用户名: 密码: 验证码:
喜树碱衍生物CZ48高分子载体系统的构建及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,现代人的生活方式和环境污染导致癌症患者剧增。癌症的治疗是世界性的难题,人类至今无法攻克。为了治疗癌症,科学家们花费了大量的精力用于抗癌药物研究与开发。喜树碱(Camptothecin, CPT)是从我国特有树种喜树(Camptotheca acuminata)中提取出的一种拓扑异构酶I (Topo I)抑制剂,具广谱抗肿瘤活性。喜树碱类药物因其独特的抗肿瘤机制已被美国国家癌症研究所(NCI)所列为重点研究的抗肿癌药物之一。但是由于喜树碱的活性形式(内酯形式)在人体内正常生理环境下(pH=7.4)不稳定、水溶性差、毒性大等问题限制了它在临床上的应用。CZ48(camptothecin-C20-propionate),喜树碱丙酸酯,是喜树碱前体药物,CZ48通过在体内水解酯键释放活性药物CPT实现抗肿瘤作用。与CPT相比,CZ48在体内血浆中可保持CPT内酯环的稳定性,从而具有极高的抗肿瘤活性和极低的毒性,在美国已进入Ⅰ期临床研究,是极具发展前景的喜树碱类抗肿瘤药物。然而,水溶性差,口服生物利用度低等不足仍是阻碍CZ48临床应用的主要问题。本研究以生物相容性好且可生物降解高分子材料聚乳酸(PLA)为载体材料,研究制备了载CZ48聚乳酸纳米粒和载CZ48微泡超声造影剂两种载药系统,并对它们的形态、包封率、载药量、体外释放性能和体内药动学进行了研究,目的是利用药物载体系统良好的水分散性、缓控释性,延长药物在体内滞留时间,以解决CZ48在水溶性差、生物利用率低等方面的不足。本研究主要有如下结果:在载CZ48聚乳酸纳米粒载药系统研究中,(1)采用乳化溶剂挥发法成功地制备了载有抗肿瘤药物CZ48的聚乳酸纳米粒-——CZ48-PLA纳米粒,其包封率和载药量分别为88.7%和11.8%,平均粒径为260.6nm;(2)建立了在体外用荧光分光光度计测定磷酸缓冲液(PBS, pH=7.4)中CZ48浓度的方法。体外释放实验结果表明CZ48-PLA纳米粒具良好的缓释效果;(3)采用液-液萃取法(LLE)处理生物样品,联合HPLC分析、建立了在生物样品中同时测定CZ48和其主要代谢产物CPT药物浓度的方法,并分别对所建方法进行了全面的方法学论证。所建立的方法简单易行,选择性特异性强,灵敏度高,方法的准确率高,重现性好;(4)用wistar大鼠进行的体内药动学实验表明CZ48-PLA纳米粒未表现出所期待的持续释药效果,这可能与其在体内被巨噬细胞大量吞噬有关。在载CZ48微泡超声造影剂载药系统研究中,(1)采用双乳溶剂挥发法和冷冻干燥技术相结合的方法成功地制备了载CZ48的聚乳酸微泡超声造影剂——CZ48-Loaded微泡。制备材料为25mg PLA、5mL二氯甲烷和80mg CZ48时,CZ48-Loaded微泡具有最大包封率和载药量,分别为85.73%和26.07%,粒径分布范围为0.5~6.7μm,98%的粒径小于7μm,能够保证微泡注射进入人体后通过肺滤而实现全身循环,满足临床使用的基本要求。(2)体外释药研究发现,CZ48-Loaded微泡超声造影剂具非常好的药物缓释效果。超声可促进其中药物的释放,超声时间越长,促进效果越明显。(3)体内外超声显影结果表明,CZ48-Loaded微泡超声造影剂具有良好的回声特性和较强的体内稳定性。(4)大鼠体内药代动力学进行研究结果表明,通过CZ48-loaded微泡的形式静脉注射给药,延迟了药物达峰时间(Tmax)、T1/2和MRT,提高了AUC0-∞,从而提高CZ48的生物利用度和抑制肿瘤效果。本研究工作的意义在于:通过构建载CZ48聚乳酸纳米粒和载CZ48微泡超声造影剂两种载药系统,较全面的研究了它们的体内外释药行为,为进一步研究这两种载药系统乃至研发CZ48的新型药物载体系统奠定了基础;本研究中建立的在生物样本中同时测定CZ48及其活性代谢产物CPT浓度的方法,将为CZ48的其它载药系统研究中体内药物含量测定方法提供借鉴。
With the development of society, modern lifestyles and environmental pollution result in dramatic increase in cancer patients. Treatment of cancer is a worldwide problem that humanity has not yet overcome. In order to treat cancer, scientists have spent a lot of energy for the anti-cancer drug research and development. Camptothecin (CPT) is a well-established topoisomerase I inhibitor against a broad spectrum of cancers. Because of its unique anti-tumor mechanism, CPT has been listed as one of the key research of anticancer drugs by the U.S. National Cancer Institute (NCI). However, poor aqueous solubility, instability of the lactone ring in vivo under physiological conditions at pH7.4, and toxic effects to normal tissues have limited CPT clinical development. CZ48(camptothecin-C20-propionate), a C20-propionate ester of camptothecin, was synthesized as a derivative resistant to lactone hydrolysis. CZ48has demonstrated strong anticancer activity with an exceptional lack of toxicity. CZ48acts as a prodrug and exerts its anticancer activity by carboxylesterases mediated hydrolysis to the active metabolite CPT in vivo. CZ48has entered phase I clinical studies in the United States, which of great prospects anticancer drugs development. However, poor aqueous solubility and low degree of bioavailability by oral is still the main problems that hinder the CZ48clinical applications. In this study, two drug carrier systems were fabricated, i.e., a biocompatible and biodegradable polymer material polylactic acid (PLA) as the carrier material, contained CZ48polylactic acid nanoparticles and contained CZ48microbubble ultrasound contrast agent, whose morphology, encapsulation efficiency, drug loading efficiency and release performance in vitro and pharmacokinetic in vivo were studied, The purpose is to extend the residence