用户名: 密码: 验证码:
核受体LXR对损伤血管内皮修复的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究背景
     血管内皮损伤是介入术后的血栓形成和血管再狭窄的关键,也是高血压、动脉粥样硬化和糖尿病血管病变等多种血管损伤性疾病共同的病理生理基础。血管损伤后的内皮再生修复可以有效防止血栓形成和抑制血管平滑肌细胞的异常增生,因此,尽早促进损伤血管的再内皮化、恢复血管内皮功能,是防止介入术后血栓形成和血管再狭窄,预防和治疗血管损伤性疾病的有效策略。
     肝X受体(liver X receptor, LXR)是配体激活的核受体超家族成员,被其内源性配体/合成激动剂激活后,可以通过调节一系列靶基因的转录,参与调节胆固醇代谢、糖代谢和炎症反应。近来的研究发现,LXR在心脑血管疾病防治中可能发挥着一定的作用:(1)LXR激动剂可以明显抑制动脉粥样硬化的发生发展过程;(2)LXR激动剂可以显著抑制血管损伤后的新生内膜形成;(3)LXR激动剂可以促进缺血脑组织的新生血管形成。损伤血管内皮的再生是上述心脑血管疾病防治的共同环节,因此我们猜测,LXR激活后是否可以通过促进血管内皮的再生,从而发挥对上述病理生理过程的调节作用?
     在预实验中,我们采用小鼠颈动脉损伤模型观察LXR对损伤血管的内皮再生的影响,结果显示,LXR激动剂T0901317干预后,小鼠的损伤颈动脉的再内皮化面积明显增加。那么LXR激活后又是如何促进损伤血管内皮的再生修复呢?血管内皮的再生依赖于:(1)邻近内皮细胞(endothelial cells, ECs)的增殖和迁移;(2)骨髓、脾脏等来源的内皮祖细胞(endothelial progenitor cells, EPCs),EPCs能从骨髓、脾脏等动员到外周血,迁移、归巢于血管损伤区域,增殖和分化为ECs,还可通过旁分泌机制(分泌促血管生成因子)促进邻近ECs增殖和迁移,从而促进内皮修复。
     介于以上的研究背景,我们推测,激活LXR后可能通过调节ECs与EPCs的生物学功能(如:增殖、迁移能力等),促进损伤血管内皮的再生与修复。
     2.方法
     2.1. LXR激动剂对小鼠颈动脉损伤血管内皮修复的影响
     构建小鼠颈动脉损伤模型,采用LXR激动剂T0901317[30mg/(Kg·d)]于术前2天开始喂养小鼠,通过伊文氏蓝染色观察损伤颈动脉再内皮化的情况,以阐明激活内源性LXR对损伤血管内皮修复的影响。
     2.2. LXR对内皮细胞的增殖、迁移能力的影响及机制研究
     从健康新生儿脐带分离和培养原代人脐静脉内皮细胞(human umbilical veinendothelial cells, HUVECs),显微镜下观察HUVECs的形态学特征,免疫荧光检测vWF进行内皮细胞鉴定;第3~5代HUVECs用于实验。
     LXR激动剂T0901317(0、0.5、2、5μmol/L)处理HUVECs后,MTS方法检测HUVECs的增殖能力,Transwell迁移实验检测HUVECs的迁移能力, Western blot检测p-Akt、总Akt、p-eNOS、总eNOS的表达。
     先用PI3K抑制剂LY294002(10μmol/L)或eNOS抑制剂L-NAME (100μmol/L)预处理HUVECs30min后,再用LXR激动剂T0901317干预,MTS方法检测HUVECs的增殖能力,Transwell迁移实验检测HUVECs的迁移能力, Western blot检测p-Akt、总Akt、p-eNOS、总eNOS的表达。
     2.3. LXR对内皮祖细胞的生物学功能的影响及机制探讨
     选用大鼠骨髓源性内皮祖细胞(BM-EPCs)和小鼠脾源性内皮祖细胞(Spleen-EPCs)这两种不同种属和来源的EPCs作为研究模型。密度梯度离心法分离大鼠骨髓单个核细胞(MNCs)和小鼠脾脏MNCs,诱导分化为EPCs,显微镜下观察细胞的形态学特征,通过DiI-ac-LDL、FITC-UEA-I荧光双染和流式细胞分析检测细胞分子表面标记进行EPCs的鉴定。培养第5~7天的大鼠BM-EPCs和小鼠Spleen-EPCs用于实验。
     采用RT-PCR、western blot和免疫荧光检测LXRα、LXRβ在大鼠BM-EPCs和小鼠Spleen-EPCs中的表达和定位。
     LXR激动剂T0901317(0、0.5、2、5μmol/L)或GW3965(0、0.5、2、5μmol/L)干预EPCs后,MTS方法检测EPCs的增殖能力,Transwell迁移实验检测EPCs的迁移能力,Western blot检测p-Akt、总Akt、p-eNOS、总eNOS的表达。
     先用PI3K抑制剂LY294002(10μmol/L)或eNOS抑制剂L-NAME (100μmol/L)预处理EPCs30min后,再用LXR激动剂T0901317或GW3965干预,MTS方法检测BM-EPCs的增殖能力,Transwell迁移实验检测EPCs的迁移能力,Western blot检测p-Akt、总Akt、p-eNOS、总eNOS的表达。
     LXR激动剂T0901317(2μmol/L)处理EPCs24h后,RT-PCR检测EPCs分泌的常见促血管生长因子(VEGF、SDF-1、HGF、IGF-1和G-CSF)mRNA的表达。采用LXR激动剂T0901317(0、0.5、2、5μmol/L)或GW3965(0、0.5、2、5μmol/L)处理EPCs,不同时间点收取细胞和细胞上清,Real-Time PCR、western blot、ELISA检测VEGF的mRNA、蛋白的表达和分泌。
     2.4.统计学处理
     所有计量资料以平均值±标准差(x±s)表示,使用SPSS18.0统计学软件进行分析,组间比较选用单因素方差分析(One-Way ANOVA)。P<0.05为有统计学差异。
     3.结果
     3.1. LXR激动剂对小鼠颈动脉损伤血管内皮修复的影响
     LXR激动剂T0901317干预后可明显增加颈动脉损伤后第4天、7天和14天的再内皮化面积(P<0.05,n=8),提示激活内源性LXR可以明显地促进损伤血管内皮的再生和修复。
     3.2. LXR对内皮细胞的增殖、迁移能力的影响及机制研究
     3.2.1. HUVECs的分离、培养和鉴定
     细胞呈单层生长,互不重叠,形态呈多角形、椭圆形或梭形,呈铺路石样镶嵌排列;激光共聚焦显微镜下显示细胞质vWF阳性(红色荧光)即为HUVECs,鉴定阳性率>95%(n=6)。
     3.2.2. LXR激动剂增强HUVECs增殖、迁移能力
     不同浓度的T0901317(0.5、2、5μmol/L)处理后,HUVECs的增殖和迁移能力明显增强,并与T0901317呈一定的剂量依赖关系(P<0.05,P<0.01,n=4-6);表明LXR激动剂可以促进HUVECs的增殖和迁移。
     3.2.3. LXR激动剂调节HUVECs增殖、迁移能力的机制研究
     3.2.3.1. LXR激动剂对HUVECs中PI3K/Akt/eNOS信号通路的影响
     T0901317处理后,呈时间和剂量依赖的上调HUVECs中p-Akt-Ser473和p-eNOS-Ser1177的表达(P<0.05,P<0.01,n=3-5),PI3K抑制剂LY294002(10μmol/L)可以明显阻断上述作用,提示T0901317通过PI3K激活Akt/eNOS信号通路。然而在T0901317干预的早期(<1h),未见明显的p-Akt-Ser473和p-eNOS-Ser1177水平上调,提示LXR激活后可能通过间接作用导致了HUVECs中PI3K/Akt/eNOS信号途径的活化。
     3.2.3.1. LXR激动剂通过PI3K/Akt/eNOS途径增强HUVECs的增殖、迁移能力
     采用PI3K抑制剂LY294002(10μmol/L)或eNOS抑制剂L-NAME(100μmol/L)预处理HUVECs30min后,T0901317(5μmol/L)促进HUVECs增殖和迁移的效应明显减弱(P<0.05,P<0.01,n=4-6),而LY294002和L-NAME并没有改变HUVECs的细胞活力和基础迁移水平(P=N.S.,n=4-6);说明LXR激动剂可以通过PI3K/Akt/eNOS信号途径增强HUVECs的增殖、迁移能力。
     3.3. LXR对内皮祖细胞的生物学功能的影响及机制探讨
     3.3.1.大鼠BM-EPCs的分离、培养和鉴定
