用户名: 密码: 验证码:
激活NF-κB信号通路的高致病性PRRSV非结构蛋白的筛选及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪繁殖与呼吸综合征(PRRS),是由猪繁殖与呼吸综合征病毒(PRRSV)引起的一种以妊娠母猪繁殖障碍、仔猪的呼吸道症状和高死亡率为特征的一种新发性病毒传染病。PRRSV基因组为不分节段的单股正链RNA,可编码14种非结构蛋白和7种结构蛋白,其中Nsp2是分子量最大且最易发生变异的一个病毒编码蛋白。
     2006年,由PRRSV变异株引起的高致病性PRRS在我国大规模暴发,造成上百万头猪死亡,给我国养猪业带来了巨大的经济损失。与传统的PRRSV毒株相比,高致病性PRRSV毒株能够引起更强烈的炎症反应和更高的死亡率,并成为我国流行和蔓延的主要毒株。然而,目前对这种毒株感染后引起宿主细胞的信号转导机制知之甚少。针对这种新的PRRSV,本文开展了对其诱导机体产生炎症反应的信号转导机制研究,为阐明PRRSV的致病机理提供理论依据。具体研究内容包括:
     1.高致病性PRRSV感染激活NF-κB信号通路的研究
     NF-κB是一类具有多重转录调节作用的核蛋白因子,在炎症反应、免疫反应和细胞的增殖中都有着重要的作用。利用NF-κB荧光素酶报告系统检测高致病性PRRSV对NF-κB的激活情况,发现其能显著激活NF-κB并依赖于病毒的复制,且呈剂量依赖性。进一步以PRRSV感染MARC-145细胞,检测细胞内TLR信号通路的关键接头蛋白及重要信号分子的表达情况,对PRRSV激活NF-κB的分子机制进行了初步探究。结果表明,PRRSV能上调病原模式识别受体TLR2和TLR4以及信号分子TRAF6和TAK1的表达,推测PRRSV通过同时上调模式受体TLR2和TLR4进而上调信号分子TRAF6和TAK1的表达从而激活NF-κB信号通路;同时还发现PRRSV感染的MARC-145细胞内TLR3和其他的信号蛋白并无显著上调,甚至部分细胞因子在某些时间点还出现表达下调的趋势。这提示着PRRSV在感染细胞内调控信号传导途径的复杂性,其可能是通过多种调控策略调控NF-κB的上游信号通路,而最终导致NF-κB活化的。这些结果为解释临床上PRRSV引起复杂的机体免疫反应和强烈的炎症反应补充了有用的数据。
     2.激活NF-κB信号通路的高致病性PRRSV非结构蛋白的筛选
     已有研究表明,PRRSV编码的所有结构蛋白中,N蛋白能显著激活NF-κB。为了阐明PRRSV编码的非结构蛋白在其诱导NF-κB活化中的作用,利用NF-κB荧光素酶报告系统,对高致病性PRRSV所有非结构蛋白激活NF-κB的能力进行研究,发现只有Nsp2能显著激活NF-κB,而其他的非结构蛋白对NF-κB无明显激活。
     3.高致病性PRRSV Nsp2激活NF-κB信号通路的分子机制研究
     为了解析Nsp2激活NF-κB的分子机制,首先以Nsp2的真核表达质粒转染细胞,检测IκBα和NF-κB下游炎症细胞因子的表达及NF-κB p65的磷酸化和转定位情况,发现Nsp2能诱导IκBα的降解及p65的磷酸化和转核,并激活NF-κB下游炎症细胞因子。进一步利用Nsp2截短突变体的真核表达质粒,证实Nsp2激活NF-κB的作用域位于高变区的180-480位氨基酸之间。通过对Nsp2跨膜结构域的预测和跨膜区缺失突变体的荧光素酶实验,发现其C端的跨膜结构在其细胞定位以及激活NF-κB中均发挥重要作用,推测其线粒体定位可能为其激活NF-κB所必需。进一步利用RNA干扰实验和Nsp2超表达对Nsp2诱导NF-κB的上游信号通路进行了探究,结果表明,接头蛋白TLR4和信号分子TRIF、MAVS的沉默可以抑制Nsp2对NF-κB的激活;而Nsp2的超表达可以上调TLR4、TRIF以及TRAF2的表达。这些结果表明,PRRSV Nsp2可能是同时通过TLR4和RIG-1依赖的信号途径激活NF-κB。由于RIG-1信号通路中的重要接头蛋白MAVS是一个线粒体定位蛋白,而Nsp2的线粒体定位模式改变后其激活NF-κB的能力显著降低,这说明Nsp2与MAVS的共定位对Nsp2激活NF-κB具有重要的作用。
     4.Nsp2与宿主蛋白RAI相互作用激活NF-κB的研究
     由于病毒感染动物机体后与宿主的相互作用是其致病的分子基础,本研究又从蛋白相互作用的角度对Nsp2激活NF-κB的可能机制进行探究。首先运用酵母双杂交技术从猪脑cDNA文库中筛选了与PRRSV Nsp2相互作用的宿主蛋白,并选取能与p65结合从而特异性抑制NF-κB转录活性的宿主蛋白RAI作为深入研究的对象。进一步,通过哺乳动物双杂交系统、免疫共沉淀技术、荧光共定位等实验证实了Nsp2与RAI在哺乳动物细胞内的相互作用。并利用截短突变体和酵母回返实验,确定了二者相互作用的功能域分别位于Nsp2中间的高变区和RAI的C端,由于RAI与p65的互作区域同样位于C端,推测当PRRSV感染细胞后,其编码的Nsp2可能通过与RAI相互作用从而拮抗RAI对NF-κB的抑制作用,为了验证这一推测,利用NF-κB启动子的荧光素酶报告系统检测了Nsp2与RAI相互作用对NF-κB表达的影响,结果超表达RAI显著抑制NF-κB的启动子活性,而同时超表达Nsp2与RAI时不影响NF-κB的启动子活性;进一步检测Nsp2对RAI表达水平的影响,发现Nsp2对RAI的表达水平无明显影响,这表明Nsp2拮抗RAI的NF-κB抑制功能并不是通过降低其表达水平来完成的,这也进一步证实Nsp2可能是通过拮抗RAI与p65的相互作用从而激活NF-κB的。
     5. PRRSV经典株与变异株引起不同程度炎症反应的分子机理研究
     通过比较PRRSV经典毒株CH-1a与变异毒株WUH3的Nsp2激活NF-κB的能力,发现WUH3株的Nsp2激活NF-κB的能力显著高于CH-1a株的Nsp2。由于变异毒株与经典毒株Nsp2的主要差异是中间高变区内存在30个氨基酸的不连续缺失,为了探究30个氨基酸的缺失是否是造成二者激活NF-κB能力差异显著的原因,构建了一系列Nsp2的插入和缺失突变体,并通过荧光素酶报告系统检测其激活NF-κB的能力。结果显示,1个或29个氨基酸的缺失并不是造成二者激活NF-κB能力差异的直接原因。进一步,通过荧光素酶报告系统对两种毒株的Nsp2及其突变体激活IL-6、IL-8、RANTES等炎症细胞因子的能力进行了比较,发现两种毒株的Nsp2激活IL-6、IL-8、RANTES的能力均存在显著差异,变异株的Nsp2的激活能力显著高于经典株的Nsp2,而1个或29个氨基酸的缺失并不是造成此种差异的直接原因。由于核转录因子NF-κB与炎性细胞因子IL-6、IL-8、RANTES都是参与机体炎症反应的重要细胞因子,因此以上结果为解释临床上不同毒株引起不同程度的炎症反应奠定了一定的理论基础。
Porcine reproductive respiratory syndrome (PRRS), caused by porcine reproductive and respiratory syndrome virus (PRRSV), is a novel infectious disease of swine. It is characterized by severe reproductive failure in sows, respiratory distress high mortality in piglets and growing pigs. The genome of PRRSV is single-stranded positive sense RNA that encodes14kinds of nonstructural proteins and7kinds of structural proteins. Among all these proteins, Nsp2is the largest and the most variable protein encoded by PRRSV.
     The atypical PRRS, which was caused by highly pathogenic PRRSV (HP-PRRSV), occurred in China in2006and caused tremendous economic losses due to the death of millions of pigs. Since then, the HP-PRRSV strain, which caused a more severe pneumonia and higher mortality than the classical PRRSV, has become the dominant strain in China. However, the signal transduction mechanisms involved in HP-PRRSV infection remain poorly understood. In view of the new PRRS, we analysed the mechanisms of the inflammatory responses caused by the virus in the point of signal pathway, which provide a theoretical basis for understanding molecular mechanism of PRRSV pathogenicity. The main research works were as following:
