用户名: 密码: 验证码:
含噪实信号频率估计算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对被噪声污染的正弦信号进行参数估计是一个十分重要的课题,它在雷达、声纳、通信、语音信号处理、生物医学工程、检测等领域中有很大的应用价值。频率是正弦信号最重要的参数和最本质的特征,频率估计的研究是信号处理领域的一个经典课题。在许多实际工程应用中,获取的信号样点值都是实数,如语音信号。由于实正弦信号在频谱上存有“负频率”,其自相关的频率受到非零相位的影响,致使实正弦信号的频率估计相对复正弦信号更困难。而且也使得复正弦信号的频率估计方法不能直接应用于实正弦信号,特别是基于时域的频率估计方法。高斯白噪声是自然界最常见的噪声,因而如何从混有高斯白噪声的实信号样点中提取信号的频率一直以来备受关注。
     频率估计算法可分为基于原信号本身的时域特性和基于变换域的特征。基于变换域的频率估计方法通常是考虑信号的频域特性,其在估计性能方面有一定的优势,但实现较为复杂,而时域方法相对简单,特别适用于计算量需求小,快速实时处理实正弦信号的场合。衡量频率估计算法性能的主要指标是频率估计的均方误差,它在样点序列固定长度和信噪比下有一个理论界,称为Cramer Rao Bound(CRB界)。对于短序列在时域的频率估计,寻求估计性能能够逼近CRB且计算量小的频率估计算法是实信号频率估计研究中的难点。由于正弦信号的自相关含有信号的频率信息,且去除部分噪声影响,所以,本文基于信号自相关的频率估计这一主题展开研究,主要学术贡献在于:
     (1)提出了基于扩展自相关的频率估计算法,并详细推导了高斯白噪声对算法性能带来的影响,得到了闭合的理论表达式。由于正弦信号的自相关仍然是同频率的正弦信号,可以利用少量的自相关系数快速地获得频率估计值,但是此类估计器性能需要进一步的提升,因而研究者们提出改进自相关的定义和利用多步自相关来提升频率估计性能,然而前者性能提升不多,后者计算量增多。本文在性能和计算量上折中考虑提出了基于扩展自相关的频率估计算法。该算法借鉴频域中频率估计常用的粗估计、精估计,在基于自相关的粗估计频率基础上对自相关进行泰勒级数展开,运用最小二乘均方逼近得到精估计频率。该算法在两步估计中都充分挖掘自相关的信息,利用多个自相关系数含有的频率信息,使得该估计器与其它时域有闭合解的算法相比,在0dB信噪比时就能逼近CRB界,且计算量比基于多步自相关的频率估计算法有明显优势。成果在SignalProcessing等刊物发表。
     (2)提出了基于自相关相位补偿的频率估计算法。深入分析了正弦信号自相关的非零相位特性,而经典的基于自相关的频率估计算法多忽略了此相位而带来了近似误差。为此,本文提出了基于自相关相位补偿的频率估计算法。该算法一方面利用多个自相关含有的频率信息,同时对自相关的相位进行了补偿。通过仿真分析深入讨论了多个自相关系数的选取,仿真结果也验证了该算法明显优于传统的Pisarenko谐波分解(PisarenkoHarmonic Decomposer,PHD)算法。与其它计算量相当的算法相比,在中高信噪比,特别对于短序列具有明显的性能优势,能更逼近于CRB。成果在IEICE Transactions刊物发表。
     (3)提出了基于加窗自相关序列的Pisarenko谐波分解(PHD)改进算法。传统的PHD算法只简单使用0、1这两个低序号的自相关系数来估计频率,致使其性能不佳。而使用高序号的自相关可以提升频率估计性能,但是会带来频率估计模糊问题和边界问题。为此,本文研究利用高序号自相关来进行频率估计的方法,确保其能进一步提升频率估计性能,同时避免频率模糊问题和频率边界问题。另外,高斯白噪声的自相关集中在0序号自相关系数处,而高序号的自相关系数因为参与计算的信号样点数减少而误差增大。因此,本文还研究讨论自相关序列的加窗选择问题。在此基础上,提出基于加窗自相关序列的PHD改进算法,先利用高序号自相关系数来计算频率粗估计,然后充分利用加窗自相关序列的信息,包括低序号和高序号自相关的信息,计算一个频率调节因子来对频率粗估计进行微调。文中通过理论分析证明了算法的性能可以逼近CRB界,同时该性能界从理论上指导加窗自相关序列的选取。仿真分析表明其估计性能明显优于传统的PHD算法和其它基于时域自相关的算法,避免了使用高序号自相关带来的频率估计模糊问题和边界问题。成果在《电子学报》英文版等刊物发表。
Parameter estimation of a tone in noise is important in many fields such as radar, sonar,communications, speech signal processing, biomedical engineering, control and measurement.Frequency is the most important parameter and the most essential feature, so its estimation isa classic issue in the field of signal processing. In many practical engineering applications, thesignal samples have real values, such as voice signals. However, fequency estimation ofa real sinusoid is more difficult relatively than the complex one, for the formerincludes "negative frequency" in the spectrum, and the phase of its correlation affects theaccuracy of frequency estimation. So that, the method of frequency estimationfor the complex sinusoid can not be directly applied to the real one, especially for thetime-domain algorithms. White Gaussian noise is a common noise in the nature, so thefrequency estimation of the real sinusoid embedded in white Gaussian noise hasbeen received extensive attention.