time of drugs in the body with the aid of good water dispersion and sustained controlled drug release of the drug delivery system. so as to make up for the poor aqueous solubility and low bioavailability of CZ48. The study results are as follows:in the study of CZ48loaded PLA nanoparticles drug carrier systems (1) emulsion solvent evaporation method was used to prepare polylactic acid nanoparticles containing anticancer drugs CZ48nanoparticles, whose encapsulation efficiency and drug loading efficiency were88.7%and11.8%respectively, The average particle size being260.6nm;(2) a determination method of using the fluorescence spectrophotometer determinate concentration of CZ48in phosphate buffered saline (PBS,pH=7.4) was created. Experimental results of drug release in vitro show that CZ48-PLA nanoparticles have a good release effect;(3) using liquid-liquid extraction (LLE) to deal with biological samples, plus HPLC analysis, the methods of simultaneous determination of CZ48content and its major metabolite CPT in biological samples was established, and the comprehensive methodology demonstration were carried out. The advantages of this method lie in the simplicity and practicability, selective specificity, high sensitivity, high accuracy and good reproducibility;(4) pharmacokinetic experiments demonstrated that CZ48-PLA nanoparticles did not show the expected sustained release effect, which may be related to the large number of nanoparticles that were phagocytosed by macrophage in body. In the study of CZ48-loaded microbubbles ultrasound contrast agent drug carrier systems,(1) CZ48-loaded microbubbles ultrasound contrast agent was successfully prepared using double emulsion solvent evaporation and lyophilization methods, a biocompatible, safe and biodegradable high molecular polymer being employed as the shell material. The morphology of the polymeric microbubbles observed with scanning electron microscope appeared regular spherical with hollow structure and a tight size distribution. When preparation of materials contain25mg of PLA,5mL dichloromethane and80mg CZ48, CZ48-loaded microbubbles have the largest encapsulation efficiency and drug loading efficiency of85.73%and26.07%, respectively. The particle size distribution ranges from0.5to6.7urn,98%of which is less than7μm, which meet the requirement of the size for ultrasound contrast agent.(2) The in vitro release studies have found that CZ48-loaded microbubble ultrasound contrast agent had a very good drug release effect. Ultrasound can promote the release of drugs and the longer ultrasound is the promote effects were more obvious.(3) In vitro and in vivo ultrasound contrast effects indicated that CZ48-loaded microbubbles showed high echogenicity and strong stability in vivo.(4) Pharmacokinetics results show that CZ48-loaded microbubbles have delayed time to peak (Tmax), T1/2and MRT, and have increased the AUC0-∞thereby enhancing the CZ48bioavailability and inhibit tumor effect. The significance of this research is:Through fabricating the two drug delivery systems of CZ48contained PLA nanoparticles and carrier the CZ48microbubble ultrasound contrast agent, their drug release behavior in vivo and in vitro was comprehensively studied, which can build the basis for further study of these two systems and even for the research and development CZ48new drug delivery system; the method of simultaneous determination of CZ48and CPT content in biological samples in this study may provide some reference for determinating durg content in other drug delivery system research for CZ48.