     成功分离大鼠BM-EPCs,呈梭形、椭圆形或三角形,早期可见典型的克隆单位“集落”形成;晚期呈“线型”、“管型”或者“网状”血管样生长趋势,密度较大时呈铺路石样排列。DiI-ac-LDL(红色)和FITC-UEA-I(绿色)双染阳性即为正在分化的EPCs,所分离培养的细胞双染阳性率大于90%。流式细胞技术检测到CD133、CD34、VEGFR-2和CD31在所培养细胞(5~7天)中的阳性率分别为75.4%、82.3%、64.9%、86.2%和84.6%,符合EPCs的特征。
     3.3.2.小鼠Spleen-EPCs的分离、培养和鉴定
     成功分离小鼠Spleen-EPCs,呈梭形、椭圆形或三角形,早期可见典型的克隆单位“集落”形成;晚期呈“线型”、“管型”或者“网状”血管样生长趋势,密度较大时呈铺路石样排列。DiI-ac-LDL(红色)和FITC-UEA-I(绿色)双染阳性率大于90%,流式细胞技术检测到Sca-1、CD34、c-kit、VEGFR-2及CD31在所培养细胞(5~7天)中的阳性率分别为89.2%、75.4%、92.9%和91.9%,符合EPCs的特征。
     3.3.3.检测LXR在EPCs的表达
     培养的不同时间点(4天、7天、10天、14天)的大鼠BM-EPCs和小鼠Spleen-EPCs中,我们均检测到LXRα、LXRβ mRNA和蛋白的表达,免疫荧光提示LXRα、LXRβ在EPCs的细胞核和细胞浆均有表达,但主要表达于细胞核中;采用LXR激动剂T0901317或GW3965处理EPCs后,LXR的靶基因ABCA1的转录水平均明显上调,提示LXR在EPCs是具有转录活性和生物学功能的。
     3.3.3. LXR激动剂增强EPCs的增殖、迁移能力
     两种不同的LXR激动剂T0901317(0.5、2、5μmol/L)或GW3965(0.5、2、5μmol/L)处理后,大鼠BM-EPCs和小鼠Spleen-EPCs的增殖和迁移能力均明显增强,并与LXR激动剂呈一定的剂量依赖关系(P<0.05,P<0.01,n=4-6);表明LXR激动剂可以促进EPCs的增殖和迁移。
     3.3.4. LXR激动剂调节EPCs增殖、迁移能力的机制研究
     3.3.4.1. LXR激动剂对EPCs中PI3K/Akt/eNOS信号通路的影响
     LXR激动剂T0901317或GW3965处理后,呈时间和剂量依赖的上调EPCs(大鼠BM-EPCs和小鼠Spleen-EPCs)中p-Akt-Ser473和p-eNOS-Ser1177的表达(P<0.05,P<0.01,n=3-5),PI3K抑制剂LY294002(10μmol/L)可以明显阻断上述作用,提示激活LXR通过PI3K导致Akt/eNOS信号通路的活化。然而在LXR激动剂干预的早期(<1h),未见明显的p-Akt-Ser473和p-eNOS-Ser1177水平上调,提示LXR激活后可能通过间接作用导致了EPCs中PI3K/Akt/eNOS信号途径的活化。
     3.3.4.2. LXR激动剂通过PI3K/Akt/eNOS途径增强EPCs的增殖、迁移能力
     采用PI3K抑制剂LY294002(10μmol/L)或eNOS抑制剂L-NAME(100μmol/L)预处理EPCs(大鼠BM-EPCs和小鼠Spleen-EPCs)30min后,T0901317(2μmol/L)和GW3965(5μmol/L)促进EPCs增殖和迁移的效应明显减弱(P<0.05,P<0.01,n=4-6),而LY294002和L-NAME并没有改变EPCs的细胞活力和基础迁移水平(P=N.S.,n=4-6);说明LXR激动剂可以通过PI3K/Akt/eNOS信号途径增强EPCs的增殖、迁移能力。
     3.3.5. LXR激动剂对EPCs分泌促血管生长因子的影响
     3.3.5.1. LXR激动剂对EPCs中促血管生长因子(VEGF、SDF-1、HGF、IGF-1和G-CSF)mRNA表达的影响
     LXR激动剂T0901317(2μmol/L)作用EPCs24h后,VEGF mRNA的表达水平显著上调(P<0.05,n=4),而SDF-1、HGF、IGF-1和G-CSF mRNA表达水平未见明显变化,提示LXR激动剂可以上调EPCs中VEGF mRNA的表达。
     3.3.5.2. LXR激动剂对EPCs中VEGF表达和分泌的影响
     LXR激动剂T0901317或GW3965作用于EPCs后,呈时间和剂量依赖的上调VEGF mRNA的表达(P<0.05,P<0.01,n=4-6),呈剂量依赖的上调VEGF蛋白的表达(P<0.05, n=6)和促进VEGF的分泌(P<0.05,P<0.01,n=5),说明LXR激活后可以上调EPCs中VEGF的表达和促进VEGF的分泌。
     4.结论
     4.1. LXR激动剂通过PI3K/Akt/eNOS信号途径增强内皮细胞的增殖和迁移能力;
     4.2. LXRα与LXRβ表达于内皮祖细胞,LXR激动剂可以通过PI3K/Akt/eNOS信号途径增强内皮祖细胞增殖和迁移能力,LXR激动剂上调内皮祖细胞中促血管生长因子VEGF的表达和促进VEGF的分泌;
     4.3.激活内源性LXR通过调节内皮细胞和内皮祖细胞的生物学功能,从而促进损伤血管内皮的再生与修复。
1. Background
     Vascular endothelial injury, which is the common pathophysiological basis ofhypertension, atherosclerosis and vascular disease in diabetes, is also the major cause ofpost-angioplasty restenosis and thrombosis. Endothelial regeneration and repair couldprevent thrombosis and suppress vascular smooth muscle cell proliferation after arterialinjury. Hence, accelerating re-endothelialization of injured arteries and restoring endothelialfuction are useful strategies for inhibiting post-angioplasty restenosis and thrombosis andpreventing vascular injured diseases.
     Liver X receptors (LXRs) are members of nuclear receptor superfamily. Onceactivated by endogenous ligands or synthetic agonists, LXR can regulate cholesterolmetabolism, glucose metabolism and inflammations by influencing the expression of anarray of LXR target genes. Studies performed recently have showed that LXR might playimportant roles in preventing cardiovascular diseases:(1) LXR agonists inhibited thedevelopment of atherosclerosis,(2) LXR agonists suppressed neointima formation inballoon-injured rat carotid arteries,(3) LXR activation promoted angiogenesis afterischemic stroke. Since endothelial regeneration and repair after vascular injury are thecommon steps in preventing above cardiovascular diseases, we hypothesize that activationof endogenous LXR might regulate all above pathophysiology processes by stimulatingendothelial regeneration.
