Lett,9,1966,15-18.
    [180]吴玉森.平面多项式微分自治系统的等时性与极限环分支:[博士学位论文].长沙:中南大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700