用户名: 密码: 验证码:
兔深低温停循环高氧管理脑保护的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     心血管外科一些急、危、重、复杂的手术常需在深低温停循环(deep hypothermic circulatory arrest, DHCA)下完成,但其重要脏器(尤其中枢神经系统)并发症及死亡率在总体心血管外科死亡及其它不良预后病例中占很大比例。因此,提高此类患者的疗效,将对心血管外科总体预后的改善做出巨大贡献。
     深低温停循环技术为复杂心脏病手术提供了安静无血的环境,同时也对包括颅脑在内的全身脏器提供低温保护,这项里程碑式的技术临床应用后,婴幼儿复杂性先天性心脏病、累及主动脉弓部的疾病如Stanford A型主动脉夹层等复杂心血管疾病的手术治疗得以安全顺利的进行和发展。但同时DHCA技术对机体影响较大,术后神经精神并发症较多。为改善疗效,经双侧颈总动脉顺行或经上腔静脉逆行脑灌注等脑保护方法曾相继被探索和应用,但前者操作复杂,后者不符合生理。经右腋动脉顺行选择性脑灌注(antegrade selective cerebral perfusion, ASCP)操作简单、符合生理,有效地降低了患者神经系统并发症的发生率,近年来,已发展成为深低温停循环中最经典的脑保护措施。虽然ASCP脑保护效果确切,但近期的研究指出在涉及主动脉弓部的手术中,院内死亡率有6-23%,永久性神经系统功能障碍发生率为2-6%,暂时性神经系统功能障碍发生率为5.6-37.9%,问题仍然不容忽视。研究者们一致认为单一方法难以在此类复杂病例中取得完美的脑保护效果,尤其在DebakeyⅢ型主动脉夹层侧开胸行降主动脉替换以及肺动脉血栓内膜剥脱术等丕能经右腋动脉插管进行ASCP的患者,仍然面临完全DHCA的局面。此外,少数Willis环不完整和/或脑血管病变的患者还可能被暴露于单侧脑灌注的潜在危险中。因此寻找新的,特别是在完全DHCA期间仍然能够提供脑保护的方法刻不容缓。为此,很多学者进行了大量的研究,在众多方面都取得了进展。体外循环中的给氧策略和血气管理也是其中的一个研究热点。
     正常人动脉血氧分压约为70-100mmHg,在体外循环中采用不同的给氧策略和血气管理方式,会使动脉血氧分压(arterial oxygen pressure,PaO2)有较大的波动(100-700mmHg)。在ASCP+DHCA时采用何种血气管理方法最为恰当目前尚未有定论。有研究表明,在常温或浅低温时PaO2过高可能引起脑血管痉挛、骨骼肌微循环障碍和肺损伤,加剧氧化应激造成器官组织氧中毒等不良反应[4];但后来却有研究发现深低温时高氧会产生不同效果。Dexter等[5]研究发现,随着温度的降低,氧与血红蛋白不断增加的亲和力导致进行性氧解离障碍,这种解离障碍在27℃还很微弱,但到了17℃则变得很大。所以在深低温时脑组织主要利用溶解氧,而非血红蛋白携氧[6l。常规体外循环的血气管理有可能并不足以提供充足的溶解氧,而在深低温停循环期间一旦脑供氧不足,很容易造成脑缺氧,继而产生并发症。Nollert等[7]的研究也得到了类似的结果。根据这些研究基础,阜外医院的杨九光等提出了“深低温期间高氧血气管理”(简称“高氧管理”)的具体方法:即指在深低温停循环或深低温低、微流量手术中,常温、浅、中低温体外循环期间注意避免高氧(维持Pa02在100-200mmHg);而在深低温时提高FiO2至60-100%,使Pa02达到300-700mmHg,从而提高深低温期间溶解氧的供给,增加脑氧储备,并在复温早期迅速有效地偿还氧债,减少/避免脑及其它器官缺氧并发症发生以达到保护效果的方法。“深低温期间高氧管理”操作简便,而且不增加患者治疗费用和外科医师的操作,其脑保护效如被成功验证而得以在临床推广,则有可能降患者低神经系统并发症的发生率,对心血管外科总体预后的改善做出贡献。
     目的
     众多脑保护措施应用于涉及主动脉弓部、婴幼儿复杂性先天性心脏病及其它复杂心脏手术中,以期降低接受这些复杂手术患者术后的死亡率和神经系统并发症的发生率,期望患者获得较好的预后。顺行选择性脑灌注联合深低温停循环是目前在涉及主动脉弓部及其它复杂心脏手术中应用最为广泛的一种脑保护方法。对涉及深低温的体外循环给氧策略仍有争议。本实验旨在通过对深低温期间高氧血气管理对深低温停循环兔血气指标、脑氧饱和度、脑组织生化指标、脑损伤标志物、脑组织形态学及脑组织含水量等的研究,探讨深低温期间高氧管理的脑保护作用,为深低温期间高氧管理在临床的应用提供实验经验和实验基础。
     方法
     建立兔深低温停循环(DHCA)+顺行选择性脑灌注(ASCP)动物模型,将32只11-13周龄雄性新西兰兔(体重2.6-3.4kg)用随机数字表法随机分为4组:DHCA组(D组),ASCP组(S组),DHCA十高氧管理组(DH组),ASCP+高氧管理组(SH组),每组8只。术中取血标本检测动脉血氧分压(Pa02)、动脉血氧饱和度(arterial oxygen saturation, SaO2)、颈静脉球血氧分压(jugular venous oxygen pressure, PjvO2)、颈静脉球血氧饱和度(jugular venous oxygen saturation, SjvO2)和血乳酸含量(lactic acid, Lac),连续监测兔脑氧饱和度值;术后检测脑组织超氧化物歧化酶(superoxide dismutase, SOD)活性、丙二醛(malondialdehyde,MDA)含量、糖原含量,乳酸含量,血中神经元特异性烯醇化酶和s100B蛋白含量及脑组织含水量;脑组织标本使用光镜电镜进行形态学检查。
     结果
     停循环前SH组和DH组的PaO2、PjvO2、SjvO2均高于其它两组,与停循环相关的复灌前和恢复灌注5分钟两个时点,SH组的PaO2、PjvO2和SjvO2均高于其余三组,差异具有统计学意义(p<0.05)。SH组在整个停循环过程中与其余三组相比有较高的脑氧饱和度值,差异具有统计学意义(p<0.05)。SH组有较高的脑组织超氧化物歧化酶活性,较低的MDA含量和乳酸含量,SH组有较低的s100B蛋白和神经元特异性烯醇化酶水平,SH组有较低的脑组织含水量。与其余三组相比,光镜及透射电镜观察到SH组保持了更好的神经细胞包括细胞膜、细胞器和细胞核的形态。
     结论
     深低温期间的高氧血气管理相比常氧管理能提供更良好的氧供,在深低温停循环联合顺行选择性脑灌注中使用高氧血气管理能够减低可能的脑损伤,并能够在复温阶段快速地偿还氧债,保持脑组织较好的氧供需平衡关系,具有脑保护作用。
Objectives
     Various brain protective techniques were used to decrease the mortality and the incidence of neurological complications during aortic arch surgery, complex neonatal congenital heart surgery and the other complex cardiovascular sugery, in order to achieve good clinical outcome. Combination of ASCP and DHCA was suggested as the most popularly used method of cerebral protection during the aortic arch surgery and the other complex cardiovascular sugery. However, the oxygen management for this combination strategy is still controversial. The aim of this study was to investigate the effects of hyperoxia management during deep hypothermia in circulatroy arrest rabbit on the blood gas indexes, regional cerebral oxygen saturation, biochemical indexes, cerebral injury markers, morphology of brain tissue and the ratio of water to brain, to determine the cerebral protective effects of hyperoxia management, to get the experimental experience and basics for clinical application of hyperoxia management.