     The method of the frequency estimation can be divided into two categories: based ontime-domain and transform domain, such as frequency-domain. For the methods based onfrequency-domain, they have advantages in the estimation performance, but they arecomputationally demanding. While, the methods based on time-domain are relativelysimple, and they are especially suitable for applications where the real-time estimation isrequired. The mean square error is often used as a measure of inaccuracy for the frequencyestimation, and there is an ideal theoretic bound named Cramer Rao Bound (CRB), whichdepends on the length of signal and SNR. For the short sequence, efficient time-domainestimators which approach the CRB and have less computation demanding as well are the keypoint in the study of frequency estimation. Since the sample correlation sequence has thesame frequency as the original signal, but with less noise effect, this dissertation has madedeep research on the correlation-based estimator and the major contributions are as thefollowing:
     (1)A closed-form expanded correlation method for real sinusoid frequency estimation isproposed and the effects of White Gaussian noise on the performance is derived, so that aclosed-form theoretical performances bound is abtained. Since the sample correlationsequence has the same frequency as the original signal, a few correlation coefficients can beexploited to estimate the frequency qulickly but the performance is inefficient. To improvethe estimation formance, many researchers proposed a lot of modified correlations andmultiple-stage correlaton, however, the former is not very effective and the latter increases the amount of computation. We take the performance and complexity into consideration andpropose an expanded correlation method. The mothod makes full use of the multiplecorrelaition lags and extends the idea of a coarse search and a fine search of frequencyestimation in the frequency-domain to the time-domain. Firstly, the modified covariance(MC) method based on multiple correlation lags is applied to provide a coarse frequencyestimate. Then, a closed-form adjustment term based on a least square cost function is derivedto get the fine frequency estimate. Simulation results show that the performance of theproposed algorithm, when compared with several existing closed-form time-domainestimators, is closer to the Cramer-Rao Bound (CRB) at0dB. Moreover, the proposed methodhas lower computation complexity than other autocorrelation-based approaches, which alsouse multiple autocorrelation lags. The research productions are published in Signal Processing,etc.
     (2)An real single-tone frequency estimator based on phase compensation of multiplecorrelation lags is proposed. For the limited-length single sinusoid, its correlation has anon-zero phase, which is always neglected for correlaton-based methods. So we propose touse Taylor series to expand the correlation at the coarse estimated frequency to exploitmultiple correlation information and take the phase of the correlation into consideration. Theselection of multiple correlation lags is discussed deeply by experiments. Simulation resultsshow that this new method outperforms the Pisarenko harmonic decomposer stimator.Moreover, when compared with other existing considerable computational estimator, themean square frequency error of the proposed method is closer to the CRB for certain SNRrange, especially when the signal length is very short. The research productions are publishedin IEICE Transactions, etc.
     (3)A modified PHD method based on windowed correlation sequence is investigated.The PHD method only utilizes correlation lags1and2to estimate the frequency. It has beenproved using higher correlation lags can improve the estimtation performance but leads tofrequency ambiguity and edge frequency. So, we research on a method, which exploiteshigher correlation lags and can improve performance with avoiding frequency ambiguity andedge frequency. In addition, the noise effect on the correlation concentrates around lag0,and the correlation with higher lag is inaccurate for its computation involves less availablesamples, thus we consider adding a rectangle window to the correlaton. Based on thewindowed correlation sequence, an adjustment term is derived to add to the coase frequency,which is obtained by PHD method with higher correlation lags. Theoretical analysis showsthat the algorithm can approach the CRB, and it gives guidance on how to select a windowed correlation sequence. Simulation experiments illustrate the performance of our proposedmethod is generally superior to the PHD and other correlation-based methods, and it can solvethe problem about frequency ambiguity and edge frequency. The research productions arepublished in Chinese Electronic Journal, etc.