     1. Studies on the activation of NF-κB signal pathway induced by HP-PRRSV
     NF-κB is an inducible transcription factor that plays a key role in inflammation and immune responses, as well as in the regulation of cell proliferation and survival. In our study, we investigated the activation of NF-κB induced by HP-PRRSV using a luciferase reporter assay. The result showed that PRRSV activates NF-κB dependent on its replication and in a dose-dependent manner. In addition, we detect the expression pattern of various receptors and signaling molecules in MARC-145cells at diferernt time point upon PRRSV infection to evaluate the mechanisms. It was showed that the upregulated expression of receptors TLR2, TLR4and the adaptors TRAF6, TAK1was observed during PRRSV infection, which indicated that PRRSV activates NF-κB signal pathway through upregulating the expression of the TLR2and TLR4and subsequently TRAF6and TAK1signal molecules. But we also found that, the expression of other adaptors were not increased. Instead, some of them even dicreased at some certain time points, suggesting the complexity of PRRSV-induced the NF-κB activation. In this way, it was concluded that PRRSV modulates NF-κB signal pathway using a variety of different strategies, which ultimately results in the activation of NF-κB.
     2. Screen the specific HP-PRRSV Nsp(s) involved in NF-κB activation
     The nucleocapsid (N) protein was identified as an NF-κB activator among the structural proteins encoded by PRRSV; however, it remains unclear whether the nonstructural proteins (Nsps) of PRRSV contribute to NF-κB activation. To further evaluate the mechanisms of NF-κB activation, we identified the specific PRRSV Nsp(s) involved in NF-κB activation. By screening the individual Nsps of PRRSV strain WUH3using a luciferase reporter assay, Nsp2exhibited great potential to activate NF-κB in MARC-145and HeLa cells, while this activation was not observed in cells overexpressing other viral nonstructural proteins.
     3. Studies on the activation of NF-κB signal pathway induced by PRRSV Nsp2
     In this study, overexpression of Nsp2induced IκBα degradation and nuclear translocation of NF-κB. Furthermore, Nsp2also induced NF-KB-dependent inflammatory factors, including interleukin (IL)-6, IL-8, COX-2, and RANTES. Using a series of truncated mutants of Nsp2, the functional domain responsible for NF-κB activation was located in the180-480amino acid in the HV region of Nsp2. What's more, the predicted transmembrane region in the C terminal of Nsp2play an important part in the subcellular localization of Nsp2as well as the NF-κB activation induced by Nsp2, implied that the mitochondria location of Nsp2might be necessary for the NF-κB activation. The detailed mechanism requires further investigation. Additionally, we investigated the upstream of NF-κB signal pathway activated by Nsp2. It was identified that the TLR4adaptors and TRIF and MAVS molecules was indispensable in the NF-κB activation induced by Nsp2through conducting an SiRNA technique. Moreover, the expression pattern of several adaptors were detected in HeLa cells which an increasing amount of Nsp2was transfected. It was showed that the expression of TLR4receptors and adaptors TRIF, TRAF2were upregulated upon Nsp2overexpression. All these results suggested that both the TLR4signal pathway and the RIG-I signal pathway participated in the Nsp2-induced NF-κB activation. The mitochondria localization protein MAVS was proved to play important parts in the Nsp2-induced NF-κB activation in our study, which correlated well with the previous deduction that the mitochondria location of Nsp2was necessary for its ability of NF-κB activation. Taken as a whole, these results revealed that PRRSV Nsp2and PRRSV itself activate NF-κB signal pathway in their own differents ways, which also implied the complexity of host immune response during PRRSV infection.