     Methods
     A deep hypothermic circulatory arrest (DHCA) and antegrade selective cerebral perfusion (ASCP) rabbit model was established. Thirty-two11-13week-old male New Zealand rabbits (weighing2.6to3.4kg) were assigned to four groups with a random number table:a deep hypothermic circulatory arrest group (D group), an antegrade selective cerebral perfusion group (S group), a DHCA+hyperoxia management group (DH group) and an ASCP+hyperoxia management group (SH group). There were eight rabbits in each group. We recorded the intraoperative values of arterial oxygen pressure (PaO2), arterial oxygen saturation (SaO2), jugular venous oxygen pressure (PjvO2), jugular venous oxygen saturation (SjvO2), blood lactate level and continous regional cerebral tissue oxygen saturation (rSO2). The levels of neuron-specific enolase (NSE) and s100B proteins of the blood, the brain superoxide dismutase activity, malondialdehyde levels, lactic acid levels, glycogen levels and ratio of water to brain were measured after the operation. Light microscope and electron microscope were used for morphological examination of brain tissue specimens.
     Results
     Before initiating circulatory arrest, levels of PaO2, PjvO2, and SjvO2in the SH group and DH group were significantly higher than those of the D and S groups. Before initiating reperfusion and five minutes after reperfusion (the time points related to circulatory arrest), levels of PaO2, PjvO2, and SjvO2in the SH group were significantly higher than those of the other three groups (p<0.05). In the duration of CA, rSO2in the SH group was significantly higher than that in the other three groups (p<0.05). The brain tissue of the animal in the SH group was with higher SOD activity, lower MDA level and lower lactic acid level than in the other group. There were lower s100B level and NSE level in the SH group than those in the other groups. Compared with the other three groups, the brain tissue of the animal in the SH group kept a better cell morphology of neuron including cell membrane, cellular organelle, cell nucleus.
     Conclusions
     Hyperoxia management during deep hypothermia provided substantial dissolved oxygen and better oxygen supply over normoxia management. Hyperoxia management for the combination of ASCP and DHCA could reduce the risk of cerebral injury, repay the oxygen debt quickly during the rewarming period, keep a good oxygen supply and demand balance. This study confirms that hyperoxia management for the combination of ASCP and DHCA provides a better cerebral protection over normoxia management in a rabbit model.
引文
1. Griepp RB. Cerebral protection during aortic arch surgery [J]. J Thorac Cardio-vasc Surg.2001; 121(3):425-427.
    2. Harrington DK, Fragomeni F, Bonser RS. Cerebral perfusion[J]. Ann Thorac Surg.2007; 83(2):S799-S804.
    3. Efstratios Apostolakis, Karolina Akinosoglou. The Methodologies of Hypo-thermic Circulatory Arrest and of Antegrade and Retrograde Cerebral Perfusion for Aortic Arch Surgery [J]. Ann Thorac Cardiovasc Surg.2008; 14 (3):138-148.
    4. Joachimsson PO, Sjoberg F, Forsman M, et al. Adverse effects of hyperoxemia during cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg.1996; 112(3): 812-819.
    5. Dexter F, Hindman BJ. Theoretical analysis of cerebral venous blood hemo-globin's oxygen saturation as an index of cerebral oxygenation during hypothermic cardiopulmonary bypass:a counter-proposal to the "luxury perfusion" hypothesis[J]. Anesthesiology.1995; 83:405-412.
    6. Dexter F, Kern FH, Hindman BJ, et al. The brain uses mostly dissolved oxygen during profoundly hypothermic cardiopulmonary bypass [J]. Ann Thorac Surg, 1997,63(6):1725-1729.
    7. Nollert G, Nagashima M, Bucerius J, et al. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. Ⅰ.Gaseous microemboli[J]. J Thorac Cardiovasc Surg.1999; 117(6):1166-1171.
    8. Drew CE, Keen G, Benazon DB:Profound hypothermia [J]. Lancet.1959; 1:745-748.
    9. Griepp RB, Stinson EB, Hollingsworth JF, et al. Prosthetic replacement of the aortic arch. J Thorac Cardiovasc Surg[J].1975; 70(6):1051-1063.
    10. Ergin MA, Griepp RB. Progress in treatment in aneurysms of the aortic arch. Word J Surg[J].1980; 4(5):535-542.
    11. Kunzli A, Zingg PO, Zund G, et al. Does retrograde cerebral perfusion via superior vena cava cannulation protect the brain [J]? Eur J Cardiothorac Surg. 2006; 30(6):906-9.
    12. Ehrlich MP, Hagl C, McCullough JN, et al. Retrograde cerebral perfusion provides negligible flow through brain capillaries in the pig[J]. J Thorac Cardiovasc Surg.2001; 122(2):331-8.