引文
[1]姚天任,孙洪.现代数字信号处理[M].武汉,华中理工大学出版社.1999
    [2]金连文,韦岗.现代数字信号处理简明教程[M].北京,清华大学出版社.2004
    [3]刘银恩.高精度频率估计算法研究[D].南京,南京理工大学硕士学位论文.2005
    [4]李道远.多频频率估计及应用研究[D].广州,华南理工大学博士学位论文.2008
    [5]杨萃.噪声环境下频率估计算法研究[D].广州,华南理工大学博士学位论文.2010
    [6]张光斌.双/多基地雷达参数估计算法研究[D].西安,西安电子科技大学.2006
    [7]艾宇惠.水声数字通信研究[D].哈尔滨,哈尔滨工业大学博士论文.1997
    [8]许肖梅.浅海水声数据传输技术研究[D].厦门,厦门大学博士论文.2002
    [9]曾宪武.水声综合通信网络关键技术的研究[D].青岛,中国海洋大学博士学位论文.2008
    [10]E. Bejjani, J. C. Belfiore. Muticarrier coherent communication for the underwateracoustic channel[J]. OCEANS'96, MTS/IEEE, Prospects for the21st Century.1996,3:1125-1130
    [11]朱彤.基于正交频分复用的水声通信技术研究[D].哈尔滨,哈尔滨工程大学博士论文.2004
    [12]王明华.高速水声通信中OFDM的关键技术与应用研究[D].哈尔滨,哈尔滨工程大学博士学位论文.2007
    [13]常娟. OFDM水声通信中的频率同步与信道估计[D].西安,西北工业大学硕士学位论文.2007
    [14]张涛,黄建国,何成兵.单载波频域均衡技术及其在水声通信中的应用[J].探测与控制学报,2007.8,29(4):52-56
    [15]何成兵,黄建国,张涛,阎振华.单载波频域均衡高速水声通信仿真研究[J].系统仿真学报,2007.12,23(19):5455-5458
    [16]B. Sharif, J. Neasham, O. R. Hinton, A. E. Adams. A Computationally Efficient DopplerCompensation System for Underwater Acoustic Communications[J]. IEEE Journal ofOceanic Engineering,2000,25(1):52-60
    [17]林伟,张歆,黄建国.多载波相干水声通信中的多普勒处理方法[J].西北工业大学学报,2005,(04):520-524
    [18]林伟,陈强,汪玉.一种有效的水声通信多普勒处理方法[J].声学技术,2005.12,24(4):206-209
    [19]S. Mason, C. Berger, S. Zhou, P. Willett. Detection, synchronization, and Doppler scaleestimation with multicarrier waveforms in underwater acoustic communications[J]. IEEEJournal on Selected Areas in Communications,2008,26(9):1638-1649
    [20]M. Johnson, L. Freitag, M. Stojanovic. Improved Doppler tracking and correction forunderwater acoustic communications[J]. IEEE International Conference on Acoustics,Speech, and Signal Processing, Munich,1997:575-578
    [21]B. S. Shari, F. J. Neasham, O. R. Hinton, et al. Adaptive Doppler compensation forcoherent acoustic communication[J]. IEE Proceedings Radar, Sonar and Navigation,2000,147(5):239-246
    [22]赵晓群,郭亮杰,李立志,崔炳胜.水声通信变步长自适应多普勒补偿[J].燕山大学学报,2009.7,33(4):312-318
    [23]J. Li, R. B. Wu. An efficient algorithm for time delay estimation[J]. IEEE trans. on signalprocessing,1998.8,46(8):2231-2239
    [24]R. O. Schmidt. Multiple emitter location and signal parameter estimation[A]. Proc.RADCspectral estimation workshop[C], NY, Rome,1979:243-258
    [25]R. O. Schmidt. A signal subspace approach to multiple emitter location and spectralestimation[D]. Ph.D. dissertation, Stanford University,1981
    [26]R. O. Schmidt. Multiple emitter location and signal parameter estimation[J]. IEEE trans.on antennas and propagation,1986.3, Vol. AP-34:276-280
    [27]P. Stoica, N. Arye. MUSIC, maximum likelihood, and Cramer-Rao bound, IEEE trans.on Acoustics, Speech and Signal Processing,1989.37(5):720-741
    [28]R. Roy, T. Kailath. ESPRIT-Estimation of Signal Parmaeters Via Rotational InvarinaceTechniques[J]. IEEE Trans. Acoust. Speeeh, Signal Processing,1989(34):980-960
    [29]J. S. Lim, N. A. Malik. A new algirithm for two dimensional maximum entropy powerspetrum estimation[J]. IEEE Trans. Acoust. Speech. Signal Processing,1981,29(6):401-413
    [30]I. Kontoyiannis, P. H. Algoet, Y. M. Suhov, A. J. Wyner. Nonparametric entropyestimation for stationary processes and random fields[J]. IEEE Trans. On InformationTheory,1998,44(3):1319-1327
    [31]H. Y. Wang, K. J. R. Liu.2-D spatial smoothing of multipath coherent signalseparation[J],IEEE Trans. on Aerospace and Electronic Systems,1998,34(2):391-405
    [32]X. Wei, C. Y. Yang, S. Y. Mao. The Performance of several time delay estimation methodsin multipath channel. Global Telecommunication Conference Proceedings, SanAntonioTexas,USA,2001:3282-3286