     In our preliminary experiments, we have found that treatment of LXR agonistT0901317increased re-endothelialized area in a mouse model of carotid injury, suggestingthat activation of endogenous LXR could promote endothelial regeneration and repair of injured arteries. However, the mechanisms are not known. Endothelial regenerationdepends on:(1) neighbouring endothelial cells (ECs) proliferation and migration;(2)endothelial progenitor cells (EPCs) derived from bone marrow, spleen and etc.Accumulating evidence has demonstrated that EPCs, which mobilized to circulation byischemia, physical training, and the administration of statins, estrogen, and a variety ofcytokines, can be recruited to sites of endothelial injury. There, they promotere-endothelialization directly by incorporating into the recovering endothelium at the sitesof injury and indirectly by producing and releasing angiogenic growth factors.
     Based on these observations, we speculate that activation of LXR might promoteendothelial regeneration and repair after vascular injury via regulating ECs and EPCsbiological functions (such as proliferation, migration and etc.).
     2. Methods
     2.1. Effect of LXR activation on endothelial repair after vascular injury
     To explain the effect of LXR activation on endothelial repair after injury, weestablished an mouse model of carotid injury as previously described. Mice were orallyadministered of LXR agonist T0901317(30mg/kg per day) or vehicle starting2daysbefore the injury. To measure the re-endothelialized area, animals were perfused in vivowith Evans blue dye4,7, and14days after the injury.
     2.2. Effect and mechanism of LXR on ECs proliferation and migration
     Human umbilical vein endothelial cells (HUVECs) were obtained and cultured by ourestablished methods. Immunostaining for von Willebrand factor (vWF) confirmed that thecells were endothelial. Cells used for experiments were from passages3through5.
     HUVECs were treated with different concentrations of LXR agonist T0901317(0μmol/L,0.5μmol/L,2μmol/L,5μmol/L) for different time course. HUVECs proliferationwas evaluated using a colorimetric MTS assay kit and HUVECs migration assay wasperformed using a Transwell chamber (8μm pore size). In addition, western blot analysiswas used to determine the expression of phosphorylated Akt (Ser473), total Akt,phosphorylated eNOS (Ser1177) and total eNOS. LY294002(10μmol/L) and L-NAME (100μmol/L), when used, were added30minutes prior to the addition of LXR agonist.
     2.3. Effect and mechanism of LXR on EPCs biological functions
     Two distinct species and sources of EPCs, rat bone marrow-derived EPCs (BM-EPCs) and mouse spleen-derived EPCs (spleen-EPCs), were used for research. The EPCs wereisolated, cultured and characterized following our established protocol. After5~7days ofculture, the EPCs were used for experiments.
     To determine the expression of LXR in rat BM-EPCs and mouse spleen-EPCs, weused reverse transcriptase-PCR (RT-PCR), western blot, and confocal immunofluorescence.
     Rat BM-EPCs and mouse spleen-EPCs were treated with different dosages of LXRagonists T0901317(0μmol/L,0.5μmol/L,2μmol/L,5μmol/L) or GW3965(0μmol/L,0.5μmol/L,2μmol/L,5μmol/L) for different time course. EPCs proliferation was evaluatedusing a colorimetric MTS assay kit and EPCs migration assay was performed using aTranswell chamber (8μm pore size). In addition, western blot analysis was used todetermine the expression of phosphorylated Akt (Ser473), total Akt, phosphorylated eNOS(Ser1177) and total eNOS. LY294002(10μmol/L) and L-NAME (100μmol/L), when used,were added30minutes prior to the addition of LXR agonists.
     EPCs were treated with LXR agonist T0901317(2μmol/L) for24hours, and then,semi-quantitative RT-PCR was used to determine the mRNA expressions of angiogenicgrowth factors (VEGF, SDF-1, HGF, IGF-1and G-CSF).
     EPCs were treated with different concentrations of LXR agonists T0901317(0μmol/L,0.5μmol/L,2μmol/L,5μmol/L) or GW3965(0μmol/L,0.5μmol/L,2μmol/L,5μmol/L)for different time course. In addition, to detect the VEGF mRNA, protein expression andsecretion, we used Real Time-PCR, Western blot, and ELISA.
     2.4. Statistical analysis
     All values are expressed as the means±S.D. of at least three experiments.Comparisons between the groups were analyzed using one-way ANOVA followed by theappropriate post-hoc test. A value of P <0.05was considered to be statistically significant.
     3. Results
     3.1. Effect of LXR activation on endothelial repair after vascular injury
     Treatment of LXR agonist T0901317increased re-endothelialized area as comparedwith control at all time points (4d,7d,14d) after arterial injury (P<0.05,n=8), suggestingthat activation of endogenous LXR could promote endothelial regeneration and repair ofinjured vessels.
     3.2. Effect and mechanism of LXR on ECs proliferation and migration
     3.2.1. Characterization of HUVECs
     HUVECs were grown as confluent monolayers with a “cobblestone” morphology. Thecells were homogenous, closely apposed, large, flat, and polygonal. Cells showing positivestaining for von Willebrand factor were HUVECs (>95%, n=6).
     3.2.2. LXR agonist enhances HUVECs proliferation and migration
     Treatment with LXR agonist T0901317(0.5μmol/L,2μmol/L,5μmol/L) profoundlyincreased the HUVEC proliferation and migration in dose-dependent manners (P<0.05,P<0.01,n=4-6). These findings suggested that LXR agonist could augment HUVECsproliferation and migration.
     3.2.3. Mechanism of LXR activation on ECs proliferation and migration
     3.2.3.1. LXR agonist influences PI3K/Akt/eNOS signaling in HUVECs
     LXR agonist T0901317induced significant increases in the Ser473Akt phosphorylationand Ser1177eNOS phosphorylation in time-and dose-dependent manners in HUVECs (P<0.05,P<0.01,n=3-5), which were abolished by the PI3K inhibitor LY294002. Theseobservations suggested that LXR activation could influence PI3K/Akt/eNOS signaling inHUVECs. However, T0901317did not change the levels of phosphorylated Akt andphosphorylated eNOS within1hour, suggesting that LXR activation might activate thePI3K/Akt/eNOS pathway via an indirect mechanism.
     3.2.3.2. Activation of LXR promote HUVECs proliferation and migration via thePI3K/Akt/eNOS signaling pathway
     It was showed that both the PI3K inhibitor LY294002(10μmol/L) and the eNOSinhibitor L-NAME (100μmol/L) significantly attenuated T0901317(5μmol/L)-stimulatedHUVECs proliferation and migration (P<0.05, P<0.01, n=4-6), whereas neitherLY294002nor L-NAME treatment influenced basal HUVECs proliferation and migration inthe absence of LXR agonist (P=N.S., n=4-6). These data suggested that thePI3K/Akt/eNOS signaling pathway was involved in LXR activation-induced HUVECsproliferation and migration.
     3.3. Effect and mechanism of LXR on EPCs biological functions
     3.3.1. Characterization of rat bone marrow-derived EPCs (BM-EPCs)
     The adherent rat bone marrow-derived mononuclear cells (BM-MNCs) wereoval-shaped, spindle-like, and polygonal. Cell clusters and colonies appeared in early phase (4d~14d). In late phase (>14d), cord-like structures and network formation were observedwhen cell density was low, where as the cells exhibited typical “cobblestone” morphologyat high cell density conditions. The majority of the adherent BM-MNCs (>90%) werepositive for both ac-LDL (red) uptake and UEA-I lectin binding (green), which indicatedendothelial cell characteristics. These adherent BM-MNCs were further characterized bydemonstrating the expression of the stem cell marker CD133(89.2%),CD34(75.4%), theendothelial cell lineage antigen CD31(91.9%) and VEGFR-2(92.9%) by FCM.