    13. Juvonen T, Weisz D, Wolfe D, Zhang N, Bodian CA, McCullough JN, Mezrow CK, Griepp RB. Can retrograde cerebral perfusion mitigate cerebral injury following particulate embolization? A study in a chronic porcine model[J]. J Thorac Cardiovasc Surg.1998; 115(5):1142-1159.
    14. Boeckxstaens C, Flameng W. Retrograde cerebral perfusion does not perfuse the brain in nonhuman primates[J]. Ann Thorac Surg.1995; 60(2):319-328.
    15. Ye J, Ryner L, Kozlowski P, Yang L, Del Bigio MR, Sun J, Donnelly M, Summers R, Salerno TA, Somorjai RL, Saunders JK, Deslauriers R. Retrograde cerebral perfusion results in flow distribution abnormalities and neuronal damage[J]. Circulation.1998; 98 (suppl.19):Ⅱ313-Ⅱ318.
    16. Apostolakis E, Koletsis EN, Dedeilias P, Kokotsakis JN, Sakellaropoulos G, Psevdi A, Bolos K, Dougenis D. Antegrade Versus Retrograde Cerebral Perfusion in Relation to Postoperative Complications Following Aortic Arch Surgery for Acute Aortic Dissection Type A[J]. J Card Surg.2008; 23(5):480-487.
    17. Alberto Forteza, Carlos Martin, Jorge Centeno, et al. Acute type A aortic dissection:18 years of experience in one center (Hospital 12 de Octubre) [J]. Interactive CardioVascular and Thoracic Surgery.2009; 9(3):426-30.
    18. Griepp R. Panel Discussion:Session Ⅱ-Aortic Arch[J]. Ann Thorac Surg. 2007; 83:S824-31.
    19. Byrne JG, Fitzgerald DJ, Aranki SF. Simultaneous selective cerebral perfu-sion and systemic circulatory arrest through the right axillary artery for aortic surgery[J]. J Card Surg.1998; 13(4):236-8.
    20. Sun Lizhong, Ren Jie, Yang Tianyu, et al. Surgical treatment of DeBakey Type I aortic dissection using the "elephant trunk technique" [J]. Chinese Medical Journal 1999,112:713-716.
    21. Stranch JT, Spielvogel D, Lauten A, et al. Axillary-artery cannulation: routine use in ascending aorta and aortic arch replacement [J]. Ann Thorac Surg. 2004; 78(1):103-108.
    22. Whitlark JD, Goldman SM, Sutter FP. Axillary artery cannulation in acute ascending aortic dissections [J]. Ann Thorac Surg.2000; 69(4):1127-1129.
    23.杨九光,黄宇光,龙村等.全主动脉弓置换术患者体外循环深低温时高氧血气管理的效果[J].中华麻醉学杂志.2006;26(1):11-15.
    24. Safar P. Long-term animal outcome models for cardio-pulmonary-cerebral resuscitation research[J]. Crit Care Med.1985; 13:936.
    25.顾正中.脑血液供应.见:顾正中主编.脑循环与临床[M].上海科学技术出版社.1983;6-26.
    26.杨九光,龙村,姚忠喜,等.经右锁骨下动脉、右房插管兔体外循环及选择性脑灌注模型的建立[J].中华实验外科杂志.2000;17(1):77-78.
    27.杨九光,龙村,孙立忠,等.全主动脉弓置换术中的温度管理[J].中国胸心血管外科临床杂志.2005;12(5):312-315.
    28.田良鑫,孙立忠,程卫平,等.单侧与双侧顺行性脑灌注对认知能力的影响[J].中国胸心血管外科临床杂志.2005;12(1):8-10.
    29. Ergin M A, Galla J D, Lansman S L, et al. Hypothermic circulatory arrest in operation on the thoracic aorta determinants of operative mortality and neurologic outcome[J]. J Thorac Cardiovasc Surg.1994; 107(3):788-799.
    30. Gega A, Rizzo JA, Johnson MH, et al:Straight deep hypothermic arrest: Experience in 394 patients supports its effectiveness as a sole means of brain preservation[J]. Ann Thorac Surg.2007; 84:759-766.
    31. Greeley WJ, Kern FH, Ungerleider R M, et al. The efect of hypothermic cardiopulmonary byass and total circulatory arrest on cerebral metabolism in neonates, infants, and children [J]. J Thorac Cardiovasc Surg,1991,101(5): 783-794.
    32.龙村.体外循环研究与实践[M].北京:北京医科大学出版社.2000;271.
    33. Young W L, Lawton M T, Guptadk, et al. Anesthetic management of deep hypothermic circulatory arrest for cerebral aneurysm clipping [J]. Anesthesiology.2002; 96(2):497-503.
    34.龙村.主编.体外循环学[M].北京:人民军医出版社,2004,103-126.
    35. Baraka A. Alpha-star VS. pH-star strategy during hypothermic cardio-pulmonary bypass[J]. Middle East J Anesthesiol.2004; 17(4):705-712.
    36. Duebener LF, Hagino I, Sakamoto T, et al. Efects of pH management during deep hypothermic bypass on cerebral microcirculation:alpha-star reigns pH stat[J]. Circulation,2002,106(12 Suppl 1):1103-1108.
    37. Ueno K, Takamoto S, Miyairi T, et al. Arterial blood gas management in retrograde cerebral perfusion:the importance of calbon dioxidc[J]. Eur J Cardiothorac Surg.2001,20(5):979-985.
    38. Abdul Aziz KA, Meduoye A. Is pH-stat or alpha-stat the best technique to follow in patients undergoing deep hypothermic circulatory arrest[J]. Interact Cardiovase Thorac Surg,2010,10(2):271-82.
    39. Leyvi G, Bello R, Wasnick J D, et al. Assessment of cerebral oxygen balance during deep hypothermic circulatory arrest by continuous jugular bulb venous saturation and near-infrared spectroscopy[J]. J Cardiothorac Vase Anesth. 2006; 20(6):826-833.
    40. Cormio M, Valadka AB, Robertson CS. Elevated jugular venous oxygen saturation after severe head injury[J]. J Neurosurg.1999; 90(1):9-15.
    41. Croughwell ND, Newman MF, Blumenthal JA, et al. Jugular bulb saturation and cognitive dysfunction after cardiopulmonary bypass [J]. Ann Thorac Surg,1994,58(6):1702-1708.