    [33]C. L. Nikias,R. Pan. Time delay estimation in unknown Gaussian spatially correlatednoise[J]. IEEE Trans. on Aousties, Speeeh, Signal Proeessing,1988,36:1706-1714
    [34]J. K. Tugnait. Time delay estimation with unknown spatially correlated Guassian noise[J].IEEE Trans. on Signal Proeessing,1993,41(2):549-558
    [35]Y. C. Liang,A. R. Leyman,B. H. Soong. MultiPath time delay estimation usinghigher-order statistics[J]. Proeeedings of the IEEE Signal Proeessing Conf., Banff Can.,1997:21-23
    [36]刘颖,王树勋,梁应敞.多通道干扰下的多径时延估计[J].电子学报,2001,29(6):762-765
    [37]P. M. Peyman,A. R. Hamidreza,K. Lynn. A new time-delay estimation in multipath[J].IEEE Trans. on signal Proeessing,2003,51(5):1129-1142
    [38]H. Saarnisaari. TLS-ESPRIT in a time delay estimation[J]. Proeeedings of the199747thIEEE Vehicular Technology Conefrenee,Phoenix,AZ,USA,1997:1619-1623
    [39]王建英,陈天麒.频率、二维到达角和极化联合估计[J].电子学报,1999,27(11):74-77
    [40]K. T. Wong, M. D. Zoltowski. Closed-form direction finding and polarization estimationwith arbitrarily spaced electromagnetic vector-sensors at unknown locations[J]. IEEETrans. Antennas and Propagation,2000,48(5):671-681
    [41]P. Strobach. Total least squares phased averaging and3-D ESPRIT for jointazimuth-elevation-carrier estimation[J]. IEEE Trans.Signal Processing,2001,49(1):54-62
    [42]张群飞,保铮,黄建.一种水下多目标方位、频率、距离联合估计新方法[J].电子学报,2004,32(9):1409-1413
    [43]李立萍,文忠,陈天麒.多径信号到达角和时延高分辨联合估计算法[J].电子学报,2006,34(4):746-750
    [44]陈宁,万茂文.语音信号共振峰频率估计的分段线性预测算法[J].计算机工程与应用,2009(28):156-159
    [45]A. S. Master. Sinusoidal modeling parameter estimation via a dynamic channel vocodermodel[A]. IEEE international conference on acoustics, speech, and signal processing[C],Orlando, USA,2002.4(2):1857-1860
    [46]S. Ramamohan, S. Dandapat. Sinusoidal model-based analysis and classification ofstressed speech[J]. IEEE Trans. on audio, speech, and language processing,2006.5,14(3):737-746
    [47]J. Shirazi, S. Ghaemmaghami, F. Razzazi. Improvements in audio classification based onsinusoidal modeling[A]. IEEE international conference on multimedia and expo[C],Hannover, German,2008.6:1485-1488
    [48]E. B. George, M. J. T. Smith. Speech analysis/synthesis and modification using ananalysis by synthesis overlap-add sinusoidal model[J]. IEEE Trans. on speech and audioprocessing,1997.9,5(5):389-406
    [49]R. Mcaulay, T. Quatieri. Speech analysis/synthesis based on a sinusoidal representation[J].IEEE Trans. on acoustics, speech, and signal processing,1986.8,34(4):744-754
    [50]张家騄.听觉部位学说与频率差阈[J].声学学报,2006.3,31(2):97-100
    [51]季忠,秦树人,彭丽玲.脑电信号的现代分析方法[J].重庆大学学报,2002,25(9):108-112
    [52]张彤,杨福生,唐庆玉.脑电中癫痫波的自动检测与分类——一种分层次、多方法整合的途径[J].中国生物医学工程学报,1998,17(1):1-11
    [53]季忠.脑电信号特征信息提取的时频分析方法及虚拟式脑电图仪的研制[D].重庆,重庆大学博士学位论文.2003
    [54]J. Wright, R. Kydd, A. Sergejew. Autoregression models of EEG[J]. Biologicalcybernetics,1990,62(3):201-210
    [55]X. Kong, A. Brambrink, D. F. Hanley, N. V. Thakor. Quantification of injury-related EEGsignal changes using distance measures[J]. IEEE Trans. Biomed. Eng.,1990,46(10):1710-1721
    [56]袁强,范大伟,孙少华.电力系统谐波的产生、危害及防治[J].现代制造技术与装备,2008,(4):85-86
    [57]陈国志.电力谐波和间谐波参数估计算法研究博士论文[D].杭州,浙江大学博士学位论文.2010
    [58]F. J. Harris. On the use of windows for harmonic analysis with the discrete Fouriertransform. Proeeedings of the IEEE,1978,61(1):51-83
    [59]T. Grandke. Interpolation algorithms for discrete Fourier transforms of weightedsignals[J]. IEEE Trans. on Instrumentation and Measurement,1983,32(2):350-355
    [60]祁才君,陈隆道,王小海.应用插值FFT算法精确估计电网谐波参数[J].浙江大学学报(工学版),2003,37(l):112-116
    [61]周俊,王小海,祁才君.基于Blackman窗函数的插值FFT在电网谐波信号分析中的应用[J].浙江大学学报(理学版),2006,33(6):650-653
    [62]张介秋,梁昌洪,陈砚圃.基于卷积窗的电力系统谐波理论分析与算法[J].中国电机工程学报,2004,24(11):48-52
    [63]黄纯,江亚群.谐波分析的加窗插值改进算法[J].中国电机工程学报,2005,25(15):26-32