     3.3.2. Characterization of mouse spleen-derived EPCs (spleen-EPCs)
     The adherent mouse spleen-derived mononuclear cells (spleen-MNCs) wereoval-shaped, spindle-like, and polygonal. Cell clusters and colonies could be found in earlyphase (4d~14d). In late phase (>14d), cord-like structures and network formation wereobserved when cell density was low, where as the cells exhibited typical “cobblestone”morphology at high cell density conditions. The majority of the adherent spleen-MNCs(>90%) were positive for both ac-LDL (red) uptake and UEA-I lectin binding (green),consistent with endothelial lineage cells. These adherent spleen-MNCs were furthercharacterized by demonstrating the expression of the stem cell marker Sca-1(75.4%),CD34(82.3%) and c-kit (64.9%), the endothelial cell lineage antigen CD31(84.6%) andVEGFR-2(86.2%) by FCM.
     3.3.3. LXRα and LXRβ are expressed in EPCs
     LXRα and LXRβ mRNA and protein were present in the rat BM-EPCs and mousespleen-EPCs as determined by RT-PCR and western blot. Additionally, LXRα and LXRβimmunofluorescence was observed primarily in the nucleus of the EPCs, whereas onlyweak staining was observed throughout the cytoplasm. Treatment of the EPCs with theLXR agonists T0901317or GW3965led to a significant up-regulation of the LXR targetgene ABCA1, which indicated that the LXRs expressed in EPCs are biologically active.
     3.3.3. LXR agonists enhance EPCs proliferation and migration
     After treatment of synthetic LXR agonists T0901317(0.5μmol/L,2μmol/L,5μmol/L)or GW3965(0.5μmol/L,2μmol/L,5μmol/L), the proliferation and migration of EPCs (ratBM-EPCs and mouse spleen-EPCs) increased profoundly in dose-dependent manners (P<0.05,P<0.01,n=4-6). These findings suggested that LXR activation could enhance EPCsproliferation and migration.
     3.3.4. Mechanism of LXR activation on EPCs proliferation and migration
     3.3.4.1. LXR activation influences PI3K/Akt/eNOS signaling in EPCs
     Both synthetic LXR agonists T0901317and GW3965induced significant increases inthe Ser473Akt phosphorylation and Ser1177eNOS phosphorylation in time-anddose-dependent manners in EPCs (rat BM-EPCs and mouse spleen-EPCs)(P<0.05,P<0.01,n=3-5), which were diminished by the PI3K inhibitor LY294002. These observationssuggested LXR activation influences PI3K/Akt/eNOS signaling in EPCs. Nevertheless,treatment with T0901317did not change the levels of phosphorylated Akt andphosphorylated eNOS within1hour, showing that LXR activation might activate thePI3K/Akt/eNOS pathway through an indirect mechanism.
     3.3.4.2. LXR agonists promote EPCs proliferation and migration via thePI3K/Akt/eNOS signaling pathway
     We found that both the PI3K inhibitor LY294002(10μmol/L) and the eNOS inhibitorL-NAME (100μmol/L) significantly attenuated T0901317(2μmol/L)-or GW3965(5μmol/L)-enhanced EPCs (rat BM-EPCs and mouse spleen-EPCs) proliferation andmigration (P<0.05,P<0.01,n=4-6), whereas neither LY294002nor L-NAME treatmentinfluenced basal EPC proliferation and migration in the absence of LXR agonists (P=N.S.,n=4-6). These data demonstrated suggested that the PI3K/Akt/eNOS signaling pathway wasinvolved in LXR activation-promoted EPCs proliferation and migration.
     3.3.5. Effect of LXR on the production of angiogenic growth factors by EPCs
     3.3.5.1. Effect of LXR activation on the mRNA expressions of angiogenic growthfactors
     LXR agonist T0901317(2μmol/L) treatment didn’t change the mRNA levels ofSDF-1, HGF, IGF-1and G-CSF, but increased the VEGF mRNA expression (P<0.05,n=4),suggesting that LXR activation might up-regulate VEGF mRNA expression in EPCs.
     3.3.5.2. LXR agonists up-regulate VEGF expression and induces VEGF secretion inEPCs
     Treatment of EPCs with either T0901317or GW3965led to an increased level ofVEGF mRNA expression in time-and dose-dependent manners (P<0.05, P<0.01, n=4-6).In addition, T0901317or GW3965treatment similarly increased the VEGF protein level (P<0.05, n=6) and stimulated VEGF secretion (P<0.01, n=5). These observations demonstrated that LXR agonists could up-regulate VEGF expression and induce VEGFsecretion in EPCs.
     4. Conclusion
     4.1. LXR activation increases ECs proliferation and migration throughPI3K/Akt/eNOS signaling pathway.
     4.2. LXRα and LXRβ are expressed in EPCs. LXR agonists enhance EPCsproliferation and migration via PI3K/Akt/eNOS pathway. In addition, LXR agonistsup-regulate VEGF expression and induce VEGF secretion by EPCs.
     4.3. Activation of LXR could promote endothelial regeneration and repair aftervascular injury through regulating the functions of ECs and EPCs.
引文
1. Kivel A, Hartikainen J. Restenosis related to percutaneous coronary intervention hasbeen solved? Ann Med.2006;38(3):173-87.
    2. Finn AV, Nakazawa G, Kolodgie FD, et al. Temporal course of neointimal formationafter drug-eluting stent placement: is our understanding of restenosis changing? JACCCardiovasc Interv.2009;2(4):300-302.
    3. Dangas GD, Caixeta A, Mehran R, et al. Frequency and predictors of stent thrombosisafter percutaneous coronary intervention in acute myocardial infarction. Circulation.2011;123(16):1745-1756.
    4. Nabel EG. Biology of the impaired endothelium. Am J Cardiol.1991;68(12):6C-8C.
    5. Hsueh WA, Qui ones MJ. Role of endothelial dysfunction in insulin resistance. Am JCardiol.2003;92(4A):10J-17J.
    6. Kipshidze N, Dangas G, Tsapenko M, et al. Role of the endothelium in modulatingneointimal formation: vasculoprotective approaches to attenuate restenosis afterpercutaneous coronary interventions. J Am Coll Cardiol.2004;44(4):733-739.
    7. Versari D, Lerman L O, Lerman A. The importance of reendothelialization after arterialinjury. Curr Pharm Des.2007;13(17):1811-1824.
    8. Willy PJ, Umesono K, Ong ES, et al. LXR, a nuclear receptor that defines a distinctretinoid response pathway. Genes Dev.1995;9(9):1033-1045.
    9. Teboul M, Enmark E, Li Q, et al. OR-1, a member of the nuclear receptor superfamilythat interacts with the9-cis-retinoic acid receptor. Proc Natl Acad Sci U S A.1995;92(6):2096-2100.
    10.王强,江渝.肝X受体的研究进展.生理科学进展.2009,40(2):147-150.
    11. Zelcer N, Tontonoz P. Liver X receptors as integrators of metabolic and inflammatorysignaling. J Clin Invest.2006;116(3):607-614.
    12. Joseph SB, McKilligin E, Pei L, et al. Synthetic LXR ligand inhibits the developmentof atherosclerosis in mice. Proc Natl Acad Sci U S A.2002;99(11):7604–7609.
    13. Terasaka N, Hiroshima A, Koieyama T, et al. T-0901317, a synthetic liver X receptorligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBSLett.2003;536(1-3):6-11.
    14. Calkin AC, Tontonoz P. Liver x receptor signaling pathways and atherosclerosis.Arterioscler Thromb Vasc Biol.2010;30(8):1513-1518.
    15. Blaschke F, Leppanen O, Takata Y, et al. Liver X receptor agonists suppress vascularsmooth muscle cell proliferation and inhibit neointima formation in balloon-injured ratcarotid arteries. Circ Res.2004;95(12): e110-123.
    16. Chen J, Cui X, Zacharek A, et al. eNOS mediates TO90317treatment-inducedangiogenesis and functional outcome after stroke in mice. Stroke.2009;40(7):2532-2538.
    17. Risau W. Mechanisms of angiogenesis. Nature.1997;386(6626):671-674.
    18. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelialcells for angiogenesis. Science.1997;275(5302):964-967.
    19. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitorcells responsible for postnatal vasculogenesis in physiological and pathologicalneovascularization. Circ Res.1999;85(3):221-228.