    42. Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters [J]. Science,1977; 198:1264-1267.
    43. Goldman S, Sutter F, Ferdinand F, Trace C. Optimizing intraoperative cerebral oxygen delivery using non-invasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients [J]. Heart Surg Forum 2004;7:E376-E381.
    44. Murkin JM, Adams SJ, Novick RJ,et al.Monitoring brain oxygen saturation during coronary bypass surgery:a randomized, prospective study[J]. Anesth Analg 2007;104:51-58.
    45. Edmonds HL Jr, Ganzel BL, Austin EH 3rd. Cerebral oximetry for cardiac and vascular surgery[J]. Semin Cardiothorac Vasc Anesth 2004;8:147-66.
    46. Yao FS, Tseng CC, Ho CY, et al:Cerebral oxygenation is correlated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery[J]. J Cardiothorac Vasc Anesth.2004; 18:552-558.
    47. Ausman JI, McCormick PW, Stewart M,et al:Cerebral oxygen metabolism during hypothermic circulatory arrest in humans[J]. J Neurosurg.1993; 79: 810-815.
    48. Orihashi K, Sueda T, Okada K, et al:Near-infrared spectroscopy for monitoring cerebral ischemia during selective cerebral perfusion[J]. Eur J Cardiothorac Surg 26:907-911,2004.
    49. Young C, Tenkova T, Dikranian k, et al. Excitotoxic versus apoptotic mechanisms of neuronal cell death in perinatal hypoxia/ischemia[J]. Curr Mol Med.2004; 4(2):77-85.
    50.江普查,袁先厚.脑缺血再灌流时脑组织自由基水平的研究[J].中华实验外科杂志,1994,11(3):176-178.
    51. WARNER D S, SHENG H, BATINIC HABERLE I. Oxidants, antioxidants and the ischemic brain [J]. J Exp Biol,2004,207(18):3221-3231.
    52. Karibe H, Chen S F, Zarow G J, et al. Mild intraischemic hypothermia suppresses consumption of endogenous antioxidants after temporary focal ischemia in rats [J]. Brain Res,1994,649:12-18.
    53. Zauder H L, Stehling L. Acute normovolemic hemodilution[J]. J Clin Anesth.2000.12:498.
    54. McCord JM, Fridovich I. Superoxide dismutase. J Biol Chem,1969, 244(22):6049-6055.
    55. Lewen A, Matz P, Chan P H. Free radical pathways in CNS injury [J]. J Neurotrauma.2000; 17(10):871-890.
    56. Kamada H, Yu F, Nito C, et al. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/ reperfusion in rats:relation to blood-brain barrier dysfunction [J]. Stroke.2007; 38(3):1044-1049.
    57. Maier CM, Hsieh L, Crandall T, et al. Evaluating therapeutic targets for reperfusion-related brain hemorrhage[J]. Ann Neurol.2006; 59(6):929-938.
    58. Narasimhan P, Liu J, Song YS, et al. VEGF stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions [J]. Stroke.2009; 40(4):1467-1473.
    59. Nita D A, Nita V, Spulber S, et al. Oxidative damage following cerebral ischemia depends on reperfusion-a biochemical study in rat[J]. J Cell Mol Med, 2001; 5(2):163-170.
    60. Liu Y, Rosenthal RE, Haywood Y, et al. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome[J]. Stroke.1998; 29(8):1679-1686.
    61. Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality [J]. JAMA.2010; 303(21):2165-2171.
    62.周立文,雷成明,曾凡玲,等.乌司他丁对婴幼儿心肺转流乳酸浓度的影响[J].临床麻醉学杂志.2006:22:224-225.
    63. Durward A, Tibby SM, Skellett S, et al. The strong ion gap predicts mortality in children following cardiopulmonary bypass surgery[J]. Pediatr Crit Care Med,2005,6:281-285.
    64.齐弘炜,江朝光,汤楚中,等.深低温停循环时不同脑保护方法对猪大脑组织含水率的影响[J].中国临床康复,2005,9:60-61.
    65. Katayama Y, Tmura T, Becker D P, et al. Early cellular swelling during cerebral ischemia in vivo is mediated by excitatory amino acids released from nerve terminals [J]. Brain Res,1992,577:121-126.
    66. De Bock M, Culot M, Wang N, Bol M, et al. Connexin channels provide a target to manipulate brain endothelial calcium dynamics and blood-brain barrier permeability [J]. J Cereb Blood Flow Metab,2011,31(9):1942-57.
    67. Liu L, Yenari MA.Therapeutic hypothermia:neuroprotective mechanisms [J]. Front Biosci,2007, 1(12):816-25.
    68. Bickler P E, Buck L T, Hansen B M, et al. Effects of isoflurane and hypothermia on glutamate receptor-mediated calcium influx in brain slices[J]. Anesthesiology,1994,81:1461-1469.
    69. McKeating EG, Andrews PJ, Mascia L. Relationship of neuron specific enolase and protein S-100 concentrations in systemic and jugular venous serum to injury severity and outcome after traumatic brain injury[J]. Acta Neurochir Wien.1998; 71(suppl):117.
    70. Hans P. Biochemical markers of the brain injury[J]. Agressologie.1998; 29: 233-235.
    71.中华医学会全国第四届脑血管疾病学术会议.各类脑血管疾病诊断要点[J].中华神经科杂志,1996;12(6):379-381.
    72.林坚,工怀瓯,林逢春.兔脑出血急性期血浆神经元特异性烯醇化酶(NSE)的变化及意义[J].中国实用神经疾病杂志.2006;9(1):41-43.
    73. Korfias S, Papadimitfiou A, Stranjalis G, et al. Serum biochemical markers of brain injury[J]. Mini Rev Med Chem.2009; 9:227-234
    74. Chiaretti A, Barone G, Riccardi R, et al. NGF, DCF, DCX and NSE upregulation correlates with severity and outcome of head trauma in children[J]. Neurology.2009; 72(7):609-616.
    75. Barone FC, Clark RK, Price WJ, et al. Neuron-specific enolase increases in cerebral and systemic circulation following focal ischemia[J]. Brain Res.1993; 623(1):77-82.
    76. Missler U, Wiesmann M, Friedrich C, et al. S-100 protein and neuronspecific enolase concentrations in blood as indicators of infarction volume and prognosis in acute isehemic stroke [J]. Stroke.1997; 28(10):1956.