    [64]王志群,朱守真,周双喜.基于Pisarenko谐波分解的间谐波估算方法[J].电网技术,2004,28(l5):72-77,82
    [65]丁屹峰,程浩忠,吕干云等.基于Prony算法的谐波和间谐波频谱估计[J].电工技术学报,2005,20(10):94-97
    [66]沈睿佼,杨洪耕.基于特征空间求根法的非整数次谐波估计方法[J].中国电机工程学报,2006,26(24):72-76
    [67]T. Lobos, Z. Leonowicz, J. Rezmer, et al. High-resolution spectrum-estimation methodsfor signal analysis in power systems[J]. IEEE Trans. on Instrumentation andMeasurement,2006,55(l):219-225
    [68]电力工业设备诊断技术专业协会.变压器故障诊断典型案例汇编[M].中国电力企业管理.1994
    [69]王晓莺等.变压器故障与监测.机械工业出版社[M].2004
    [70]孙才新,陈伟根,李俭,廖瑞金.电气设备油中气体在线监测与故障诊断技术[M].科学出版社.2003
    [71]谢良聘,朱德恒. FFT频域分析算法抑制窄带干扰的研究[J].高电压技术,2000,26(4):6-8
    [72]K. Feser, G. Konig, J. Ott, P. Setiz. An Adaptive Filter Algorithm for On-site PartialDischarge Measurements[J]. IEEE Intern. Sympos. Electrical Insulation, Boston, USA,1988:242-245
    [73]U. Kopf, K. Feser. Rejection of Narrow-band Noise and Repetitive Pulses in On-site PDmeasurements[J]. IEEE Trans. on Dielectrics and Electrical Insulation.1995,2(3):1180-1191
    [74]高胜友,朱德恒,谈克雄等.变压器局部放电在线监测信号处理技术的研究[J].清华大学学报(自然科学版),2003,43(9):1181-1183
    [75]黄祖泽.钢轨探伤作业标准化的探讨[J].铁道技术监督,2010,38(6):5-6
    [76]徐其瑞,刘峰.钢轨探伤车技术发展与应用[J].中国铁路,2011.7:38-41
    [77]黄英杰,王义,祝力峤.北京地铁钢轨探伤车对钢轨常见伤损的检测[J].铁道标准设计,2009(2):17-19
    [78]F. K. Lam, C. K. Leung. Ultrasonic detection using wideband discrete wavelettransform[J],2001IEEE Intern. Conference on Electrical and Electronic Technology.2001,2:890-893
    [79]A. Jain, D. W. Greve, I. J. Oppenheim, A MEMs Phased Array Transducer for UltrasonicFlaw Detection[J]. Sensors, Proceedings of IEEE,2002,1:515-520
    [80]D. Kudinov, G. Shaydurov. Non-Contact Nondestructive Rail Testing[J].2009International Siberian Conference on Control and Communications (SIBCON),2009:290-295
    [81]Y. Zhu, K. C.Wang, L. Kang, G. F. Zhai, S. J. Wang. Rail Flaw Detection System Basedon Electromagnetic Acoustic Technique[J], The5th IEEE Conference on IndustrialElectronics and Applications (ICIEA2010):211-215
    [82]K. K. Chin, X. M. Jin and J. Saniie. Spectral Evaluation of Ultrasonic Flaw Echoes UsingWigner Distribution[J].Ultrasonic Symposium,1990.12,(2):865-869
    [83]L. Marple. A new autoregressive spectrum analysis algorithm[J]. IEEE Trans. onAcoustics, Speech and Signal Processing,1980,28(4):441-454
    [84]A. Lee. A new autoregressive method for high-performance spectrum analysis[J]. TheJournal of the Acoustical Society of America,1989,(86):150
    [85]D. Rife, R. Boorstyn. Single tone parameter estimation from discrete-timeObservations[J]. IEEE Trans. on Information Theory,1974,20(5):591-598
    [86]D. Rife. Digital tone parameter estimation in the presence of Gaussian noise[D]. Ph.D.thesis, Polytechnic Institute of Brooklyn.1973
    [87]D. Rife, R. Boorstyn, Multiple tone parameter estimation from discrete-timeobservations[J]. Bell Syst. Tech. J,1976,55(9):1389-1410
    [88]D.Tufts, R.Kumaresan. Estimation of frequencies of multiple sinusoids: Making linearprediction perform like maximum likelihood[J]. Proceedings of the IEEE,1982,70(9):975-989
    [89]R. Kenefic, A. Nuttall. Maximum likelihood estimation of the parameters of a toneusing real discrete data[J]. IEEE Journal of Oceanic Engineering,1987,12(1):279-280
    [90]S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory[M]. NewJersey: Prentice Hall Ptr,1993
    [91]N. Mohanty. Random Signal Estimation and Identification[M]. New York: Van NostrandReinhold Company, Inc,1986
    [92]H. L.V. Trees. Detection, Estimation and Modulation Theory. Part I[M]. New York: JohnWiley&Sons Inc,1968
    [93]S. V. Vaseghi. Advanced Digital Signal Processing and Noise Reduction[M]. SecondEditon. New York: John Wiley&Sons LTD,2000