引文
[1]Wall ME, Wani MC, Cook CE. Plant Antitumor Agents.I.the Isolation and Structure of Camptothecin,a Novel Alkaloidal Leukemia and Tumor Inhibitor From Camptotheca Acuminata. J. Am. Chem. Soc.1966. 88 (3888)
    [2]Hsiang YH, Liu LF. Identification of Mammalian Dna Topoisomerase I as an Intracellular Target of the Anticancer Drug Camptothecin. Cancer Res.1988,48 (7):1722
    [3]Hertzberg RP, Caranfa MJ, Holden KG,et al. Modification of the Hydroxy Lactone Ring of Camptothecin:Inhibition of Mammalian Topoisomerase I and Biological Activity. J. Med. Chem.1989, 32:715-720
    [4]Wall ME, Wani MC. Antineoplastic Agents From Plants. Annual Review of Pharmacology and Toxicology.1977,17:117-132
    [5]Liehr JG, Harris NJ, Mendoza J.,et al. Pharmacology of Camptothecin Esters. Annals of the New York Academy of Sciences.2000,922:216-223
    [6]代鲁平,宋春霞,邵先祥,et al.抗癌药物喜树碱类衍生物的研究进展.中国药学杂志.2010,45(23):1813-1815
    [7]Pan XD, Wang CY. Current Status of Camptothecin Derivatives as Natural Antitumor Agents. Acta Pharm Sin.2003,38 (9):715-720
    [8]Zhang YN, Wei MJ, Sun MJ. The Correlation Between the Inhibiting Effects of Irinotecan On Colorectal Cancer Cell Proliferation and Atp-Sensitive Potassium Channel. J China Med Univ.2010,39 (1):10-13
    [9]Huang Q., Chen H., Xu XH,et al. Treatment of Irinotecan for Recurring Advanced Ovarian Cancer. Aerospace Med.2010,21 (2):140-141
    [10]Zhao YJ, Cao Y. Clinical Efficacy of Irinotecan for Extensive Small-Cell Lung Cancer. Eval Anal Drug-Use Hosp China.2009,9 (2):136-138
    [11]Zhu LM. Research Progress in First-Line Chemotherapy for Advanced Pancreatic Cancer. J Oncol.2010, 16 (5):404-408
    [12]Taylor J., Amanze A., Di federico E.,et al. Irinotecan Use During Pregnancy. Obstet Gynecol.2009, 114 (2):451-452
    [13]Wang LY. Antineoplastic Iirinotecan Research Progress. Foreign Med Sci (Sec Pharm).2004,31 (1) 7-11
    [14]Patel SH, Ajloun IM, Chapman R.,et al. A Prospective Phase ii Study of Induction Carboplatin and Vinorelbine Followed by Concomitant Topotecan and Accelerated Radiotherapy (Art) in Locally Advanced Non-Small Cell Lung Cancer (Nsclc). J Thorac Oncol.2007,2 (9):831-837
    [15]Xie BF, Pan BL. Topotecan in Combination with Cisplatin Inthe Treatment of Head and Neck Squamous Cell Carcinoma. Chongqing Med.2008,37 (17):1986-1987
    [16]Cheng BZ, Xie B., Wang P.,et al. Topotecan in Combination with Carboplatin in the Treatment of Recurrent Small Cell Lung Cancer. J Mod Oncol.2010 18 (4):718-720
    [17]Hong MH, Pei YY. Hydroxycamptothecin and Formulations. Chin J Clin Pharm.2008,17 (4):255-258
    [18]Lair Y., Lix B., Xu CJ,et al. Hydroxycamptothecin On Human Pancreatic Cancer Cell Growth Inhibition of Panc-1. Lishizhen MedMaterMed Res.2009,20 (8):2039-2040
    [19]Jing H., Chen S., Yang L.,et al. Hydroxycamptothecin Induced Human Prostate Cancer Line Pc-3M Cell Apoptosis. Chin J Lab Diagn.2010,14 (1):12-13
    [20]Xiao KF. Research Progress of Camptothecin. Lishizhen MedMaterMed Res.2004,15 (11):787-789
    [21]Li ZY Guo Y. Camptothecin Derivatives-a Kind of Antitumor Agents. Chin J New Drugs.2000,9 (9):598-601
    [22]Yang H. The Anti-Tumornew Drug: 9-Nitrocamptothecin. Int J Surg.2008,35 (6):396-398
    [23]Meng XY, Liu ZY. Research Progress of Rubitecan. Her Med.2008,27 (2):204-207
    [24]Vokes EE, Ansarir H., Masters GA,et al. A Phase Ii Study of 9-Aminocamptothecin in Advanced Non-Small-Cell Lung Cancer. Ann Oncol.1998,9 (10):1085-1090
    [25]Hochster H., Plimack ER, Runowicz CD,et al. Biweekly 72-H 9-Aminocamptothecin Infusion as Second-Line Therapy for Ovarian Cancinoma:Phase li Study of the New York Gynecologiconcology Group and the Eastern Cooperative Oncology Group. J Clin Oncol.2004,22 (1):120-126