    77. Lange RT, Brubacher JR, Iverson GL, et al, Differential effects of alcohol intoxication on S100B levels following traumatic brain injury[J]. J Trauma.2010; 68(5):1065-1071.
    78. Sandler SJ, Figaji AA, Adelson PD. Clinical applications of biomarkers in pediatric traumatic brain injury[J]. Childs Nerv Sys.2010; 26(2):205-213.
    79. Scotto C, Deloulme JC, Rousseau D, et al. Calcium and S100B regulation of p53-dependent cell growth arrest and apoptosis [J]. Molcell Biol.1998; 18(7): 4272-4281.
    80. Parolari A, A Iamanni F, Naliato M, et al. Adult cardiac surgery outcomes: role of the pumptype[J]. Eur J Cardiothoral Surg.2000; 18(5):575.
    81. Raabe A, Kopetsch O, Woszczyk A, et al. Serum S100B protein as a molecular marker in severe traumatic brain injury[J]. Restor Neurosci,2003, 21(34):159-169.
    82. Pearl JM, Thomas DW, Grist G, et al. Hyperoxia for management of acid-base status during deep hypothermia with circulatory arrest[J]. Ann Thorac Surg.2000; 70(3):751-755.
    1. Fay T. Observations on generalized refrigeration in cases of severecerebral trauma[J]. Assoc Res NervMent Dis Proc.1943; 24:611-619.
    2. Bigelow WG, Lindsay WK, Greenwood WF:Hypothermia; itspossible role in cardiac surgery:An investigation of factors governingsurvival in dogs at low body temperatures[J]. Ann Surg.1950; 132:849-866.
    3. Drew CE, Keen G, Benazon DB:Profound hypothermia [J]. Lancet1.1959; 745-748.
    4. Griepp RB, Stinson EB, Oyer PE, Copeland JG, Shumway NE. The superiority of aortic cross-clamping with pro-found local hypothermia for myocardial protection during aorta-coronary bypass grafting[J]. J Thorac Cardiovasc Surg. 1975; 70(6):995-1009.
    5. ErginMA, Griepp RB. Progress in treatment in aneurysms of the aortic arch[J]. Word J Surg.1980; 4(5):535-542.
    6. Bellamy R, Safar P, Tisherman SA, etal. Suspended animation for delayed resuscitation [J]. Crit Care Med.1996; 24(2 Suppl):S24-47.
    7. Han HS, Yenari MA. Focal cerebral ischemia:Mechanisms. In:Tisherman SA, Fritz S, editors. Therapeutic Hypothermia [J]. Springer; 2005. pp.25-41.
    8. Liu L, Yenari MA. Therapeutic hypothermia:neuroprotective mechanisms [J]. Front Biosci.2007;12:816-25.
    9. Slikker W,3rd, Desai VG, Duhart H, Feuers R, Imam SZ. Hypothermia enhances bcl-2 expression and protects against oxidative stress-induced cell death in Chinese hamster ovary cells[J]. Free RadicBiol Med.2001; 31(3):405-11.
    10. Dae MW, Gao DW, SesslerDI.etal. Effect of endovascular cooling on myocardial temperature, infarct size, and cardiac output in human-sized pigs[J]. Am J Physiol Heart Circ Physiol.2002; 282(5):H1584-91.
    11. Han HS, Yenari MA. Effect of gene expression by therapeutic hypothermia in cerebral ischemia[J]. Future Neurology.2007;2(4):435-440.
    12. Sakurai T, Itoh K, Higashitsuji H.etal.Cirp protects against tumor necrosis factor-alpha-induced apoptosis via activation of extracellular signal-regulated kinase[J]. Biochim Biophys Acta.2006; 1763(3):290-5.
    13. HolcikM, Lefebvre C, YehC.etal. A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection[J]. Nat Cell Biol.1999;1(3):190-2.
    14. Newman MF, Mathew JP, Grocott HP, et al. Central nervous system injury associated with cardiac surgery[J]. Lancet.2006; 368:694-703.
    15. Funder KS, Steinmetz J, Rasmussen LS. Cognitive dys-function after cardiovascular surgery. Minerva Anestesiol[J].2009; 75:329-332.
    16.毕齐,张茁.心脏术后合并脑血管病[J].心肺血管病杂志.1999;18(2):157-158.
    17.陈朋.心脏手术与脑保护[J].现代诊断与治疗.2003;14(3):129-130
    18. M.R. Moon, D.C. Miller. Aortic arch replacement for dissection[J]. Op Tech Thorac Cardiovasc Surg.1999; 4:pp.33-57.
    19. Murkin JM. Attenuation of neurologic injury during cardiac surgery[J]. Ann Thorac Surg,2001; 72:S1838-S1844.
    20. Apostolakis E, ShuhaiberJH.Antegrade or retrograde cerebral perfusion as anadjunct during hypothermic circulatory arrest for aortic arch surgery[J]. Expert Rev CardiovascTher.2007; 5(6):1147-61.
    21. Svyatets M, Tolani K, Zhang M, etal. Perioperative management of deep hypothermic circulatory arrest[J]. J Cardiothorac Vasc Anesth.2010; 24(4):644-55.
    22. E.M. Boyle, T. Pohlman, C. Cornejo, et al. Endothelial cell injury in cardiovascular surgery:Ischemia-reperfusion [J]. Ann Thorac Surg. 1996; 62:1858-1875.
    23. S.Verma, T.J. Anderson. Fundamentals of endothelial function for the clinical cardiologist[J]. Circulation.2002; 105:546-549.
    24. J. Rimpilainen, M. Pokela, K. Kiviluoma et al. Leukocyte filtration improves brain protection after a prolonged period of hypothermic circulatory arrest:A study in a chronic porcine model [J]. J Thorac Cardiovasc Surg.2000; 120: 1131-1141.
    25. M. Zhang, M.C. Carroll. Natural Ig M-mediated innate autoimmunity:A new target for early intervention of ischemia-reperfusion injury[J]. Expert Opin Biol Ther.2007; 7:pp.1575-1582.
    26.梅波,赖应龙.体外循环脑损伤及脑保护研究进展[J].中国体外循环杂志.2010;8(2):125-127.
    27. Hogue CW Jr, Palin CA, Arrowsmith JE. Cardiopulmonary bypass management and neurologic outcomes:an evidence-based appraisal of current practices[J]. Anesth Analg.2006; 103(l):21-37.