     4. The interaction of Nsp2with RAI contributes to NF-κB activation
     The protein-protein interaction of between virus and host is the molecular basis of virus pathogenicity during its infection. In present study, we explored the possible mechanism of Nsp2induced NF-κB activation by searching the functional protein-protein interaction. Host proteins that interact with PRRSV Nsp2protein were screened from pig brain cDNA library through yeast two-hybrid technology. RAI was selected for further investigation due to its biological role in inhibiting the transcription activity of p65subunit of NF-κB. Then the mammalian two-hybrid assay, the co-immunoprecipitation and the fluorescent co-localization test were performed to verify the interaction of Nsp2and RAI. Using the truncations of Nsp2and RAI, we also identified that the region of interaction located in the middle HV region of Nsp2and the C-terminal of RAI. Further biological function of the interaction was explored using a luciferase reporter assay. The result showed that Nsp2could antagonize the function of RAI in the NF-κB inhibiton probablely by antagonizing its interaction with p65. What's more, Nsp2didn't inhibit the expression of RAI in a western blot assay, which also implied that Nsp2might bind to RAI in competition with p65subunit to antagonize its inhbition on NF-κB transcription.
     5. Study on the molecular mechanism of different degree of inflammatory response between the classical PRRSV and highly pathogenic PRRSV
     Compared with the Nsp2of the classical PRRSV strain, the Nsp2of highly pathogenic PRRSV (HP-PRRSV) strains that possess a30amino acid (aa) discontinuous deletion in Nsp2coding region displayed greater NF-κB activation. However, the30-aa deletion was demonstrated to not be associated with NF-κB activation in a luciferase reporter assay using a series of insertion and deletion mutants. Furthermore, a promoter luciferase reporter assay was conducted to determine the ability of different Nsp2and their mutants in the activation NF-KB-regulated target gene expression, including IL-6, IL-8, and RANTES. The results showed that Nsp2and mutants from HP-PRRSV can induce higher expression level of this inflammation factors compared to that of from classic PRRSV isolate. At tha same time, the30aa deletion in Nsp2of HP-PRRSV was not related to its different levels of viral pathogenesis. Taken together, these data indicate that PRRSV Nsp2is a multifunctional protein participating in the modulation of host inflammatory response, which suggests an important role of Nsp2in pathogenesis and disease outcomes.
引文
1.蔡雪晖,柴文君,翁长江.猪繁殖与呼吸综合征及其在我国的现状与对策.中国预防兽医学报,2000,22:202-205
    2.段强德,陈铁桥.酵母双杂交体系的原理及研究进展.畜牧兽医杂志,2009,28(1):56-58
    3.郭宝清,陈章水,刘文兴.从疑似PRRS流产胎儿分离PRRSV的研究.中国畜禽转染病,1996,2:1-4
    4.李成,李六金,谷守林.猪繁殖与呼吸系统综合征病毒形态学特征.畜牧兽医学报,2001,32:563-567
    5.李先昆,聂智毅,曾日中.酵母杂交技术研究与应用进展.安徽农业科学,2009,37(7):2867-2869,2926
    6.刘光清,仇华吉,蔡雪晖,童光志.猪繁殖与呼吸综合征病毒的持续感染.中国预防兽医学报,2002,24:316-318
    7.刘光清,云涛,王根荣,倪征.猪生殖与呼吸综合征病毒的基因组及致病的分子机理.病毒学报,2007,23:79-83
    8.罗锐.PRRSV感染抑制Ⅰ型和Ⅲ型干扰素及激活NF-κB的分子机制研究.[博士论文].华中农业大学,2009
    9.仇华吉,童光志.抗体依赖增强作用的免疫生物学特点及其意义.中国兽医科技,1999,29:19-20
    10.仇华吉,童光志.PRRS免疫防制面临的困惑与未来.中国兽医学报,2000,20:100-103
    11.王改芳.酵母双杂交系统在生命科学中的应用.现代农业科技,2009,4:259,264
    12.王玉娥,杨汉春.酵母双杂交在病毒学研究中的应用.中国兽医学报,2004,24(3):307-309
    13.谢英,单天锡.猪繁殖与呼吸综合征研究进展.中国兽医杂志,2001,37:29-32
    14.杨大莉,景乃禾.荧光能量转移技术在生物学研究中的应用.生命科学,2003,15(2):88-91
    15.杨彦,戴宗.表面等离子体共振技术在蛋白质-蛋白质相互作用研究中的应用.分析测试学报,2009,28(11):1344-1350
    16.殷震,刘景华.动物病毒学.第二版.北京:科学出版社,1997
    17.张宁,TLR信号通路有关基因与系统性红斑狼疮的相关性研究.[博士学位论文].合肥:安徽医科大学,2011
    18.郑俊梅,张映.噬菌体展示库技术的研究及应用进展.国外畜牧学(猪与禽),2009,3:28-30
    19. Akira S. Mammalian Toll-like receptors. Curr Opin Immunol,2003,15(1):5-11
    20. Akira S, Uematsu S and Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006,124(4):783-801
    21. Akira S, Yamamoto M and Takeda K. Role of adapters in Toll-like receptor signalling. Biochem Soc Trans,2003,31(Pt 3):637-642
    22. Albina E. Epidemiology of porcine reproductive and respiratory syndrome (PRRS): an overview. Vet Microbiol,1997,55(1-4):309-316
    23. Albina E, Madec F, Cariolet R and Torrison J. Immune response and persistence of the porcine reproductive and respiratory syndrome virus in infected pigs and farm units. Vet Rec,1994,134(22):567-573
    24. Allende R, Kutish G F, Laegreid W, Lu Z, Lewis T L, Rock D L, Friesen J, Galeota J A, Doster A R and Osorio F A. Mutations in the genome of porcine reproductive and respiratory syndrome virus responsible for the attenuation phenotype. Arch Virol, 2000,145(6):1149-1161
    25. Allende R, Lewis T L, Lu Z, Rock D L, Kutish G F, Ali A, Doster A R and Osorio F A. North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. J Gen Virol,1999,80 (Pt 2):307-315
    26. Bautista E M, Goyal S M and Collins J E. Serologic survey for Lelystad and VR-2332 strains of porcine respiratory and reproductive syndrome (PRRS) virus in US swine herds. J Vet Diagn Invest,1993,5(4):612-614