    [26]Xiao F., Luo Y., Lv W.,et al. A Novel Synthesis of Chimmitecan. Chin J Org Chem.2010,30 (2):311-313
    [27]Huang M., Gao H., Chen Y.,et al. Chimmitecan, a Novel 9-Substituted Camptothecin, with Improved Anticancer Pharmacologic Profiles in Vitro and in Vivo. Clin Cancer Res.2007,13 (4):1298-1307
    [28]姜琦,王海翔.喜树碱类药物的现代研究进展.药学进展.2007,31(7):408-412
    [29]杨静,谢俊,周建平.喜树碱衍生物传送技术的研究进展.药学与临床研究.2007,15(3)171-174
    [30]郝艳丽,邓英杰,陈妍.喜树碱类药物传递系统的研究进展.沈阳药科大学学报.2005,22(4):315-320
    [31]西娜,侯连兵,阎玺庆et al.10-羟基喜树碱半固体脂质纳米粒的研制与稳定性考察.中药材.2006,29(1):63-66
    [32]杨时成,朱家壁,梁秉文et al.喜树碱固体脂质纳米粒的研究.药学学报.1999,34(2):146-150
    [33]李珺婵,方晓玲,沙先谊et al.9硝基喜树碱半固体脂质纳米粒的制备及大鼠的药动学研究.中国医药工业杂志.2004,35(10):599-602
    [34]Muller RH, Radtke M., Wissing SA. Nanostructured Lipidmatrices for Improved Microencapsulation of Drugs. Int 3 Pharm.2002,242:121-128
    [35]吴燕,何文,代文兵et al.羟基喜树碱包衣纳米脂质体的处方及制备工艺研究.中国药学杂志.2005,40(12):922-925
    [36]Henriksen I., Vagen SR, Sande SA,et al. Interactions Between Liposomes and Chitosan Ii:Effect of Selected Parameters On Aggregation and Leakage. Int J Pharm.1997,146:193-204
    [37]赵小智.包裹芘的高分子纳米粒的制备、表征以及体内外行为的初步研究.华中科技大学博士论文.2009
    [38]Miura H., Onishi H., Sasatsu M.,et al. Antitumor Characteristics of Methoxypolyethylene Glycol-Poly(Dl-Lactic Acid) Nanoparticles Containing Camptothecin. J Control Release.2004,97 (1):101-113
    [39]阎昭,赵国臣,焦建杰et al.注射用纳米羟基喜树碱的药代动力学和组织分布研究.中国肿瘤临床.2005,32(19):1116-1119
    [40]Bernhard E., Peter P., Michael W.,et al. Poly (D,L-Lactic-Co-Glycolic Acid) Microspheres for Sustained Delivery and Stabilization of Camptothecin. J Controlled Release.1999,61 (3):305-317
    [41]Zhang LY, Hu Y, Jiang XQ,et al. Camptothecin Derivative-Loaded Poly-(Caprolactone-Co-Lactide)-B-Peg-B-Poly (Caprolactone-Co-Lactide) Nanoparticles and their Biodistribution in Mice. J Controlled Release.2004,96 (1): 135-148
    [42]杨雪峰,赵坤,姜金庆.纳米乳给药系统的应用.广东农业科学.2011(7):125-126
    [43]Lawrence MJ, Rees GD. Microemulsion-Based Media as Novel Drug Delivery Systems. Adv Drug Deliv Rev.2000,45 (1):89-121
    [44]龚明涛,张钧寿,沈益.羟基喜树碱纳米乳的制备及其抗癌作用初步研究.中国天然药物,2005,3(1):41-43
    [45]周卫,丁逸梅,王丽杰.脂质体对羟喜树碱内酯环的保护.中国药学杂志.2005,40(9):688-690
    [46]陈军,平其能,郭健新et al.脂质体对9-硝基喜树碱内酯型和羧酸盐型体外平衡的影响.中国药科大学学报.2005,36(4):316-320
    [47]何文,吴燕,代文兵.羟基喜树碱包衣纳米脂质体的制备及在小鼠体内组织分布的研究.中国药学杂志.2006,41(2):196-200
    [48]周卫,平其能,王丽杰.羟喜树碱脂质体的料径对组织分布的影响.中国药科大学学报.2005,36(2):125-128
    [49]Liu JJ, Hong RL, Cheng WF,et al. Simple and Efficient Liposomal Encapsulation of Topotecan by Ammonium Sulfate Gradient: Stability, Pharmacokinetic and Therapeutic Evaluation. Anticancer Drugs. 2002,13 (7):709-717
    [50]郝艳丽,邓英杰,陈妍et al.盐酸拓扑替康脂质体的体外细胞毒及体内抗肿瘤作用.沈阳药科大学学报.2006,23(1):32-37
    [51]郝艳丽,邓英杰,陈妍et al.拓扑替康脂质体的制备及体内分布研究.中国新药杂志.2006,15(8):606-609
    [52]栾立标,朱家壁,余卫平,et al.喜树碱囊泡的研制.药学学报.2002,37(1):59-62
    [53]栾立标,朱家壁.复合中心对称设计法制备喜树碱非离子表面活性剂囊泡.中国医药工业杂志.2003,34(10):504-506
    [54]Kawanoa Kumi, Watanabea Masato, Yamamotob Tatsuhiro,et al. Enhanced Antitumor Effect of Camptothecin Loaded in Long-Circulating Polymeric Micelles. J Controlled Release.2006,112 (3) 329-332
    [55]Yu L., Chang GT, Zhang H.,et al. Injectable Block Copolymer Hydrogels for Sustained Release of a Pegylated Drug. Int J Pharm.2008,348:95-106
    [56]Liu JH, Li L., Cai YY,et al. Immobilization of Camptothecin with Surfactant Into Hydrogel for Controlled Drug Release. Eur Polymer J.2006,42 (8):1767-1774
    [57]Lalloo A., Chao P., Hu P.,et al. Pharmacokinetic and Pharmacodynamic Evaluation ofa Novel in Situ Forming Poly(Ethylene Glycol)-Based Hydrogel for the Controlled Delivery of the Camptothecins. J Control Release.2006,112 (3):333-342