    28. Brooker RF, Brown WR, Moody DM,etal.Cardiotomy suction:a major source of brain lipid emboli during cardiopulmonary bypass[J]. Ann Thorac Surg.1998; 65(6):1651-5.
    29. Roach GW, Kanchuger M, Mora-Mangano C, et al. Adverse cerebral outcomes after coronary bypass surgery[J]. N Engl J Med.1996; 335:1857-63.
    30. Wareing TH, Davila-Roman VG, Barzilai B, Murphy SF, Kouchoukos NT. Management of the severely atherosclerotic ascending aorta during cardiac operations:a strategy for detection and treatment [J]. J Thorac Cardiovasc Surg 1992; 103:453-62.
    31. van der Linden J, Hadjinikolaou L, Bergman P, Lindblom D. Postoperative stroke in cardiac surgery is related to the location and extent of atherosclerotic disease in the ascending aorta[J]. J Am CollCardiol.2001; 38:131-35.
    32. Murkin JM, Martzke JS, Buchan AM, Bentley C, Wong CJ. A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery. I. Mortality and cardiovascular morbidity [J]. J Thorac Cardiovasc Surg.1995; 110:340-08.
    33. Brown WR, Moody DM, Challa VR, Stump DA, Hammon JW. Longer duration of cardiopulmonary bypass is associated with greater numbers of cerebral microemboli[J]. Stroke.2000; 31:707-13.
    34. Jones TJ, Deal DD, Vernon JC, Blackburn N, Stump DA. Does vacuum-assisted venous drainage increase gaseous microemboli during cardiopulmonary bypass [J]? Ann Thorac Surg.2002; 74:2132-37.
    35. Iglesias I, Murkin JM. Beating heart surgery or conventional CABG:are neurologic outcomes different[J]? Semin Thorac Cardiovasc Surg.2001; 13: 158-69.
    36. Bucerius J, Gummert JF, Borger MA, et al. Stroke after cardiacsurgery:a risk factor analysis of 16,184 consecutive adult patients [J]. Ann ThoracSurg. 2003; 75:472-78.
    37. Cleveland JC, Shroyer LW, Chen A, Peterson E, Grover FL. Off-pump coronary artery bypass grafting significantly decreases risk-adjusted mortality and morbidity. Ann Thorac Surg.2001; 72:1282-28.
    38. Gottesman RF, Sherman PM, Grega MA, etal. Watershed strokes after cardiac surgery:diagnosis, etiology, and outcome[J]. Stroke.2006; 37(9):2306-11.
    39. De Bakey M, Crawford E, Cooley D, et al. Successfulresection of fusiform aneurysm of aortic arch with replacementby homograft [J].Surg Gynecol Obstet. 1957; 105(6):656-64.
    40. Randall B Griepp. Cerebral protection during aortic arch Surgery[J]. J Thorac Cardiovasc Surg.2003; 125:S36-38.
    41. Sabik JF, Nemeh H, Lytle BW, et al. Cannulation of theaxillary artery with a side graft reduces morbidity [J]. Ann ThoracSurg.2004; 77(4):1315-20.
    42.姬尚义,杨建安,陈长春等无名动脉插管与主动脉弓部手术中的脑保护[J].中华胸心外科血管杂志,2006;22(6):424-5.
    43. Okita Y, Minatoya K, Tagusari O, et al. Prospective comparative study of brain protection in total aoric arch replacement:deep hypothermic circulatory arest with retrogaed cerebral perfusion or selective antegradecelebral perfusion[J]. Ann Thorac Surg.2001; 72(1):72-79.
    44. Ueda T, Shimizu H. Ito T, et al. Cerebral complication associated with selective perfusion of the arch vessels[J]. Ann ThoracSurg.2000; 70(1):1472-1477.
    45. Halkos ME, Kerendi F, Myung R, Kilgo P, Puskas JD, Chen EP. Selective antegrade cerebral perfusion via right axil-lary artery cannulation reduces morbidity and mortality after proximal aortic surgery[J]. J Thorac Cardiovasc Surg 2009; 138(5):1081-1089.
    46.江朝光,齐弘炜,周春喜,等.深低温停循环时不同脑保护方法对海马区神经元凋亡的影响[J].中华胸心血管外科杂志.2003;19(2):100-102.
    47. Mills NL, Ochsner JL. Massive air embolism during cardiopulmonary bypass. Causes, prevention, and management. J Thorac Cardiovasc Surg[J].1980; 80(5):708-17.
    48. Ueda Y, Miki S, Kusuhara K, et al. Surgical treatment of the aneurysm or dissection involving theascending aorta and aortic arch, using circulatory arrest andretrograde perfusion[J]. Nihon Kyobu GekaGakkai Zasshi.1988; 36(2): 161-6.
    49.薛磊,胡克俭,深低温体外循环技术对脑保护作用的研究进展[J].中国体外循环杂志.2005;3(2):117-118.
    50. Marco DE, Marc AS, Win JM, et al. Antegrade selective cerebral perfusion during operations on the thoracic aorta:Factors influencing survival and neurologie outcome in 413 patients[J]. J Thorac Cardiovasc Surg.2002; 124(4): 1080-1086.
    51. Svyatets M, Tolani K, Zhang M, etal. Perioperative management of deep hypothermic circulatory arrest[J]. J Cardiothorac Vase Anesth.2010; 24(4):644-55.
    52. Jonas RA. Optimal pH strategy for hypothermic circulatory arrest[J]. J Thorac Cardiovasc Surg.2001; 121(2):204-5.
    53. Li ZJ, Yin XM, Ye J. Effects of pH management during deep hypothermic bypass on cerebral oxygenation:alpha-stat versus pH-stat[J]. J Zhejiang Univ Sci.2004;5(10):1290-7.
    54. Priestley MA, Golden JA, O'Hara IB, McCann J, Kurth CD. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs[J]. J Thorac Cardiovasc Surg.2001; 121:336-43.
    55.白凯,苏肇伉,徐志伟等.血气管理策略对停循环术中脑保护的实验研究[J].中华胸心血管外科杂志.1999;15:367-370.
    56.王顺民,苏肇伉,徐志伟等.深低温停循环灌注降温期血气管理对婴儿脑保护的研究[J].中华小儿外科杂志.2001;22(4):219-221.