    27. Bautista E M, Goyal S M, Yoon I J, Joo H S and Collins J E. Comparison of porcine alveolar macrophages and CL 2621 for the detection of porcine reproductive and respiratory syndrome (PRRS) virus and anti-PRRS antibody. J Vet Diagn Invest, 1993,5(2):163-165
    28. Beg A A and Baldwin A S, Jr. The I kappa B proteins:multifunctional regulators of Rel/NF-kappa B transcription factors. Genes Dev,1993,7(11):2064-2070
    29. Bonizzi G and Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol,2004,25(6):280-288
    30. Caamano J and Hunter C A. NF-kappaB family of transcription factors:central regulators of innate and adaptive immune functions. Clin Microbiol Rev,2002, 15(3):414-429
    31. Cavanagh D. Nidovirales:a new order comprising Coronaviridae and Arteriviridae. Arch Virol,1997,142(3):629-633
    32. Chen F E, Huang D B, Chen Y Q and Ghosh G. Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature,1998, 391(6665):410-413
    33. Chen G, Cao P and Goeddel D V. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell,2002,9(2):401-410
    34. Chen G and Goeddel D V. TNF-R1 signaling:a beautiful pathway. Science,2002, 296(5573):1634-1635
    35. Chen Z, Lawson S, Sun Z, Zhou X, Guan X, Christopher-Hennings J, Nelson E A and Fang Y. Identification of two auto-cleavage products of nonstructural protein 1 (nspl) in porcine reproductive and respiratory syndrome virus infected cells:nspl function as interferon antagonist. Virology,2010,398(1):87-97
    36. Childs K, Stock N, Ross C, Andrejeva J, Hilton L, Skinner M, Randall R and Goodbourn S. mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology,2007,359(1):190-200
    37. Chiu M I, Katz H and Berlin V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci U S A,1994, 91(26):12574-12578
    38. Christman J W, Sadikot R T and Blackwell T S. The role of nuclear factor-kappa B in pulmonary diseases. Chest,2000,117(5):1482-1487
    39. Christopher-Hennings J, Nelson E A, Nelson J K, Rossow K D, Shivers J L, Yaeger M J, Chase C C, Garduno R A, Collins J E and Benfield D A. Identification of porcine reproductive and respiratory syndrome virus in semen and tissues from vasectomized and nonvasectomized boars. Vet Pathol,1998,35(4):260-267
    40. Chung W B, Lin M W, Chang W F, Hsu M and Yang P C. Persistence of porcine reproductive and respiratory syndrome virus in intensive farrow-to-finish pig herds. Can J Vet Res,1997,61(4):292-298
    41. Cooper A, Tal G, Lider O and Shaul Y. Cytokine induction by the hepatitis B virus capsid in macrophages is facilitated by membrane heparan sulfate and involves TLR2. J Immunol,2005,175(5):3165-3176
    42. Delputte P L, Vanderheijden N, Nauwynck H J and Pensaert M B. Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages. J Virol,2002, 76(9):4312-4320
    43. den Boon J A, Faaberg K S, Meulenberg J J, Wassenaar A L, Plagemann P G, Gorbalenya A E and Snijder E J. Processing and evolution of the N-terminal region of the arterivirus replicase ORF1a protein:identification of two papainlike cysteine proteases. J Virol,1995,69(7):4500-4505
    44. Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M and Liu Z. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1:TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity,2000,12(4):419-429
    45. Devin A, Lin Y, Yamaoka S, Li Z, Karin M and Liu Z. The alpha and beta subunits of IkappaB kinase (IKK) mediate TRAF2-dependent IKK recruitment to tumor necrosis factor (TNF) receptor 1 in response to TNF. Mol Cell Biol,2001, 21(12):3986-3994
    46. DiDonato J, Mercurio F, Rosette C, Wu-Li J, Suyang H, Ghosh S and Karin M. Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Mol Cell Biol,1996,16(4):1295-1304
    47. Faaberg K S, Kehrli M E, Lager K M, Guo B Q and Han J. In vivo growth of porcine reproductive and respiratory syndrome virus engineered nsp2 deletion mutants. Virus Research,2010,154(1-2):77-85
    48. Fang Y, Chen Z, Lawson S, Sun Z, Zhou X, Guan X, Christopher-Hennings J and Nelson E A. Identification of two auto-cleavage products of nonstructural protein 1 (nsp1) in porcine reproductive and respiratory syndrome virus infected cells:nsp1 function as interferon antagonist. Virology,2010,398(1):87-97
    49. Fang Y, Kim D Y, Ropp S, Steen P, Christopher-Hennings J, Nelson E A and Rowland R R. Heterogeneity in Nsp2 of European-like porcine reproductive and respiratory syndrome viruses isolated in the United States. Virus Res,2004, 100(2):229-235
    50. Fang Y, Rowland R R, Roof M, Lunney J K, Christopher-Hennings J and Nelson E A. A full-length cDNA infectious clone of North American type 1 porcine reproductive and respiratory syndrome virus:expression of green fluorescent protein in the Nsp2 region. J Virol,2006,80(23):11447-11455
    51. Fang Y and Snijder E J. The PRRSV replicase:exploring the multifunctionality of an intriguing set of nonstructural proteins. Virus Res,2010,154(1-2):61-76
    52. Forsberg R, Storgaard T, Nielsen H S, Oleksiewicz M B, Cordioli P, Sala G, Hein J and Botner A. The genetic diversity of European type PRRSV is similar to that of the North American type but is geographically skewed within Europe. Virology,2002, 299(1):38-47