    [58]Conover CD, Pendri A., Lee C.,et al. Camptothecin Delivery Systems: The Antitumor Activity of a Camptothecin-20-O-Poly-Ethylene Glycol Ester Transport Form. Anticancer Res.1997,17:3361-3368
    [59]Warnecke A., Kratz F. Maleimide-Oligo (Ethylene Glycol) Derivatives of Camptothecin as Albumin-Binding Prodrugs:Synthesis and Antitumor Efficacy. Bioconjug Chem.2003,1 (2): 377-387
    [60]Greenwald RB, Choe YH, McGuire J.,et al. Effective Drug Delivery by Pegylated Drug Conjugates. Adv Drug Deliv Rev.2003,55 (2):217-250
    [61]Bhatt R., DeVries P., Tulinsky J.,et al. Synthesis and in Vivo Antitumor Activity of Poly(L-Glutamic Acid) Conjugates of 20S-Camptothecin.J Med Chem.2003,46 (1):1902-1931
    [62]Henne WA, Doorneweerd DD, Hilgenbrink AR,et al. Synthesis and Activity of a Folate Peptide Camptothecin Prodrug. Bioorg Med Chem Letters.2006,16:5350-5355
    [63]蒋新宇.抗癌药物纳米粒载体系统的制备及其性能研究.中南大学博士论文.2005
    [64]王晓波.药物运释系统.北京:中国医药科技出版社,2007
    [65]Wang BH, Siahaan T., Soltero R. Drug Delivery:Principles and Applications:Wiley-interscienee, 2005
    [66]Kockisch S., Rees GD, Young SA,et al. Polymeric Microspheres for Drug Delivery to the Oral Cavity: An in Vitro Evaluation of Mucoadhesive Potential. Journal of Pharmaceutical Sciences.2003,92 (8) 1614-1623
    [67]Paul W., Nesamony J., Sharma CP. Delivery of Insulin From Hydroxyapatite Ceramic Microspheres: Preliminary in Vivo Studies. J. Biomed. Mater. Res.2002,61:660-662
    [68]Katre NV, Asherman J., Schaefer H.,et al. Multivesicular Liposome (Depofoam) Technology for Sustained Delivery of Insulin-Like Growth Factor-I(Igf-I). Journal of Pharmaceutical Sciences.1998,87 (11):1341-1346
    [69]Fasano A. Novel Approached for Oral Delivery of Macromolecules. Journal of Pharmaceutical Sciences. 998,87 (11):1351-1356
    [70]Li GM, Cai Q., Bei JZ,et al. Morphology and Levonorgestrel Release Behavior of Polycaprolactone/Poly(Ethylene Oxide)/Polylactide Tri-Component Copolymeric Microspheres. Polymers for Advanced Technologies.2003,14:239-244
    [71]Aboubakar M., Couvreur P., Pinto-Alphandary H.,et al. Insulin-Loaded Nanocapsules for Oral Administration in Vitro and in Vivo Investigation. Drug Development Research.2000.49:109-117
    [72]Yao KD, Xu MX, Yin YJ,et al. Ph-Sensitive Chitosan/Gelatin Hybrid Polymer Network Microspheres for Delivery of Cimetidine. Polymer International.1996,39:333-337
    [73]陈先红,郑建华.生物降解高分子材料——聚酸酊的研究进展.高分子材料科学与工程.2003,19(3):31-35
    [74]徐元龙.5-氟尿嘧啶-Plga纳米粒的制备及其药物动力学研究.南京工业大学硕士论文.2006
    [75]Farokhzad OC, Langer R. Impact of Nanotechnology On Drug Delivery. ACS Nano.2009,3:16-20
    [76]杨祥良.纳米药物.北京:清华大学出版社,2007
    [77]Debbage P. Targeted Drugs and Nano Medicine: Present and Future. Current Pharmaceutical Design. 2009,15:153-172
    [78]Zhang L., Gu FX, Chan JM,et al. Nanoparticles in Medicine:Therapeutic Applications and Developments. Clinical Pharmacology and Therapeutics.2008,83:761-769
    [79]Alexis F., Rhee JW, Richie JP,et al. New Frontiers in Nanotechnology for Cancer Treatment. Urologic Oncology.2008,26:74-85
    [80]Park JH, Lee S., Kim JH,et al. Polymeric Nanomedicine for Cancer Therapy. Progress in Polymerscience.2008,33:113-137
    [81]Parveen S., Sahoo SK. Polymeric Nanoparticles for Cancer Therapy. Journal of Drug Targeting. 2008,16:108-123
    [82]Pridgen EM, Langer R., Farokhzad OC. Biodegradable, Polymeric Nanoparticle Delivery Systems for Cancer Therapy. Nanomedicine.2007,2:669-680
    [83]Vauthier C, Bouchemal K. Methods for the Preparation and Manufacture of Polymeric Nanoparticles. Pharmaceutical Research.2009,26 (5):1025-1058
    [84]Braunecker WA, Matyjaszewski K. Controlled/Living Radical Polymerization:Features, Developments, and Perspective. Progress in Polymer Science.2007,32 (1):93-146