    57. Young C, Tenkova T, Dikranian k, et al. Excitotoxic versus apoptotic mechanisms of neuronal cell death in perinatal hypoxia/ischemia[J]. Curr Mol Med.2004; 4(2):77-85.
    58. Nollert G, Nagashima M, Bucerius J, et al. Oxygenation strategy and neurologic damage after deep hypothermic circulatory arrest. Ⅱ. hypoxic versus free radical injury[J]. J Thorac Cardiovasc Surg.1999; 117(6):1172-9.
    59. Pearl JM, Thomas DW, Grist G, et al. Hyperoxia for management of acid-base status during deep hypothermia with circulatory arrest[J]. Ann Thorac Surg.2000; 70(3):751-5.
    60.祝忠群,朱德明,苏肇伉,等.先天性心脏病儿体外循环的再氧合损伤[J].中国体外循环杂志.2005;3(3):131-133.
    61. Liu Y, Rosenthal RE, Haywood Y, et al. Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome [J]. Stroke.1998; 29(8):1679-1686.
    62. Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality[J]. JAMA.2010; 303 (21):2165-2171.
    63. McCord JM, Fridovich I. Superoxide dismutase[J]. J Biol Chem.1969; 244(22):6049-6055.
    64. Lewen A, Matz P, Chan P H. Free radical pathways in CNS injury[J]. J Neurotrauma.2000; 17(10):871-890.
    65. Kamada H, Yu F, Nito C, et al. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/ reperfusion in rats:relation to blood-brain barrier dysfunction[J]. Stroke.2007; 38(3):1044-1049.
    66. Maier CM, Hsieh L, Crandall T, et al. Evaluating therapeutic targets for reperfusion-related brain hemorrhage[J]. Ann Neurol.2006; 59(6):929-938.
    67. Narasimhan P, Liu J, Song YS, et al. VEGF stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions [J]. Stroke.2009; 40(4):1467-1473.
    68. Kim TS, Kang BS, Kim HS.etal.Changes in arterial blood PO2, PCO2, and pH during deep hypothermic circulatory arrest in adults[J]. J Korean Med Sci. 1997;12(3):199-203.
    69. Dexter F, Kern FH, Hindman BJ, et al. The brain uses mostly dissolved oxygen during profoundly hypothermic cardiopulmonary bypass[J]. Ann Thorac Surg.1997; 63(6):1725-1729.
    70. Nussmeier NA, Arlund C, Slogoff S.Neuropsychiatric complications after cardiopulmonary bypass:cerebral protection by abarbiturate[J]. Anesthesiology. 1986;64(2):165-70.
    71. Zaidan JR, Klochany A, Martin WM, et al. Effect of thiopental on neurologic outcome following coronary artery bypass grafting[J]. Anesthesiology.1991; 74(3):406-11.
    72. Kurth CD, Priestley M, Watzman HM, etal. Desflurane confers neurologic protection for deep hypothermic circulatory arrest in newborn pigs[J]. Anesthesiology.2001; 95(4):959-64.
    73. Wang D, Wu X, Li J, Xiao F, etal. The effect of lidocaine on early postoperative cognitive dysfunction after coronary artery bypass surgery [J]. Anesth Analg.2002; 95(5):1134-41, table of contents.
    74. Onal MZ, Fisher M. Acute ischemic stroke therapy. A clinical overview [J]. Eur Neurol.1997; 38(3):141-54.
    75. Heinze H, Rosemann C, Weber C,etal.A single prophylactic dose of pentoxifylline reduces high dependency unit time in cardiac surgery-a prospective randomized and controlled study[J]. Eur J Cardiothorac Surg.2007; 32(1):83-9.
    76. Cag li K, Ulas MM, Ozisik K, Kale A, Bakuy V, Emir M, Balci M, Topbas M, Sener E, Tasemir O. The intraoperative effect of pentoxifylline on the inflammatory process and leukocytes in cardiac surgery patients undergoing cardiopulmonary bypass[J]. Perfusion.2005; 20(1):45-51.
    77. Roberts I, Yates D, Sandercock P, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial):randomised placebo-controlled trial[J]. Lancet.2004; 364(9442):1321-1328.
    78. Harrington DK, Fragomeni F, Bonser RS. Cerebral perfusion [J]. Ann Thorac Surg.2007; 83:S799-804.
    79. Korfias S, Papadimitfiou A, Stranjalis G, et al. Serum biochemical markers of brain injury[J]. Mini Rev Med Chem.2009; 9:227-234.
    80.付庆林,张新中,韩培立,等.银杏叶提取物对脑微空气栓塞损伤的保护作用[J].中华实验外科杂志.2009;26(11):1568.
    81. Soncin F, Zhang X, Chu B, et al. Transcriptional activity andDNA binding of heat shock factor-1 involve phosphorylation onthreonine 142 by CK2[J]. Biochem Biophys Res Commun.2003; 303(2):700-706.
    82. Petersson KH, Pinar H, Stopa EG, et al. White matter injury after cerebral ischemia in ovine fetuses[J]. Pediatr Res.2002; 51:768-776.
    1. Murkin JM. Attenuation of neurologic injury during cardiac surgery[J]. Ann Thorac Surg.2001; 72:S1838-S1844.
    2. Apostolakis E, Shuhaiber JH. Antegrade or retrograde cerebral perfusion as an adjunct during hypothermic circulatory arrest for aortic arch surgery[J]. Expert Rev Cardiovasc Ther.2007; 5(6):1147-61.
    3. Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters[J]. Science.1977; 198:1264-7.
    4. Yao FS, Tseng CC, Ho CY, et al. Cerebral oxygenation is correlated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery[J]. J Cardiothorac Vasc Anesth.2004; 18:552-558.
    5. Goldman S, Sutter F, Ferdinand F, Trace C. Optimizing intraoperative cerebral oxygen delivery using non-invasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients [J]. Heart Surg Forum.2004; 7:E376-E381.
    6. Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery:a randomized, prospective study[J]. Anesth Analg.2007; 104:51-58.
    7. Harrington DK, Fragomeni F, Bonser RS. Cerebral perfusion [J]. Ann Thorac Surg 2007; 83:S799-804.
    8. Galina Leyvi, Ricardo Bello, John D. Wasnick, et al. Assessment of Cerebral Oxygen Balance During Deep Hypothermic Circulatory Arrest by Continuous Jugular Bulb Venous Saturation and Near-Infrared Spectroscopy[J]. J Cardiothorac Vasc Anesth.2006; 20(6):826-33.