    53. Ghosh S, May M J and Kopp E B. NF-kappa B and Rel proteins:evolutionarily conserved mediators of immune responses. Annu Rev Immunol,1998,16:225-260
    54. Gitlin L, Barchet W, Gilfillan S, Cella M, Beutler B, Flavell R A, Diamond M S and Colonna M. Essential role of mda-5 in type Ⅰ IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci U S A,2006,103(22):8459-8464
    55. Goodkin M L, Ting A T and Blaho J A. NF-kappaB is required for apoptosis prevention during herpes simplex virus type 1 infection. J Virol,2003, 77(13):7261-7280
    56. Han J, Liu G, Wang Y and Faaberg K S. Identification of nonessential regions of the nsp2 replicase protein of porcine reproductive and respiratory syndrome virus strain VR-2332 for replication in cell culture. J Virol,2007,81(18):9878-9890
    57. Han J, Rutherford M S and Faaberg K S. Proteolytic products of the porcine reproductive and respiratory syndrome virus nsp2 replicase protein. J Virol,2010, 84(19):10102-10112
    58. Han J, Wang Y and Faaberg K S. Complete genome analysis of RFLP 184 isolates of porcine reproductive and respiratory syndrome virus. Virus Res,2006, 122(1-2):175-182
    59. Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S, Guiet C, Briere F, Vlach J, Lebecque S, Trinchieri G and Bates E E. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol,2005,174(5):2942-2950
    60. Hasan U A, Trinchieri G and Vlach J. Toll-like receptor signaling stimulates cell cycle entry and progression in fibroblasts. J Biol Chem,2005,280(21):20620-20627
    61. Hawn T R, Wu H, Grossman J M, Hahn B H, Tsao B P and Aderem A. A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus. Proc Natl Acad Sci U S A,2005,102(30):10593-10597
    62. Hayden M S and Ghosh S. Signaling to NF-kappaB. Genes Dev,2004, 18(18):2195-2224
    63. Hayden M S and Ghosh S. Shared principles in NF-kappaB signaling. Cell,2008, 132(3):344-362
    64. Hiscott J. Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev,2007,18(5-6):483-490
    65. Hsu H, Xiong J and Goeddel D V. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell,1995,81(4):495-504
    66. Ichim T E, Popov I A, Riordan N H, Izadi H, Zhong Z, Yijian L, Sher S and Oleinik E K. A novel method of modifying immune responses by vaccination with lipiodol-siRNA mixtures. J Transl Med,2006,4:2
    67. Isogawa M, Robek M D, Furuichi Y and Chisari F V. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J Virol,2005,79(11):7269-7272
    68. Jusa E R, Inaba Y, Kohno M, Mashimo H and Hirose O. Hemagglutination with porcine reproductive and respiratory syndrome virus. J Vet Med Sci,1996, 58(6):521-527
    69. Kaisho T and Akira S. Regulation of dendritic cell function through Toll-like receptors. Curr Mol Med,2003,3(4):373-385
    70. Kaisho T and Akira S. Toll-like receptor function and signaling. J Allergy Clin Immunol,2006,117(5):979-987; quiz 988
    71. Kang D C, Gopalkrishnan R V, Wu Q, Jankowsky E, Pyle A M and Fisher P B. mda-5:An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci U S A,2002,99(2):637-642
    72. Karin M and Ben-Neriah Y. Phosphorylation meets ubiquitination:the control of NF-[kappa]B activity. Annu Rev Immunol,2000,18:621-663
    73. Karin M, Cao Y, Greten F R and Li Z W. NF-kappaB in cancer:from innocent bystander to major culprit. Nat Rev Cancer,2002,2(4):301-310
    74. Karin M and Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol, 2002,3(3):221-227
    75. Kawai T and Akira S. TLR signaling. Cell Death Differ,2006,13(5):816-825
    76. Kim D Y, Calvert J G, Chang K O, Horlen K, Kerrigan M and Rowland R R. Expression and stability of foreign tags inserted into nsp2 of porcine reproductive and respiratory syndrome virus (PRRSV). Virus Res,2007,128(1-2):106-114
    77. Kim D Y, Kaiser T J, Horlen K, Keith M L, Taylor L P, Jolie R, Calvert J G and Rowland R R. Insertion and deletion in a non-essential region of the nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome (PRRS) virus: effects on virulence and immunogenicity. Virus Genes,2009,38(1):118-128
    78. Kucharczak J, Simmons M J, Fan Y and Gelinas C. To be, or not to be:NF-kappaB is the answer--role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene,2003, 22(56):8961-8982
    79. Lee S M and Kleiboeker S B. Porcine arterivirus activates the NF-kappaB pathway through IkappaB degradation. Virology,2005,342(1):47-59
    80. Lee S W, Han S I, Kim H H and Lee Z H. TAK1-dependent activation of AP-1 and c-Jun N-terminal kinase by receptor activator of NF-kappaB. J Biochem Mol Biol, 2002,35(4):371-376
    81. Li B, Fang L, Xu Z, Liu S, Gao J, Jiang Y, Chen H and Xiao S. Recombination in vaccine and circulating strains of porcine reproductive and respiratory syndrome viruses. Emerg Infect Dis,2009,15(12):2032-2035
    82. Li H, Zheng Z, Zhou P, Zhang B, Shi Z, Hu Q and Wang H. The cysteine protease domain of porcine reproductive and respiratory syndrome virus non-structural protein 2 antagonizes interferon regulatory factor 3 activation. J Gen Virol,2010,91(Pt 12):2947-2958