    [85]Pinto-Reis C., Neufeld RJ, Ribeiro AJ,et al. Nanoencapsulation i. Methods for Preparation of Drug-Loaded Polymeric Nanoparticles. Nanomedicine.2006,2:8-21
    [86]Stork M., Tousain RL, Wieringa JA,et al. A Milp Approach to the Optimization of the Operation Procedure of a Fed-Batch Emulsification Process in a Stirred Vessel. Computers & Chemical Engineering. 2003,27:1681-1691
    [87]Mabille C, Leal-Calderon F., Bibette J.,et al. Monodisperse Fragmentation in Emulsions:Mechanisms and Kinetics. Europhysics Letters.2003,61:708-714
    [88]Charcosset C., Fessi H. Preparation of Nanoparticles with a Membrane Contactor. Journal of Membrane Seience.2005,266:115-120
    [89]Anton N., Benoit JP, Saulnier P. Design and Production of Nanoparticles Formulated From Nano-Emulsion Templates-a Review. Journal of Controlled Release.2008,128:185-199
    [90]Anton N., Gayet P., Benoit JP,et al. Nano-Emulsions and Nanocapsules by the Pit Method: An Investigation On the Role of the Temperature Cycling On the Emulsion Phase Inversion. International Journal of Pharmaceutics.2007,344:44-52
    [91]Bouchemal K., Briancon S., Perrier E.,et al. Nanoemulsion Formulation Using Spontaneous Emulsification:Solvent, Oil and Surfactant Optimization. International Journal of Pharmaceutics.2004, 280:241-251
    [92]Ganachaud F., Katz J. Nanoparticles and Nanocapsules Created Using the Ouzo Effect: Spontaneous Emulsification as an Alternative to Ultrasonic and High-Shear Devices. A European Journal of Chemical Physics and Physical Chemistry.2005,6:209-216
    [93]Leroux JC, Allemann E., Doelker E.,et al. New Approach for the Preparation of Nanoparticlesby an Emulsification-Diffusion Method. European Journal of Phamaceutics and Biophamaceutics.1995,41:14-18
    [94]Quintanar GD, Ganem QA, Allemann E.,et al. Influence of the Stabilizer Coating Layer On the Purification and Freezed Drying of Poly (D1-Lactic Acid) Nanoparticles Prepared by Emulsification-Diffusion Technique. Journal of Microencapsulation.1998,15:107-119
    [95]Allemann E., Gurnay R., Doelker E. Preparation of Agueous Polymeric Nanodispersions by a Reversible Salting-Out Process: Influence of Process Parameters On Particle Size. International Journal of Phamaceutics.1992,87:247-253
    [96]Allemann E., Leroux JC, Gumay R.,et al. In Vitro Extended-Release Properties of Drug-Loaded Poly (D, L-Lactic Acid) Nanoparticles Produced by a Salting-Out Procedure. Pharmaceutical Researeh.1993, 10:1732-1737
    [97]Murakami H., Kawashima Y., Niwa T.,et al. Influence of the Degrees of Hydrolyzation and Polymerization of Poly(Vinylalcohol)On the Preparation and Properties of Poly(Dl-Lactide-Co-Glycolide) Nanoparticle. Int J Pharm.1997,149 (1):43-49
    [98]潘妍,徐晖,赵会英et al胰岛素乳酸/羟基乙酸共聚物纳米粒的制备及口服药学研究.药学学报.2002,37(5):374-377
    [99]Lambert G., Fattal E., Couvreur P. Nanoparticles Systems for the Delivery of Antisense Oligonucleotides. Adv Drug Deliv Rev.2001.47 (1):99-112
    [100]刘明星,董静,杨亚江,et al.雷公藤甲素聚乳酸纳米粒载药体系的研究.中国药科大学学报.2004,35(2):117-121
    [101]Hideki M., Masao K., Hirofumi T.,et al. Preparation of Poly(Dl-Lactide-Co-Glycolide) Nanoparticles by Modified Spontaneous Emulsification Solvent Diffusion Method. Int J Pharm.1999,187 (2):143- 152
    [102]Hideki M., Masao K., Hirofumi T.,et al. Further Application of a Modified Spontaneous Emulsification Solvent Diffusion Method to Various Types of Plga and Pla Polymers for Preparation of Nanoparticles. Powder Technology.2000,107(2):137-143
    [103]Legrand P., Lesieur S., Boehot A.,et al. Influence of Polymer Behavior in Organic Solution On the Production of Polylactide Nanoparticles by Nanoparticles by Nanoprecipitation. International Journal of Pharmaceuties.2007,344:33-43