    9. Cormio M, Valadka AB, Robertson CS. Elevated jugular venous oxygen saturation after severe head injury[J]. Neurosurg.1999; 90:9-15.
    10. Croughwell ND, Newman MF, Blumenthal JA, et al. Jugular bulb saturation and cognitive dysfunction after cardiopulmonary bypass [J]. Ann Thorac Surg. 1994; 58:1702-1708.
    11. Angelo Polito, Zaccaria Ricci, Luca Di Chiara, et al. Cerebral blood flow during cardiopulmonary bypass in pediatric cardiac surgery:the role of transcranial Doppler-a systematic review of the literature[J]. Cardiovascular Ultrasound.2006; 4:47.
    12.程敬亮.脑梗死的质子磁共振波谱研究进展[J].河南大学学报医学版.2004;23(3):1-3.
    13. Coselli JS. Retrograde cerebral perfusion is an effective means of neural support during deep hypothermic circulatory arrest[J]. Ann Thorac Surg.1997; 64:908-12.
    14. Strauch JT, Spielvogel D, Lauten A, Zhang N, et al. Optimal temperature for selective cerebral perfusion [J]. J Thorac Cardiovasc Surg.2005; 130:74-82.
    15. Korfias S, Papadimitfiou A, Stranjalis G, et al. Serum biochemical markers of brain injury[J]. Mini Rev Med Chem.2009; 9:227-234. 16. Chiaretti A, Barone G, Riccardi R, et al. NGF, DCF, DCX and NSE upregulation correlates with severity and outcome of head trauma in children[J]. Neurology.2009; 72(7):609-616.
    17. Barone FC, Clark RK, Price WJ, et al. Neuron-specific enolase increases in cerebral and systemic circulation following focal ischemia [J]. Brain Res.1993; 623(1):77-82.
    18. Missler U, Wiesmann M, Friedrich C, et al. S-100 protein and neuronspecific enolase concentrations in blood as indicators of infarction volume and prognosis in acute isehemic stroke[J]. Stroke.1997; 28(10):1956.
    19. Lange RT, Brubacher JR, Iverson GL, et al. Differential effects of alcohol intoxication on S100B levels following traumatic brain injury[J]. J Trauma.2010; 68(5):1065-1071.
    20. Scotto C, Deloulme JC, Rousseau D, et al. Calcium and S100B regulation of p53-dependent cell growth arrest and apoptosis[J]. Molcell Biol.1998; 18(7): 4272-4281.
    21. Sandler SJ, Figaji AA, Adelson PD. Clinical applications of biomarkers in pediatric traumatic brain injury[J]. Childs Nerv Sys.2010; 26(2):205-213.
    22. Parolari A, A Iamanni F, Naliato M, et al. Adult cardiac surgery outcomes: role of the pumptype[J]. Eur J Cardiothoral Surg.2000; 18(5):575.
    23. Raabe A, Kopetsch O, Woszczyk A, et al. Serum S100B protein as a molecular marker in severe traumatic brain injury[J]. Restor Neurosci.2003; 21(34):159-169.
    24.付庆林,张新中,韩培立,等.银杏叶提取物对脑微空气栓塞损伤的保护作用[J].中华实验外科杂志.2009;26(11):1568.
    25. Soncin F, Zhang X, Chu B, et al. Transcriptional activity and DNA binding of heat shock factor-1 involve phosphorylation on threonine 142 byCK2[J]. Biochem Biophys Res Commun.2003; 303(2):700-706.
    26. Arya R, Mallik M, Lakhotia SC. Heat shock genes-integrating cell survival and death[J]. J Biosci.2007; 32(3):595-610.
    27. HoehnB, Ringer TM, XuL. Over expression of HSP72 after induction of experimental stroke protects neurons from ischemic damage[J]. Cereb Blood Flow Metab.2001; 21(11):1303-1309.
    28. SoncinF, ZhangX, ChuB, et al. Transcriptional activity and DNA binding of heat shock factor-1 involve phosphorylation on threonine 142 by CK2[J]. Biochem Biophys Res Commun.2003;303(2):700-6.
    29. Dybdahl B, Wahba A, Haaverstad R, Kirkeby-Garstad I, Kierulf P, Espevik T, Sundan A. On-pump versus off-pump coronary artery bypass grafting:more heat-shock protein 70 is released after on-pump surgery[J]. Eur J Cardiothorac Surg.2004; 25:985-992.
    30. Becker ST, Wendel HP, Vonthein R, Rennekampff HO, Aebert H. Inducible HSP70 levels in thoracic wound fluid indicate myocardial damage after open heart surgery[J]. J Cardiovasc Surg (Torino).2007; 48:233-237.
    31.迟相林,李振光,郭兆荣等.NSE、S100B蛋白、MBP、GFAP与缺血性脑卒中临床相关性研究进展[J].中国神经免疫学和神经病学杂志.2008;15(4):308-310.
    32. Dietrich WD, Truettner J, Zhao W, et al. Sequential changes in glial fibrillary acidic protein and gene expression following parasagittal fluidpercussion brain injury in rats[J]. J Neurotrauma.1999; 16:567-581.
    33. Hausmann R, Riess R, Fieguth A, Betz P. Immunohistochemieal investigations on the course of astroglial GFAP expression following human brain injury[J]. Int J Legal Med.2000; 113:70-75.
    34. Bembea MM, Savage W, Strouse JJ, et al. Glial fibrillary acidic protein as a brain injury biomarker in children undergoing extracorporeal membrane oxygenation[J]. Pediatr Crit Care Med.2011;12(5):572-9.
    35. Petersson KH, Pinar H, Stopa EG, et al. White matter injury after cerebral ischemia in ovine fetuses[J]. Pediatr Res.2002; 51:768-776.
    36.张铁铮,张宇鹏,周锦,等.髓鞘碱性蛋白评估体外循环心脏手术脑损伤的研究[J].沈阳部队医药.2010;23:5.
    37.郑军,冯正义,田良鑫,等.深低温停循环下兔脑内兴奋性氨基酸的早期变化与脑损伤研究[J].中华实验外科杂志.2005;22(04):450-452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700