    20. Dzau VJ, Gnecchi M, Pachori AS, et al. Therapeutic potential of endothelial progenitorcells in cardiovascular diseases. Hypertension.2005;46(1):7-18.
    21. Zampetaki A, Kirton JP, Xu Q. Vascular repair by endothelial progenitor cells.Cardiovasc Res.2008;78(3):413-421.
    22. Urbich C, Aicher A, Heeschen C, et al. Soluble factors released by endothelialprogenitor cells promote migration of endothelial cells and cardiac resident progenitorcells. J Mol Cell Cardiol.2005;39(5):733-742.
    23. Ziche M, Morbidelli L, Choudhuri R, et al. Nitric oxide synthase lies downstream fromvascular endothelial growth factor-induced but not basic fibroblast growthfactor-induced angiogenesis. J Clin Invest.1997;99(11):2625-2634.
    24. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatalneovascularization by mobilizing bone marrow-derived endothelial progenitor cells.EMBO J.1999;18(14):3964-3972.
    25. Hutter R, Carrick FE, Valdiviezo C, et al. Vascular endothelial growth factor regulatesreendothelialization and neointima formation in a mouse model of arterial injury.Circulation.2004;110(16):2430-2435.
    26. Kureishi Y, Luo Z, Shiojima I, et al. The HMG-CoA reductase inhibitor simvastatinactivates the protein kinase Akt and promotes angiogenesis in normocholesterolemicanimals. Nat Med.2000;6(9):1004-1010.
    27. Llevadot J, Murasawa S, Kureishi Y, et al. HMG-CoA reductase inhibitor mobilizesbone marrow--derived endothelial progenitor cells. J Clin Invest.2001;108(3):399-405.
    28. Walter DH, Rittig K, Bahlmann FH, et al. Statin therapy acceleratesreendothelialization: a novel effect involving mobilization and incorporation of bonemarrow-derived endothelial progenitor cells. Circulation.2002;105(25):3017-3024.
    29. Morales DE, McGowan KA, Grant DS, et al. Estrogen promotes angiogenic activity inhuman umbilical vein endothelial cells in vitro and in a murine model. Circulation.1995;91(3):755-763.
    30. Iwakura A, Luedemann C, Shastry S, et al. Estrogen-mediated, endothelial nitric oxidesynthase-dependent mobilization of bone marrow-derived endothelial progenitor cellscontributes to reendothelialization after arterial injury. Circulation.2003;108(25):3115-3121.
    31. White CR, Shelton J, Chen SJ, et al. Estrogen restores endothelial cell function in anexperimental model of vascular injury. Circulation.1997;96(5):1624-1630.
    32. Seetharam D, Mineo C, Gormley AK, et al. High-density lipoprotein promotesendothelial cell migration and reendothelialization via scavenger receptor-B type I.Circ Res.2006;98(1):63-72.
    33. Tso C, Martinic G, Fan WH, et al. High-density lipoproteins enhanceprogenitor-mediated endothelium repair in mice. Arterioscler Thromb Vasc Biol.2006;26(5):1144-1149.
    34. Werner N, Junk S, Laufs U, et al. Intravenous transfusion of endothelial progenitorcells reduces neointima formation after vascular injury. Circ Res.2003;93(2): e17-24.
    35. Zhao X, Huang L, Yin Y, et al. Autologous endothelial progenitor cells transplantationpromoting endothelial recovery in mice. Transpl Int.2007;20(8):712-721
    36. Cui B, Huang L, Fang Y, et al. Transplantation of endothelial progenitor cellsoverexpressing endothelial nitric oxide synthase enhances inhibition of neointimalhyperplasia and restores endothelium-dependent vasodilatation. Microvasc Res.2011;81(1):143-150.
    37. Lindner V, Fingerle J, Reidy MA. Mouse model of arterial injury. Circ Res.1993;73(5):792-796.
    38. Piqueras L, Reynolds AR, Hodivala-Dilke KM, et al. Activation of PPARbeta/deltainduces endothelial cell proliferation and angiogenesis. Arterioscler Thromb Vasc Biol.2007;27(1):63-69.
    39. Das A, Yaqoob U, Mehta D, et al. FXR promotes endothelial cell motility throughcoordinated regulation of FAK and MMP-9. Arterioscler Thromb Vasc Biol.2009;29(4):562-570.
    40. Zhu M, Fu Y, Hou Y, et al. Laminar shear stress regulates liver X receptor in vascularendothelial cells. Arterioscler Thromb Vasc Biol.2008;28(3):527-533.
    41. Morello F, Saglio E, Noghero A, et al. LXR-activating oxysterols induce the expressionof inflammatory markers in endothelial cells through LXR-independent mechanisms.Atherosclerosis.2009;207(1):38-44.
    42.于世勇,黄岚,宋明宝,等.晚期糖基化终末产物刺激下内皮细胞活性氧的变化及来源分析[J].中国动脉硬化杂志.2008,16(11):857-860
    43. Vogel RA. Coronary risk factors, endothelial function, and atherosclerosis: a review.Clin Cardiol.1997;20(5):426-432.
    44. Cines DB, Pollak ES, Buck CA, et al. Endothelial cells in physiology and in thepathophysiology of vascular disorders. Blood.1998;91(10):3527-3561.
    45. Moncada S. Nitric oxide in the vasculature: physiology and pathophysiology. Ann N YAcad Sci.1997;811:60-67; discussion67-69.
    46. Dudzinski DM, Michel T. Life history of eNOS: partners and pathways. CardiovascRes.2007;75(2):247-260.
    47. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell.2007Jun;129(7):1261-1274.
    48. Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase inendothelial cells by Akt-dependent phosphorylation. Nature.1999;399(6736):601-605.
    49. Mendelsohn ME. Genomic and nongenomic effects of estrogen in the vasculature. AmJ Cardiol.2002;90(1A):3F-6F.
    50. Haynes MP, Li L, Sinha D, et al. Src kinase mediates phosphatidylinositol3-kinase/Akt-dependent rapid endothelial nitric-oxide synthase activation by estrogen.J Biol Chem.2003;278(4):2118-2123.
    51. Cho DH, Choi YJ, Jo SA, et al. Nitric oxide production and regulation of endothelialnitric-oxide synthase phosphorylation by prolonged treatment with troglitazone:evidence for involvement of peroxisome proliferator-activated receptor (PPAR)gamma-dependent and PPARgamma-independent signaling pathways. J Biol Chem.2004;279(4):2499-2506.
    52. Polikandriotis JA, Mazzella LJ, Rupnow HL, et al. Peroxisome proliferator-activatedreceptor gamma ligands stimulate endothelial nitric oxide production through distinctperoxisome proliferator-activated receptor gamma-dependent mechanisms. ArteriosclerThromb Vasc Biol.2005;25(9):1810-1816.
    53. Jiménez R, Sánchez M, Zarzuelo MJ, et al. Endothelium-dependent vasodilator effectsof peroxisome proliferator-activated receptor beta agonists via thephosphatidyl-inositol-3kinase-Akt pathway. J Pharmacol Exp Ther.2010;332(2):554-61.
    54. Chen J, Zacharek A, Cui X, et al. Treatment of stroke with a synthetic liver X receptoragonist, TO901317, promotes synaptic plasticity and axonal regeneration in mice. JCereb Blood Flow Metab.2010;30(1):102-9.
    55. Zhao X, Huang L, Yin Y, et al. Estrogen induces endothelial progenitor cellsproliferation and migration by estrogen receptors and PI3K-dependent pathways.Microvasc Res.2008;75(1):45-52.
    56. Pistrosch F, Herbrig K, Oelschlaegel U, et al. PPARgamma-agonist rosiglitazoneincreases number and migratory activity of cultured endothelial progenitor cells.Atherosclerosis.2005;183(1):163-167.