    [104]Zhang JY, Shen ZG, Zhong J.,et al. Preparation of Amorphous Cefuroxime Axetil Nanoparticles by Controlled Nanoprecipitation Method without Surfactants. International Journal of Pharmaceuties.2006, 323:153-160
    [105]Bilati U., Allemann E., Doelker E. Development of a Nanoprecipitation Method Intended for the Entrapment of Hydrophilic Drugs Into Nanoparticles. European Journal of Pharmaceutical Sciences. 2005,24:67-75
    [106]Yu M., Liu Q., Song H P,et al. Clinical Application of Contrast-Enhanced Ultrasonography in Diagnosis of Superficial Lymphadenopathy. J. of Ultrasound in Medicine.2010,29 (5):735-740
    [107]Zuber-Jerger I., Schacherer D., Woenckhaus M.,et al. Contrast-Enhanced Ultrasound in Diagnosing Liver Malignancy. Clinical Hemorheology and Microcirculation.2009,43 (1-2):109-118
    [108]Leong-Poi H, Christiansen J, Heppner P,et al. Assessment of Endogenous and Therapeutic Arteriogenesis by Contrast Ultrasound Molecular Imaging of Integrin Expression. Circulation.2005,111 (24):3248-3254
    [109]Rychak J J, Lindner J R, Ley K,et al. Deformable Gas-Filled Microbubbles Targeted to P-Selectin. J. of Controlled Release.2006,114 (3):288-299
    [110]Feinstein S B, Cheirif J, Ten-Cate F J,et al. Safety and Efficacy of a New Transpulmonary Ultrasound Contrast Agent:Initial Multicenter Clinical Results. J. of the American College of Cardiology.1990,16 (2):316-324
    [111]Smith M D, Elion J L, Mcclure RR,et al. Left Heart Opacification with Peripheral Venous Injection of a New Saccharide Echo Contrast Agent in Dogs. J. of the American College of Cardiology.1989,13 (7):1622-1628
    [112]Forsberg F, Basude R, Liu JB,et al. Effect of Filling Gases On the Backscatter From Contrast Microbubbles:Theory and in Vivo Measurements. Ultrasound in Medicine and Biology.1999,25 (8) 1203-1211
    [113]Takeuchi S, Sato T, Kawashima N. Nonlinear Response of Microbubbles Coated with Surfactant Membrane Developed as Ultrasound Contrast Agent-Experimental Study and Numerical Calculations. Colloids and Surfaces B:Biointerfaces.2002,24 (3-4):207-216
    [114]El-Sherif DM, Wheatley MA. Development of a Novel Method for Synthesisof a Polymeric Ultrasound Contrast Agent. J.of Biomedical Materials Research Part A.2003,66A (2):347-355
    [115]Straub JA, Chickering DE, Church CC,et al. Porous Plga Microparticles:Ai-700, an Intravenously Administered Ultrasound Contrast Agent for Use in Echocardiography. J.of Controlled Release.2005,108 (1):21-32
    [116]赵玉英,智光.新型多聚体超声造影剂的研究进展.中国超声医学杂志.2003,19(4):318-320
    [117]Feinstein SB, Ten-Cate FJ, Zwehl W,et al. Two-Dimensional Contrast Echocardiography. I. Invitro Development and Quantitative Analysis of Echo Contrast Agents. J.of the American College of Cardiology. 1984,3(1):14-20
    [118]Basude R, Duckworth JW, Wheatley MA. Influence of Environmental Conditions On a New Surfactant-Based Contrast Agent:St68. Ultrasound in Medicine and Biology.2000,26 (4):621-628
    [119]邢占文.新型微泡超声造影剂的制备及性能与应用的研究.哈尔滨工业大学博士论文.2010
    [120]盘捷.载药聚乳酸微泡超声造影剂的实验研究.厦门大学硕士论文.2008
    [121]Hasik MJ, Kim DH, Howle LE,et al. Evaluation of Synthetic Phospholipid Ultrasound Contrast Agents. Ultrasonics.2002,40 (9):973-982
    [122]Jong-Duk K, Sung-Ho C, Jong-Yun K. Dynamic Surface Tension of Stable Air-Filled Microbubbles Prepared by Freeze-Drying a Solution of Lipid/Surfactant Mixture. Colloids and Surfaces A-Physicochemical and Engineering Aspects.2006,284-285:453-457
    [123]Eisenbrey JR, Burstein OM, Wheatley MA. Effect of Molecular Weight and End Capping On Poly (Lactic-Co-Glycolic Acid) Ultrasound Contrast Agents. Polymer Engineering and Science.2008,48 (9):1785-1792