    [94]张贤达.现代信号处理[M].清华大学出版社,1997
    [95]D. Tufts, J. Francis. Estimation and tracking of parameters of narrow-band signals byiterative processing, Information Theory[J]. IEEE Trans. on1977,23(6):742-751
    [96]T. Abatzoglou. A fast maximum likelihood algorithm for frequency estimation of asinusoid based on Newton's method[J]. IEEE Trans. on Acoustics, Speech and SignalProcessing,1985,33(1):77-89
    [97]B. G. Quinn, P. Kootsookos, Threshold behavior of the maximum likelihood estimator offrequency[J]. IEEE Trans. on Signal Processing,1994,42(11):3291-3294
    [98]B. G. Quinn. Estimating frequency by interpolation using Fourier coefficient[J]. IEEETrans. on signal processing,1994.5,42(5):1264-1268
    [99]B. G. Quinn. Estimation of frequency, amplitude, and phase from the DFT of a timeseries[J]. IEEE Trans. on signal process.,1997.3,45(3):814-817
    [100]B. G. Quinn, E. J. Hannan. The estimation and tracking of frequency[M]. New York:Cambridge Univ. Press.2001
    [101]E. Aboutanios, B. Mulgrew. Iterative frequency estimation by interpolation on Fouriercoefficients[J]. IEEE Trans. on signal processing,2005.4,53(4):1237-1242
    [102]刘渝.快速高精度正弦波频率估计综合算法[J].电子学报,1999,27(6):126-128
    [103]丁康,江利旗.离散频谱的能量重心校正法[J].振动工程学报,2001,14(3):354-358
    [104]齐国清,贾欣乐.基于DFT相位的正弦波频率和初相的高精度估计方法[J].电子学报,2001,(09)
    [105]何伟,唐斌,肖先赐.六点拟合的正弦信号的插值多项式测频[J].信号处理,2003,(04)
    [106]齐国清,贾欣乐.插值FFT估计正弦信号频率的精度分析[J].电子学报,2004,32(4):625-629
    [107]齐国清.几种基于FFT的频率估计方法精度分析[J].振动工程学报,2006,03,19(1):86-92
    [108]邓振淼,刘渝.正弦波频率估计的牛顿迭代方法初始值研究[J].电子学报,2007,35(1):104-107
    [109]王宏伟,赵国庆,齐非林.一种实时精确的正弦波频率估计算法[J].数据采集与处理,2009,24(2):208-211
    [110]祝俊,唐斌,杜正聪,姚旭.基于高阶近似核和傅里叶系数内插的快速频率估计算法[J].数据采集与处理,2009,24(6):797-801
    [111]胥嘉佳,刘渝,邓振淼,陈役涛.正弦波信号频率估计快速高精度递推算法的研究[J].电子与信息学报,2009,31(4):866-869
    [112]Y. V. Zakharov, T. C. Tozer. Frequency estimator with dichotomous search ofperiodogram peak[J]. Electron. lett.,1999.9,35(19):1608-1609
    [113]Y. V. Zakharov, V. M. Baronkin, T. C. Tozer. DFT-based frequency estimators withnarrow acquisition range[J]. IEE Proc-commun.,2001.2,148(1):1-7
    [114]E. Aboutanios. A modified dichotomous search frequency estimator[J]. IEEE signalprocessing letters,2004.2,11(2):186-188
    [115]L. Marple. A new autoregressive spectrum analysis algorithm[J]. IEEE Trans. onAcoustics, Speech and Signal Processing,1980,28(4):441-454
    [116]A. Lee. A new autoregressive method for high-performance spectrum analysis[J]. TheJournal of the Acoustical Society of America1989,86:150
    [117]D. Swingler. A modified burg algorithm for maximum entropy spectral analysis[J].Proceedings of the IEEE1979,67(9):1368-1369
    [118]M. Kaveh, G. Lippert. An optimum tapered burg algorithm for linear prediction andspectral analysis. IEEE Trans. on Acoustics, Speech and Signal Processing,1983,31(2):438-444
    [119]W. Campbell, D. Swingler. Frequency estimation performance of several weighted burgalgorithms[J]. IEEE Trans. on Signal Processing,1993,41(3):1237-1247
    [120]J. Durbin. Efficient estimation of parameters in moving-average models[J]. Biometrika1959,46(3):306-316
    [121]T. Anderson. Maximum likelihood estimation of parameters of autoregressive processeswith moving average residuals and other covariance matrices with linear structure[J]. TheAnnals of Statistics,1975:1283-1304
    [122]J. Cadzow. High performance spectral estimation--a new ARMA method[J]. IEEE Trans.on Acoustics, Speech and Signal Processing,1980,28(5):524-529
    [123]H. Akaike. Maximum likelihood identification of gaussian autoregressive movingaverage models[J]. Biometrika,1973,60(2):255-265
    [124]B. Friedlander, B.Porat. The modified Yule-Walker method of ARMA spectralestimation[J]. IEEE Trans. on Aerospace and Electronic Systems,1984,(2):158-173