    57. Sorrentino SA, Bahlmann FH, Besler C, et al. Oxidant stress impairs in vivoreendothelialization capacity of endothelial progenitor cells from patients with type2diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gammaagonist rosiglitazone. Circulation.2007;116(2):163-73.
    58. Han JK, Lee HS, Yang HM, et al. Peroxisome proliferator-activated receptor-deltaagonist enhances vasculogenesis by regulating endothelial progenitor cells throughgenomic and nongenomic activations of the phosphatidylinositol3-kinase/Akt pathway.Circulation.2008;118(10):1021-1033.
    59. Yin Y, Huang L, Zhao X, et al. AMD3100mobilizes endothelial progenitor cells inmice, but inhibits its biological functions by blocking an autocrine/paracrine regulatoryloop of stromal cell derived factor-1in vitro. J Cardiovasc Pharmacol.2007;50(1):61-67
    60. Efanov AM, Sewing S, Bokvist K, et al. Liver X receptor activation stimulates insulinsecretion via modulation of glucose and lipid metabolism in pancreatic beta-cells.Diabetes.2004;53Suppl3: S75-78
    61. Ponomaryov T, Peled A, Petit I, et al. Induction of the chemokine stromal-derivedfactor-1following DNA damage improves human stem cell function. J Clin Invest.2000;106(11):1331-1339.
    62. Nagayama T, Nagayama M, Kohara S, et al. Post-ischemic delayed expression ofhepatocyte growth factor and c-Met in mouse brain following focal cerebral ischemia.Brain Res.2004;999(2):155-166.
    63. Pietrzkowski Z, Sell C, Lammers R, et al. Roles of insulinlike growth factor1(IGF-1)and the IGF-1receptor in epidermal growth factor-stimulated growth of3T3cells. MolCell Biol.1992;12(9):3883-3889.
    64. Franzoso G, Carlson L, Xing L, et al. Requirement for NF-kappaB in osteoclast andB-cell development. Genes Dev.1997;11(24):3482-3496.
    65. Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitorcells and their different contributions to neovasculogenesis. Arterioscler Thromb VascBiol.2004;24(2):288-293.
    66. Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate ofendothelial progenitor cells. Arterioscler Thromb Vasc Biol.2008;28(9):1584-1595.
    67. Yoon CH, Hur J, Park KW, et al. Synergistic neovascularization by mixedtransplantation of early endothelial progenitor cells and late outgrowth endothelial cells:the role of angiogenic cytokines and matrix metalloproteinases. Circulation.2005;112(11):1618-1627.
    68. Prater DN, Case J, Ingram DA, et al. Working hypothesis to redefine endothelialprogenitor cells. Leukemia.2007;21(6):1141-1149.
    69. Feng Y, Jacobs F, Van Craeyveld E, et al. Human ApoA-I transfer attenuates transplantarteriosclerosis via enhanced incorporation of bone marrow-derived endothelialprogenitor cells. Arterioscler Thromb Vasc Biol.2008;28(2):278-283.
    70. Ii M, Takeshita K, Ibusuki K, et al. Notch signaling regulates endothelial progenitorcell activity during recovery from arterial injury in hypercholesterolemic mice.Circulation.2010;121(9):1104-1112.
    71. Kawabe-Yako R, Masaaki I, Masuo O, et al. Cilostazol activates function of bonemarrow-derived endothelial progenitor cell for re-endothelialization in a carotidballoon injury model. PLoS One.2011;6(9): e24646.
    72. Werner N, Nickenig G. Influence of cardiovascular risk factors on endothelialprogenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol.2006;26(2):257-266.
    73. Shantsila E, Watson T, Lip GY. Endothelial progenitor cells in cardiovascular disorders.J Am Coll Cardiol.2007;49(7):741-752.
    74. Heida NM, Müller JP, Cheng IF, et al. Effects of obesity and weight loss on thefunctional properties of early outgrowth endothelial progenitor cells. J Am Coll Cardiol.2010;55(4):357-367.
    75. Liang C, Ren Y, Tan H, et al. Rosiglitazone via upregulation of Akt/eNOS pathwaysattenuates dysfunction of endothelial progenitor cells, induced by advanced glycationend products. Br J Pharmacol.2009;158(8):1865-1873.
    76. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeabilityfactor that promotes accumulation of ascites fluid. Science.1983;219(4587):983-985.
    77. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growthfactor specific for vascular endothelial cells. Biochem Biophys Res Commun.1989;161(2):851-858.
    78. Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is asecreted angiogenic mitogen. Science.1989;246(4935):1306-1309.
    79. Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cellmitogen related to PDGF. Science.1989;246(4935):1309-1312.
    80. Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions ofvascular endothelial growth factor (VEGF). J Cell Mol Med.2005;9(4):777-794.
    81. Iwaguro H, Yamaguchi J, Kalka C, et al. Endothelial progenitor cell vascularendothelial growth factor gene transfer for vascular regeneration. Circulation.2002;105(6):732-738.
    82. Hamada H, Kim MK, Iwakura A, et al. Estrogen receptors alpha and beta mediatecontribution of bone marrow-derived endothelial progenitor cells to functional recoveryafter myocardial infarction. Circulation.2006;114(21):2261-2270.
    83. Yu Y, Gao Y, Wang H, et al. The matrix protein CCN1(CYR61) promotes proliferation,migration and tube formation of endothelial progenitor cells. Exp Cell Res.2008;314(17):3198-3208.
    84. Xu H, Czerwinski P, Hortmann M, et al. Protein kinase C alpha promotes angiogenicactivity of human endothelial cells via induction of vascular endothelial growth factor.Cardiovasc Res.2008;78(2):349-355.
    85. Di-Po N, Tan NS, Michalik L, et al. Antiapoptotic role of PPARbeta in keratinocytesvia transcriptional control of the Akt1signaling pathway. Mol Cell.2002;10(4):721-33.
    1. Willy PJ, Umesono K, Ong ES, et al. LXR, a nuclear receptor that defines a distinctretinoid response pathway. Genes Dev.1995;9(9):1033-1045.
    2.王强,江渝.肝X受体的研究进展.生理科学进展.2009,40(2):147-150.
    3. Calkin AC, Tontonoz P. Liver x receptor signaling pathways and atherosclerosis.Arterioscler Thromb Vasc Biol.2010;30(8):1513-1518.
    4. Blaschke F, Leppanen O, Takata Y, et al. Liver X receptor agonists suppress vascularsmooth muscle cell proliferation and inhibit neointima formation in balloon-injured ratcarotid arteries. Circ Res.2004;95(12): e110-123.
    5. Calkin AC, Tontonoz P. Transcriptional integration of metabolism by the nuclearsterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol.2012;13(4):213-224.
    6. Teboul M, Enmark E, Li Q, et al. OR-1, a member of the nuclear receptor superfamilythat interacts with the9-cis-retinoic acid receptor. Proc Natl Acad Sci U S A.1995;92(6):2096-2100.
    7. Zelcer N, Tontonoz P. Liver X receptors as integrators of metabolic and inflammatorysignaling. J Clin Invest.2006;116(3):607-614.
    8. Venkateswaran A, Laffitte BA, Joseph SB, et al. Control of cellular cholesterol effluxby the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci U S A.2000;97(22):12097-12102.
    9. Sabol SL, Brewer HB Jr, Santamarina-Fojo S. The human ABCG1gene: identificationof LXR response elements that modulate expression in macrophages and liver. J LipidRes.2005;46(10):2151-2167.
    10. Laffitte BA, Repa JJ, Joseph SB, et al. LXRs control lipid-inducible expression of theapolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci U S A.2001;98(2):507-512.
    11. Hong C, Walczak R, Dhamko H, et al. Constitutive activation of LXR in macrophagesregulates metabolic and inflammatory gene expression: identification of ARL7as adirect target. J Lipid Res.2011;52(3):531-539.
    12. Zelcer N, Hong C, Boyadjian R, Tontonoz P. LXR regulates cholesterol uptake throughIdol-dependent ubiquitination of the LDL receptor. Science.2009;325(5936):100-104.