    [124]Eisenbrey JR, Burstein OM, Kambhampati R.,et al. Development and Optimization of a Doxorubicin Loaded Poly (Lactic Acid) Contrast Agent for Ultrasound Directed Drug Delivery. J. of Controlled Release.2010,143 (1):38-44
    [125]Qin SP, Caskey CF, Ferrara KW. Ultrasound Contrast Microbubbles in Imaging and Therapy:Physical Principles and Engineering. Physics in Medicine and Biology.2009,54 (6):R27-R57
    [126]Otani K., Yamahara K. Development of Antibody-Carrying Microbubbles Basedon Clinically Available Ultrasound Contrast Agent for Targeted Molecularimaging. Circulation.2009,120 (8):S328
    [127]赵金花,惠春,陈亚珠.超声微泡造影剂的发展及最新临床应用研究.中国医学物理学杂志.2010,27(2):1802-1805
    [128]Sonoda S., Tachibana K., Uchino E.,et al. Gene Transfer to Corneal Epithelium and Keratocytes Mediated by Ultrasound with Microbubbles. Investigative Ophthalmology and Visual Science.2006,47 (2):558-564
    [129]Kooiman K., Emmer M, Foppen-Harteveld M.,et al. Increasing the Endothelial Layer Permeability through Ultrasound-Activated Microbubbles. IEEE Transactions on Biomedical Engineering.2010,57 (1):29-32
    [130]Danialou G, Comtois AS, Dudley RW,et al. Ultrasound Increases Plasmid-Mediated Gene Transfer to Dystrophic Muscles without Collateral Damage. Molecular Therapy.2002,6 (5):687-693
    [131]张祎伟,陈铁军,刘树红.超声空化空泡用作基因或药物载体研究中的几个关键问题.生物医学工程杂志.2009,26(5):1129-1132
    [132]Unger EC, Matsunaga TO, Mccreery T,et al. Therapeutic Applications of Microbubbles. European J. of Radiology.2002,42 (2):160-168
    [133]Unger EC, Porter T, Culp W,et al. Therapeutic Applications of Lipid-Coated Microbubbles. Advanced Drug Delivery Reviews.2004,56 (9):1291-1314
    [134]Munshi N, Rapoport N, Pitt WG Ultrasonic Activated Drug Delivery From Pluronic P-105 Micelles. Cancer Letters.1997,117:1-7
    [135]Husseini GA, El-Fayoumiri RI, O'Neill KL,et al. Dna Damage Induced by Icellar-Delivered Doxorubicin and Ultrasonic:Comet Assay Study. Cancer Letters.2000,154:211-216
    [136]Tachibana K., Uchida T., Tamura K.,et al. Enhanced Cytotoxic Effect of Ara-C by Low Intensity Ultrasonic to H1-60 Cells. Cancer Letters.2000,149:189-194
    [137]Loveroek P, Haar GR, Ormerod MG. The Effects of Ultrasound On the Cytotocity of Adriamycin. Br J Radiol.1990,63:542-546
    [138]Unger EC, Mccreery TP, Sweitzer RH,et al. Acoustically Active Lipospheres Containing Paclitaxel:a New Therapeutic Ultrasound Contrast Agent. Investigative Radiology.1998,33 (12):866-892
    [139]张清民,王东凯,顾学裘.喜树碱类似物抗癌活性的研究进展.沈阳药学院学报.1990,7(4):297
    [140]Garcia-Carbonero R, Supko JG. Current Perspectives On the Clinical Experience, Pharmacology, and Continued Development of the Camptothecins. Clinical cancer research.2002,8(3):641-661
    [141]Cao Z, Harris N, Kozielski A,et al. Alkyl Esters of Camptothecin and 9-Nitrocamptothecin:Synthesis, in Vitro Phannacokinetics, Toxicity, and Antitumor Activity. J Med Chem.1998,41 (1):31-37
    [142]Unger EC, Atsunaga TO, Mccreery T,et al. Therapeutic Applications of Microbubbles. European J. of Radiology.2002,42 (2):160-168
    [143]Unger EC, Porter T, Culp W,et al. Therapeutic Applications of Lipid-Coated Microbubbles. Advanced Drug Delivery Reviews.2004,56 (9):1291-1314
    [144]张武,崔立刚.超声造影剂基本原理.中华医学超声杂志.2006,13(6):372-375
    [145]Chorny M, Fishbein I, Danenberg HD,et al. Study of the Drug Release Mechanism From Tyrphostin Ag-1295-Loaded Nanospheres by in Situ and External Sink Methods. Journal of Controlled Release.2002, 83 (3):401-414
    [146]Cao Z, Pantazis P, Mendoza J,et al. Structure-Activity Relationship of Alkyl Camptothecin Esters. Ann N Y Acad Sci.2000,922:122-135

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700