    [125]L. Marple. Spectral line analysis by pisarenko and Prony methods[A]. IEEEInternational Conference on Acoustics, Speech, and Signal Processing[C], ICASSP'79.,1979,4:159-161
    [126]R. Carriere, R. Moses, High resolution radar target modeling using a modified Pronyestimator[J]. IEEE Trans. on Antennas and Propagation,1992,40(1):13-18
    [127]B. D. Rao, K. V. S. Hari. Performance analysis of Root-Music[J]. IEEE Trans. Onacoustics, speech, and signal processing,1989,37(12):1939-1949
    [128]J. Selva. Computation of spectral and Root Music through real polynomial rooting[J].IEEE Trans. on Signal Processing,2005,53(5):1923-1927
    [129]R. Roy, A. Paulraj, T. Kailath. ESPRIT: A subspace rotation approach to estimation ofparameters of cissoids in noise[J]. IEEE Trans. on acoustics, speech and signal proc.,1986.10,34(5):1340-1342
    [130]N. Yuen, B. Friedlander. Asymptotic performance analysis of ESPRIT, higher orderESPRIT, and virtual ESPRIT algorithms[J]. IEEE Trans. on signal processing,1996.10,44(10):2537-2550
    [131]O. Besson, P. Stoica. Analysis of MUSIC and ESPRIT frequency estimates forsinusoidal signals with lowpass envelopes[J]. IEEE Trans. on signal processing,1996.9,44(9):2359-2364
    [132]S. M. Kay. Modern Spectral Estimation: Theory and Application[M]. Englewood Clis,NJ:Prentice Hall,1988
    [133]V. Pisarenko. The retrieval of harmonics from a covariance function[J]. Geophys. J.R.Astron. Soc.1973,33:347-366
    [134]Y. Ephraim, N. Merhav, H.L. Van Trees. Min-norm interpretations and consistency ofMUSIC, MODE and ML[J]. IEEE Trans. on Signal Processing,1995,43(12):2937-2942
    [135]P. Stoica, B. Ottersten, Comments on “Min-norm interpretations and consistency ofMUSIC, MODE and ML”[J]. IEEE Trans. on Signal Processing,1998,46(8):2262-2263
    [136]R. Hamza, K. Buckley, Second-order statistical analysis of totally weighted subspacefitting methods[J]. IEEE Trans. on Signal Processing,1994,42(9):2520-2524
    [137]K. Mahata, Subspace fitting approaches for frequency estimation using real-valueddata[J]. IEEE Trans. on Signal Processing,2005,53(8):3099-3110
    [138]V. F. Pisarenko. The retieval of harmonics by linear prediction[J]. Geophysical Journalof the Royal Astronomical Society,1973,33(3):347-366
    [139]A. Eriksson, P. Stoica. On statistical analysis of Pisarenko tone frequency estimator[J].Signal Processing,1993.3,1(3):349-53
    [140]K. W. Chan, H. C. So. An exact analysis of Pisarenko’s single-tone frequecy estimationalgorithm[J]. Signal Pocessing,2003.3,83(3):683-690
    [141]K. Lui, H. C. So. Improved Variant of Pisarenko Harmonic Decomposition for SingleSinusoidal Frequency Estimation[J]. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences,2007,90(11):2604-2607
    [142]J. Marhoul. Linear prediction: a tutorial review[J]. Proceedings of the IEEE,1975.4,63(4):561-580
    [143]L. B. Jackson, D. W. Tufts. Frequency estimation by linear prediction[A]. Proc.1978IEEE internat. conf. acoust. speech signal process.[C], Tulsa, OK,1978:352-356
    [144]S. M. Kay. Comments on “Frequency estimation by linear prediction”[J]. IEEE Trans.On acoustics, speech, and signal processing,1979.4, ASSP-27(2):198-190
    [145]S. Tretter. Estimating the frequency of a noisy sinusoid by linear regression[J]. IEEETrans. On inform. theory,1985.11, IT-31:832-835
    [146]D. Tufts, P. Fiore. Simple, effective estimation of frequency based on Prony's method[J].IEEE internat. conf. acoust. speech signal process.1996,5:2801-2804
    [147]H. C. So, K. W. Chan. Reformulation of Pisarenko harmonic decomposition method forsingle-tone frequency estimation[J]. IEEE Trans. Signal Process.,2004.4,52(4):1128-1135