    13. Hong C, Duit S, Jalonen P, et al. The E3ubiquitin ligase IDOL induces the degradationof the low density lipoprotein receptor family members VLDLR and ApoER2. J BiolChem.2010;285(26):19720-19726.
    14. Buono C, Li Y, Waldo SW, Kruth HS. Liver X receptors inhibit humanmonocyte-derived macrophage foam cell formation by inhibiting fluid-phasepinocytosis of LDL. J Lipid Res.2007;48(11):2411-2418.
    15. Mak PA, Laffitte BA, Desrumaux C, et al. Regulated expression of the apolipoproteinE/C-I/C-IV/C-II gene cluster in murine and human macrophages. A critical role fornuclear liver X receptors alpha and beta. J Biol Chem.2002;277(35):31900-31908.
    16. Zhang Y, Repa JJ, Gauthier K, Mangelsdorf DJ. Regulation of lipoprotein lipase by theoxysterol receptors, LXRalpha and LXRbeta. J Biol Chem.2001;276(46):43018-43024.
    17. Luo Y, Tall AR. Sterol upregulation of human CETP expression in vitro and intransgenic mice by an LXR element. J Clin Invest.2000;105(4):513-520.
    18. Laffitte BA, Joseph SB, Chen M, et al. The phospholipid transfer protein gene is a liverX receptor target expressed by macrophages in atherosclerotic lesions. Mol Cell Biol.2003;23(6):2182-2191.
    19. Naik SU, Wang X, Da Silva JS, et al. Pharmacological activation of liver X receptorspromotes reverse cholesterol transport in vivo. Circulation.2006;113(1):90-97.
    20. Peet DJ, Turley SD, Ma W, et al. Cholesterol and bile acid metabolism are impaired inmice lacking the nuclear oxysterol receptor LXR alpha. Cell.1998;93(5):693-704.
    21. Repa JJ, Turley SD, Lobaccaro JA, et al. Regulation of absorption and ABC1-mediatedefflux of cholesterol by RXR heterodimers. Science.2000;289(5484):1524-1529.
    22. Repa JJ, Berge KE, Pomajzl C, et al. Regulation of ATP-binding cassette steroltransporters ABCG5and ABCG8by the liver X receptors alpha and beta. J Biol Chem.2002;277(21):18793-18800.
    23. Yu L, Hammer RE, Li-Hawkins J, et al. Disruption of Abcg5and Abcg8in mice revealstheir crucial role in biliary cholesterol secretion. Proc Natl Acad Sci U S A.2002;99(25):16237-42.
    24. van der Veen JN, van Dijk TH, Vrins CL, et al. Activation of the liver X receptorstimulates trans-intestinal excretion of plasma cholesterol. J Biol Chem.2009;284(29):19211-19219.
    25. Duval C, Touche V, Tailleux A, et al. Niemann-Pick C1like1gene expression isdown-regulated by LXR activators in the intestine. Biochem Biophys Res Commun.2006;340(4):125912-63.
    26. Repa JJ, Liang G, Ou J, et al. Regulation of mouse sterol regulatory element-bindingprotein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. GenesDev.2000;14(22):2819-2830.
    27. Schultz JR, Tu H, Luk A, et al. Role of LXRs in control of lipogenesis. Genes Dev.2000;14(22):2831-2838.
    28. Joseph SB, Laffitte BA, Patel PH, et al. Direct and indirect mechanisms for regulationof fatty acid synthase gene expression by liver X receptors. J Biol Chem.2002;277(13):11019-11025.
    29. Cha JY, Repa JJ. The liver X receptor (LXR) and hepatic lipogenesis. Thecarbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem.2007;282(1):743-751.
    30. Zhou J, Febbraio M, Wada T, et al. Hepatic fatty acid transporter Cd36is a commontarget of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology.2008;134(2):556-567.
    31. Inoue J, Yamasaki K, Ikeuchi E, et al. Identification of MIG12as a mediator forstimulation of lipogenesis by LXR activation. Mol Endocrinol.2011;25(6):995-1005.
    32. Stenson BM, Rydén M, Steffensen KR, et al. Activation of liver X receptor regulatessubstrate oxidation in white adipocytes. Endocrinology.2009;150(9):4104-4113.
    33. Korach-André M, Archer A, Barros RP, et al. Both liver-X receptor (LXR) isoformscontrol energy expenditure by regulating brown adipose tissue activity. Proc Natl AcadSci U S A.2011;108(1):403-408.
    34. Mitro N, Mak PA, Vargas L, et al. The nuclear receptor LXR is a glucose sensor. Nature.2007;445(7124):219-223.
    35. Cao G, Liang Y, Broderick CL, et al. Antidiabetic action of a liver x receptor agonistmediated by inhibition of hepatic gluconeogenesis. J Biol Chem.2003;278(2):1131-1136.
    36. Laffitte BA, Chao LC, Li J, et al. Activation of liver X receptor improves glucosetolerance through coordinate regulation of glucose metabolism in liver and adiposetissue. Proc Natl Acad Sci U S A.2003;100(9):5419-5424.
    37. Liu Y, Yan C, Wang Y, Nakagawa Y, Nerio N, Anghel A, Lutfy K, Friedman TC. LiverX receptor agonist T0901317inhibition of glucocorticoid receptor expression inhepatocytes may contribute to the amelioration of diabetic syndrome in db/db mice.Endocrinology.2006;147(11):5061-5068.
    38. Nader N, Ng SS, Wang Y, Abel BS, Chrousos GP, Kino T. Liver x receptors regulate thetranscriptional activity of the glucocorticoid receptor: implications for the carbohydratemetabolism. PLoS One.2012;7(3):e26751.
    39. Dalen KT, Ulven SM, Bamberg K, et al. Expression of the insulin-responsive glucosetransporter GLUT4in adipocytes is dependent on liver X receptor alpha. J Biol Chem.2003;278(48):48283-48291.
    40. Ross SE, Erickson RL, Gerin I, et al. Microarray analyses during adipogenesis:understanding the effects of Wnt signaling on adipogenesis and the roles of liver Xreceptor alpha in adipocyte metabolism. Mol Cell Biol.2002;22(16):5989-5999.
    41. Efanov AM, Sewing S, Bokvist K, Gromada J. Liver X receptor activation stimulatesinsulin secretion via modulation of glucose and lipid metabolism in pancreaticbeta-cells. Diabetes.2004;53Suppl3: S75-78.
    42. Ogihara T, Chuang JC, Vestermark GL, et al. Liver X receptor agonists augment humanislet function through activation of anaplerotic pathways and glycerolipid/free fattyacid cycling. J Biol Chem.2010;285(8):5392-5404.
    43. Gerin I, Dolinsky VW, Shackman JG, et al. LXRbeta is required for adipocyte growth,glucose homeostasis, and beta cell function. J Biol Chem.2005;280(24):23024-23031.
    44. Scholz H, Lund T, Dahle MK, et al. The synthetic liver X receptor agonist GW3965reduces tissue factor production and inflammatory responses in human islets in vitro.Diabetologia.2009;52(7):1352-1362.
    45. Wente W, Brenner MB, Zitzer H, et al. Activation of liver X receptors and retinoid Xreceptors induces growth arrest and apoptosis in insulin-secreting cells. Endocrinology.2007;148(4):1843-1849.
    46. Meng ZX, Nie J, Ling JJ, et al. Activation of liver X receptors inhibits pancreatic isletbeta cell proliferation through cell cycle arrest. Diabetologia.2009;52(1):125-135.
    47. Joseph SB, Castrillo A, Laffitte BA, et al. Reciprocal regulation of inflammation andlipid metabolism by liver X receptors. Nat Med.2003;9(2):213-219.
    48. Castrillo A, Joseph SB, Marathe C, et al. Liver X receptor-dependent repression ofmatrix metalloproteinase-9expression in macrophages. J Biol Chem.2003;278(12):10443-10449.