    83. Li Q and Verma I M. NF-kappaB regulation in the immune system. Nat Rev Immunol,2002,2(10):725-734
    84. Liu Y, Shi W, Zhou E, Wang S, Hu S, Cai X, Rong F, Wu J, Xu M and Li L. Dynamic changes in inflammatory cytokines in pigs infected with highly pathogenic porcine reproductive and respiratory syndrome virus. Clin Vaccine Immunol,2010, 17(9):1439-1445
    85. Luo R, Fang L, Jiang Y, Jin H, Wang Y, Wang D, Chen H and Xiao S. Activation of NF-kappaB by nucleocapsid protein of the porcine reproductive and respiratory syndrome virus. Virus Genes,2011,42(1):76-81
    86. Luo R, Xiao S, Jiang Y, Jin H, Wang D, Liu M, Chen H and Fang L. Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses interferon-beta production by interfering with the RIG-I signaling pathway. Mol Immunol,2008, 45(10):2839-2846
    87. Magar R, Larochelle R, Dea S, Gagnon C A, Nelson E A, Christopher-Hennings J and Benfield D A. Antigenic comparison of Canadian and US isolates of porcine reproductive and respiratory syndrome virus using monoclonal antibodies to the nucleocapsid protein. Can J Vet Res,1995,59(3):232-234
    88. Malek S, Huxford T and Ghosh G. Ikappa Balpha functions through direct contacts with the nuclear localization signals and the DNA binding sequences of NF-kappaB. J Biol Chem,1998,273(39):25427-25435
    89. Mardassi H, Massie B and Dea S. Intracellular synthesis, processing, and transport of proteins encoded by ORFs 5 to 7 of porcine reproductive and respiratory syndrome virus. Virology,1996,221(1):98-112
    90. Mateu E, Martin M and Vidal D. Genetic diversity and phylogenetic analysis of glycoprotein 5 of European-type porcine reproductive and respiratory virus strains in Spain. J Gen Virol,2003,84(Pt 3):529-534
    91. Matsukura S, Kokubu F, Kurokawa M, Kawaguchi M, Ieki K, Kuga H, Odaka M, Suzuki S, Watanabe S, Homma T, Takeuchi H, Nohtomi K and Adachi M. Role of RIG-I, MDA-5, and PKR on the expression of inflammatory chemokines induced by synthetic dsRNA in airway epithelial cells. Int Arch Allergy Immunol,2007,143 Suppl 1:80-83
    92. May M J and Ghosh S. Signal transduction through NF-kappa B. Immunol Today, 1998,19(2):80-88
    93. Medzhitov R, Preston-Hurlburt P and Janeway C A, Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature,1997, 388(6640):394-397
    94. Meng X J, Paul P S, Halbur P G and Morozov I. Sequence comparison of open reading frames 2 to 5 of low and high virulence United States isolates of porcine reproductive and respiratory syndrome virus. J Gen Virol,1995,76 (Pt 12):3181-3188
    95. Mengeling W L, Lager K M and Vorwald A C. Clinical consequences of exposing pregnant gilts to strains of porcine reproductive and respiratory syndrome (PRRS) virus isolated from field cases of "atypical" PRRS. Am J Vet Res,1998, 59(12):1540-1544
    96. Meulenberg J J, Bende R J, Pol J M, Wensvoort G and Moormann R J. Nucleocapsid protein N of Lelystad virus:expression by recombinant baculovirus, immunological properties, and suitability for detection of serum antibodies. Clin Diagn Lab Immunol, 1995,2(6):652-656
    97. Meulenberg J J, Hulst M M, de Meijer E J, Moonen P L, den Besten A, de Kluyver E P, Wensvoort G and Moormann R J. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology,1993,192(1):62-72
    98. Meulenberg J J and Petersen-den Besten A. Identification and characterization of a sixth structural protein of Lelystad virus:the glycoprotein GP2 encoded by ORF2 is incorporated in virus particles. Virology,1996,225(1):44-51
    99. Meulenberg J J, van Nieuwstadt A P, van Essen-Zandbergen A and Langeveld J P. Posttranslational processing and identification of a neutralization domain of the GP4 protein encoded by ORF4 of Lelystad virus. J Virol,1997,71(8):6061-6067
    100.Miller L C, Lager K M and Kehrli M E, Jr. Role of Toll-like receptors in activation of porcine alveolar macrophages by porcine reproductive and respiratory syndrome virus. Clin Vaccine Immunol,2009,16(3):360-365
    101.Mink M, Fogelgren B, Olszewski K, Maroy P and Csiszar K. A novel human gene (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/beta-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans. Genomics,2001,74(2):234-244
    102.Molitor T W, Bautista E M and Choi C S. Immunity to PRRSV:double-edged sword. Vet Microbiol,1997,55(1-4):265-276
    103.Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C and Kieff E. The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell,1995,80(3):389-399
    104.Music N and Gagnon C A. The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis. Anim Health Res Rev,11(2):135-163
    105.Music N and Gagnon C A. The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis. Anim Health Res Rev,2010,11(2):135-163
    106.Nelsen C J, Murtaugh M P and Faaberg K S. Porcine reproductive and respiratory syndrome virus comparison:divergent evolution on two continents. J Virol,1999, 73(1):270-280