    [148]H. Sakai. Statistical analysis of pisarenko's method for sinusoidal frequencyestimation[J]. IEEE Trans. Acoustics, Speech and Signal Processing,1984,32(1):95-101
    [149]P. Stoica, A. Nehorai. Study of the statistical performance of the Pisarenko harmonicdecomposition method[J]. IEE Communications, Radar and Signal Processing,1988,135(2):161-168
    [150]E. Anarim, Y. Istefanopulos. Statistical analysis of pisarenko type tone frequencyestimator[J]. Signal processing,1991,24(3):291-298
    [151]K. Lui, H. C. So, Modified Pisarenko Harmonic Decomposition for Single-ToneFrequency Estimation[J]. IEEE Trans. on Signal Processing,2008,56(7):3351-3356
    [152]K. Lui, H. C. So, An unbiased pisarenko harmonic decomposition estimator forsingle-tone frequency[J]. in: Proc. European Signal Processing Conf.(Eusipco),2007:956-959
    [153]G. Lank, I. Reed, G. Pollon. A semicoherent detection and Doppler estimation statistic[J].IEEE Trans. on aerosp. electron. syst.,1973.3, AES-9:151-165
    [154]S. M. Kay. A fast and accurate single frequency estimator[J]. IEEE Trans.on Acoustics,Speech and Signal Processing,1989,37(12):1987-1990
    [155]P. Handel. Markov-based single-tone frequency estimation[J], IEEE Trans. on Circuitsand Systems II: Analog and Digital Signal Processing,1998,45(2):230-232
    [156]P. Handel, A. Eriksson, T. Wigren, Performance analysis of a correlation based singletone frequency estimator[J]. Signal processing,1995.6,44(2):223-231
    [157]M. Fitz. Further results in the fast estimation of a single frequency[J]. IEEE Trans. Oncommun.,1994,42(2-4):862-864
    [158]B. Volcker, P. Handel. Frequency estimation from proper sets of correlations[J]. IEEETrans. on signal process.,2002.4,50(4):791-802
    [159]Rim.Elasmi-Ksibi, R. L{\'o}pez-Valcarce, H. Besbes, S. Cherif. A family of realsingle-tone frequency estimators using higher-order sample covariance lags, in:Proceedings of the European Signal Processing Conference (EUSIPCO),2008:956-959.
    [160]Rim.Elasmi-Ksibi, H. Besbes, R. L{\'o}pez-Valcarce, S. Cherif. Frequency estimationof real-valued single-tone in colored noise using multiple autocorrelation lags[J]. SignalProcessing,2010,90(7):2303-2307
    [161]K. Lui, H. C. So, Two-stage autocorrelation approach for accurate single sinusoidalfrequency estimation[J]. Signal Processing,2008,88(7):1852-1857
    [162]S. M. Savaresi. Funnel filters: a new class of filters for frequency estimation ofharmonic signals[J]. Automatica,1997,33(9):1711-1718
    [163]A. Nehorai. A minimal parameter adaptive notch filter with constrained poles andzeros[J]. IEEE Trans. on Acoustics, Speech and Signal Processing ASSP-33.1985(4):983-996
    [164]P. Stoica, A. Nehorai. Performance analysis of an adaptive notch filter with constrainedpoles and zeros[J]. IEEE Trans. on Acoustics, Speech and Signal Processing,1988,36(6):911-919
    [165]P. Strobach. Single section least squares adaptive notch filter[J]. IEEE Trans. on SignalProcessing,1995,43(8):2007-2010
    [166]Rim Elasmi-Ksibi, S. Cherif, R. L{\'o}pez-Valcarce, H. Besbes. Closed-form realsingle-tone frequency estimator based on a normalized IIR notch filter[J]. SignalProcessing,2010,90:1905-1915
    [167]S..M. Savaresi, S. Bittanti, H. C. So. Closed-Form Unbiased Frequency Estimation of aNoisy Sinusoid Using Notch Filters[J]. IEEE Trans. on Automatic Control2003.7,48(7):1285-1292
    [168]A. D. Sabata, L. Toma. Application of Bandpass Filtering in Real Tone Frequency
    Estimation[J].5th International Symposium on Applied Computational Intelligence and
    Informatics,2009:429-433

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700