    49. Terasaka N, Hiroshima A, Ariga A, Honzumi S, Koieyama T, Inaba T, Fujiwara T. LiverX receptor agonists inhibit tissue factor expression in macrophages. FEBS J.2005;272(6):1546-1556.
    50. Ogawa D, Stone JF, Takata Y, Blaschke F, Chu VH, Towler DA, Law RE, Hsueh WA,Bruemmer D. Liver x receptor agonists inhibit cytokine-induced osteopontinexpression in macrophages through interference with activator protein-1signalingpathways. Circ Res.2005;96(7): e59-67.
    51. Marathe C, Bradley MN, Hong C, et al. The arginase II gene is an anti-inflammatorytarget of liver X receptor in macrophages. J Biol Chem.2006;281(43):32197-206.
    52. Mayi TH, Rigamonti E, Pattou F, et al. Liver X Receptor (LXR) activation negativelyregulates visfatin expression in macrophages. Biochem Biophys Res Commun.2011;404(1):458-462.
    53. Morales JR, Ballesteros I, Deniz JM, Hurtado O, Vivancos J, Nombela F, Lizasoain I,Castrillo A, Moro MA. Activation of liver X receptors promotes neuroprotection andreduces brain inflammation in experimental stroke. Circulation.2008;118(14):1450-1459.
    54. Sironi L, Mitro N, Cimino M, Gelosa P, Guerrini U, Tremoli E, Saez E. Treatment withLXR agonists after focal cerebral ischemia prevents brain damage. FEBS Lett.2008;582(23-24):3396-3400.
    55. Cheng O, Ostrowski RP, Liu W, Zhang JH. Activation of liver X receptor reducesglobal ischemic brain injury by reduction of nuclear factor-kappaB. Neuroscience.2010;166(4):1101-1109.
    56. Paterniti I, Genovese T, Mazzon E, et al. Liver X receptor agonist treatment regulatesinflammatory response after spinal cord trauma. J Neurochem.2010;112(3):611-624.
    57. Crisafulli C, Di Paola R, Mazzon E, et al. Liver X receptor agonist treatment reducedsplanchnic ischemia and reperfusion injury. J Leukoc Biol.2010;87(2):309-321.
    58. Gong H, He J, Lee JH, et al. Activation of the liver X receptor preventslipopolysaccharide-induced lung injury. J Biol Chem.2009;284(44):30113-30121.
    59. Wu S, Yin R, Ernest R, et al. Liver X receptors are negative regulators of cardiachypertrophy via suppressing NF-kappaB signalling. Cardiovasc Res.2009;84(1):119-126.
    60. Walczak R, Joseph SB, Laffitte BA, et al. Transcription of the vascular endothelialgrowth factor gene in macrophages is regulated by liver X receptors. J Biol Chem.2004;279(11):9905-9911.
    61. Rébé C, Raveneau M, Chevriaux A, et al. Induction of transglutaminase2by a liver Xreceptor/retinoic acid receptor alpha pathway increases the clearance of apoptotic cellsby human macrophages. Circ Res.2009;105(4):393-401.
    62. Morello F, Saglio E, Noghero A, et al. LXR-activating oxysterols induce the expressionof inflammatory markers in endothelial cells through LXR-independent mechanisms.Atherosclerosis.2009;207(1):38-44.
    63. Liao H, Langmann T, Schmitz G, Zhu Y. Native LDL upregulation of ATP-bindingcassette transporter-1in human vascular endothelial cells. Arterioscler Thromb VascBiol.2002;22(1):127-132.
    64. Norata GD, Ongari M, Uboldi P, et al. Liver X receptor and retinoic X receptor agonistsmodulate the expression of genes involved in lipid metabolism in human endothelialcells. Int J Mol Med.2005;16(4):717-722.
    65. Peter A, Weigert C, Staiger H, et al. Induction of stearoyl-CoA desaturase protectshuman arterial endothelial cells against lipotoxicity. Am J Physiol Endocrinol Metab.2008;295(2): E339-349.
    66. Verschuren L, de Vries-van der Weij J, Zadelaar S, et al. LXR agonist suppressesatherosclerotic lesion growth and promotes lesion regression in apoE*3Leiden mice:time course and mechanisms. J Lipid Res.2009;50(2):301-311.
    67. Zhu M, Fu Y, Hou Y, et al. Laminar shear stress regulates liver X receptor in vascularendothelial cells. Arterioscler Thromb Vasc Biol.2008;28(3):527-533.
    68. Chen J, Cui X, Zacharek A, et al. eNOS mediates TO90317treatment-inducedangiogenesis and functional outcome after stroke in mice. Stroke.2009;40(7):2532-2538.
    69. Kang MA, Jeoung NH, Kim JY, et al. Up-regulation of skeletal muscle LIM protein1gene by25-hydroxycholesterol may mediate morphological changes of rat aorticsmooth muscle cells. Life Sci.2007;80(5):460-467.
    70. Leik CE, Carson NL, Hennan JK, et al. GW3965, a synthetic liver X receptor (LXR)agonist, reduces angiotensin II-mediated pressor responses in Sprague-Dawley rats. BrJ Pharmacol.2007;151(4):450-456.
    71. Imayama I, Ichiki T, Patton D, et al. Liver X receptor activator downregulatesangiotensin II type1receptor expression through dephosphorylation of Sp1.Hypertension.2008;51(6):1631-1636.
    72. Hsu JJ, Lu J, Huang MS, et al. T0901317, an LXR agonist, augments PKA-inducedvascular cell calcification. FEBS Lett.2009;583(8):1344-1348.
    73. Shao JS, Cai J, Towler DA. Molecular mechanisms of vascular calcification: lessonslearned from the aorta. Arterioscler Thromb Vasc Biol.2006;26(7):1423-1430.
    74. Spyridon M, Moraes LA, Jones CI, et al. LXR as a novel antithrombotic target. Blood.2011;117(21):5751-5761.
    75. Wu S, Yin R, Ernest R, et al. Liver X receptors are negative regulators of cardiachypertrophy via suppressing NF-kappaB signalling. Cardiovasc Res.2009;84(1):119-126.
    76. Kuipers I, Li J, Vreeswijk-Baudoin I, Koster J, et al. Activation of liver X receptorswith T0901317attenuates cardiac hypertrophy in vivo. Eur J Heart Fail.2010;12(10):1042-1050.
    77.殷然,王梦洪,郑泽琪,等.肝X受体抑制乳鼠心肌细胞缺氧/复氧损伤.中国病理生理杂志[J].2011,27(9):1671-1675
    78. Joseph SB, McKilligin E, Pei L, et al. Synthetic LXR ligand inhibits the developmentof atherosclerosis in mice. Proc Natl Acad Sci U S A.2002;99(11):7604–7609.
    79. Terasaka N, Hiroshima A, Koieyama T, et al. T-0901317, a synthetic liver X receptorligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBSLett.2003;536(1-3):6-11.
    80. Chen J, Zacharek A, Cui X, et al. Treatment of stroke with a synthetic liver X receptoragonist,TO901317, promotes synaptic plasticity and axonal regeneration in mice[J].J Cereb Blood Flow Metab,2010,30(1):102-109.
    81. Kipshidze N, Dangas G, Tsapenko M, et al. Role of the endothelium in modulatingneointimal formation: vasculoprotective approaches to attenuate restenosis afterpercutaneous coronary interventions. J Am Coll Cardiol.2004;44(4):733-739.
    82. Versari D, Lerman L O, Lerman A. The importance of reendothelialization after arterialinjury. Curr Pharm Des.2007;13(17):1811-1824.
    83. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelialcells for angiogenesis. Science.1997;275(5302):964-967.
    84. Quinet EM, Savio DA, Halpern AR, et al. Liver X receptor (LXR)-beta regulation inLXRalpha-deficient mice: implications for therapeutic targeting. Mol Pharmacol.2006;70(4):1340-1349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700