    107.Nielsen H S, Oleksiewicz M B, Forsberg R, Stadejek T, Botner A and Storgaard T. Reversion of a live porcine reproductive and respiratory syndrome virus vaccine investigated by parallel mutations. J Gen Virol,2001,82(Pt 6):1263-1272
    108.Nishiya T and DeFranco A L. Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors. J Biol Chem,2004,279(18):19008-19017
    109.O'Neill L A, Dunne A, Edjeback M, Gray P, Jefferies C and Wietek C. Mal and MyD88:adapter proteins involved in signal transduction by Toll-like receptors. J Endotoxin Res,2003,9(1):55-59
    110.O'Neill L A, Fitzgerald K A and Bowie A G. The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol,2003,24(6):286-290
    111.Opriessnig T, Halbur P G, Yoon K J, Pogranichniy R M, Harmon K M, Evans R, Key K F, Pallares F J, Thomas P and Meng X J. Comparison of molecular and biological characteristics of a modified live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine (ingelvac PRRS MLV), the parent strain of the vaccine (ATCC VR2332), ATCC VR2385, and two recent field isolates of PRRSV. J Virol,2002, 76(23):11837-11844
    112.Pahl H L. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene,1999,18(49):6853-6866
    113.Pasare C and Medzhitov R. Toll-like receptors:linking innate and adaptive immunity. Microbes Infect,2004,6(15):1382-1387
    114.Pasternak A O, Gultyaev A P, Spaan W J and Snijder E J. Genetic manipulation of arterivirus alternative mRNA leader-body junction sites reveals tight regulation of structural protein expression. J Virol,2000,74(24):11642-11653
    115.Pol J M, Wagenaar F and Reus J E. Comparative morphogenesis of three PRRS virus strains. Vet Microbiol,1997,55(1-4):203-208
    116.Renukaradhya G J, Alekseev K, Jung K, Fang Y and Saif L J. Porcine reproductive and respiratory syndrome virus-induced immunosuppression exacerbates the inflammatory response to porcine respiratory coronavirus in pigs. Viral Immunol, 2010,23(5):457-466
    117.Rossow K D. Porcine reproductive and respiratory syndrome. Vet Pathol,1998, 35(1):1-20
    118.Saalmuller A and Bryant J. Characteristics of porcine T lymphocytes and T-cell lines. Vet Immunol Immunopathol,1994,43(1-3):45-52
    119.Santoro M G, Rossi A and Amici C. NF-kappaB and virus infection:who controls whom. Embo Journal,2003,22(11):2552-2560
    120.Schilling D, Thomas K, Nixdorff K, Vogel S N and Fenton M J. Toll-like receptor 4 and Toll-IL-1 receptor domain-containing adapter protein (TIRAP)/myeloid differentiation protein 88 adapter-like (Mal) contribute to maximal IL-6 expression in macrophages. J Immunol,2002,169(10):5874-5880
    121.Schlaepfer E, Audige A, Joller H and Speck R F. TLR7/8 triggering exerts opposing effects in acute versus latent HIV infection. J Immunol,2006,176(5):2888-2895
    122.Sen R and Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell,1986,47(6):921-928
    123.Sen R and Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell,1986,46(5):705-716
    124.Seth R B, Sun L, Ea C K and Chen Z J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell, 2005,122(5):669-682
    125.Shu H B, Halpin D R and Goeddel D V. Casper is a FADD- and caspase-related inducer of apoptosis. Immunity,1997,6(6):751-763
    126.Silverman N and Maniatis T. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev,2001,15(18):2321-2342
    127.Snijder E J. The arterivirus replicase. The road from RNA to protein(s), and back again. Adv Exp Med Biol,1998,440:97-108
    128.Snijder E J and Meulenberg J J. The molecular biology of arteriviruses. J Gen Virol, 1998,79(Pt 5):961-979
    129.Snijder E J, Wassenaar A L and Spaan W J. Proteolytic processing of the replicase ORFla protein of equine arteritis virus. J Virol,1994,68(9):5755-5764
    130.Sun Z, Chen Z, Lawson S R and Fang Y. The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions. J Virol,2010, 84(15):7832-7846
    131.Sur J H, Doster A R, Christian J S, Galeota J A, Wills R W, Zimmerman J J and Osorio F A. Porcine reproductive and respiratory syndrome virus replicates in testicular germ cells, alters spermatogenesis, and induces germ cell death by apoptosis. J Virol,1997,71(12):9170-9179
    132.Takada N, Sanda T, Okamoto H, Yang J P, Asamitsu K, Sarol L, Kimura G, Uranishi H, Tetsuka T and Okamoto T. RelA-associated inhibitor blocks transcription of human immunodeficiency virus type 1 by inhibiting NF-kappaB and Spl actions. J Virol,2002,76(16):8019-8030
    133.Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, Hu Y, Chen X, Hu D, Tian X, Liu D, Zhang S, Deng X, Ding Y, Yang L, Zhang Y, Xiao H, Qiao M, Wang B, Hou L, et al. Emergence of fatal PRRSV variants:unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. Plos One,2007,2(6):e526
    134.Ting A T, Pimentel-Muinos F X and Seed B. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. Embo J, 1996,15(22):6189-6196
    135.Tong G Z, Zhou Y J, Hao X F, Tian Z J, An T Q and Qiu H J. Highly pathogenic porcine reproductive and respiratory syndrome, China. Emerg Infect Dis,2007, 13(9):1434-1436
    136.Traenckner E B and Baeuerle P A. Appearance of apparently ubiquitin-conjugated I kappa B-alpha during its phosphorylation-induced degradation in intact cells. J Cell Sci Suppl,1995,19:79-84
    137.Traenckner E B, Pahl H L, Henkel T, Schmidt K N, Wilk S and Baeuerle P A. Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. Embo J, 1995,14(12):2876-2883
    138.Van Breedam W, Delputte P L, Van Gorp H, Misinzo G, Vanderheijden N, Duan X and Nauwynck H J. Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage. J Gen Virol,91(Pt 7):1659-1667
    139.Vidal M, Braun P, Chen E, Boeke J D and Harlow E. Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc Natl Acad Sci U S A,1996,93(19):10321-10326
    140.Voice T C and Kolb B. Comparison of European and American techniques for the analysis of volatile organic compounds in environmental matrices. J Chromatogr Sci, 1994,32(8):306-311
    141.Wajant H, Pfizenmaier K and Scheurich P. Tumor necrosis factor signaling. Cell Death Differ,2003,10(1):45-65
    142.Wang Y, Luo R, Fang L, Wang D, Bi J, Chen H and Xiao S. Porcine reproductive and respiratory syndrome virus (PRRSV) infection activates chemokine RANTES in MARC-145 cells. Molecular Immunology,2011,48(4):586-591
    143.Waris G, Livolsi A, Imbert V, Peyron J F and Siddiqui A. Hepatitis C virus NS5A and subgenomic replicon activate NF-kappa B via tyrosine phosphorylation of I kappa B alpha and its degradation by calpain protease. Journal of Biological Chemistry,2003,278(42):40778-40787
    144.Wensvoort G. Lelystad virus and the porcine epidemic abortion and respiratory syndrome. Vet Res,1993,24(2):117-124
    145.Wensvoort G, de Kluyver E P, Pol J M, Wagenaar F, Moormann R J, Hulst M M, Bloemraad R, den Besten A, Zetstra T and Terpstra C. Lelystad virus, the cause of porcine epidemic abortion and respiratory syndrome:a review of mystery swine disease research at Lelystad. Vet Microbiol,1992,33(1-4):185-193
    146.Wensvoort G, Terpstra C and Pol J M. ['Lelystad agent'--he cause of abortus blauw (mystery swine disease)]. Tijdschr Diergeneeskd,1991,116(13):675-676
    147.Wensvoort G, Terpstra C, Pol J M, ter Laak E A, Bloemraad M, de Kluyver E P, Kragten C, van Buiten L, den Besten A, Wagenaar F and et al. Mystery swine disease in The Netherlands:the isolation of Lelystad virus. Vet Q,1991,13(3):121-130
    148.Wietek C and O'Neill L A. Diversity and regulation in the NF-kappaB system. Trends Biochem Sci,2007,32(7):311-319
    149.Wu J, Li J, Tian F, Ren S, Yu M, Chen J, Lan Z, Zhang X, Yoo D and Wang J. Genetic variation and pathogenicity of highly virulent porcine reproductive and respiratory syndrome virus emerging in China. Arch Virol,2009,154(10):1589-1597
    150.Wu W H, Fang Y, Farwell R, Steffen-Bien M, Rowland R R, Christopher-Hennings J and Nelson E A. A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b. Virology,2001,287(1):183-191
    151.Xu Z, Xiao S B, Xu P, Xie Q, Cao L, Wang D, Luo R, Zhong Y, Chen H C and Fang L R. miR-365, a novel negative regulator of interleukin-6 gene expression, is cooperatively regulated by Spl and NF-kappaB. J Biol Chem,2011, 286(24):21401-21412
    152.Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K and Akira S. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol,2003, 4(11):1144-1150
    153.Yamamoto Y and Gaynor R B. IkappaB kinases:key regulators of the NF-kappaB pathway. Trends Biochem Sci,2004,29(2):72-79
    154.Yan Y, Guo X, Ge X, Chen Y, Cha Z and Yang H. Monoclonal antibody and porcine antisera recognized B-cell epitopes of Nsp2 protein of a Chinese strain of porcine reproductive and respiratory syndrome virus. Virus Res,2007,126(1-2):207-215
    155.Yang J P, Hori M,Sanda T and Okamoto T. Identification of a novel inhibitor of nuclear factor-kappaB, RelA-associated inhibitor. Journal of Biological Chemistry, 1999,274(22):15662-15670
    156. Yang S X, Kwang J and Laegreid W. Comparative sequence analysis of open reading frames 2 to 7 of the modified live vaccine virus and other North American isolates of the porcine reproductive and respiratory syndrome virus. Arch Virol,1998, 143(3):601-612
    157.Yoon K J, Wu L L, Zimmerman J J, Hill H T and Platt K B. Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs. Viral Immunol,1996,9(l):51-63
    158.Yuan S, Mickelson D, Murtaugh M P and Faaberg K S. Complete genome comparison of porcine reproductive and respiratory syndrome virus parental and attenuated strains. Virus Res,2001,74(1-2):99-110
    159.Zhang S Q, Kovalenko A, Cantarella G and Wallach D. Recruitment of the IKK signalosome to the p55 TNF receptor:RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity,2000,12(3):301-311
    160.Zhou L, Zhang J, Zeng J, Yin S, Li Y, Zheng L, Guo X, Ge X and Yang H. The 30-amino-acid deletion in the Nsp2 of highly pathogenic porcine reproductive and respiratory syndrome virus emerging in China is not related to its virulence. J Virol, 2009,83(10):5156-5167
    161.Zhou Y J, Hao X F, Tian Z J, Tong G Z, Yoo D, An T Q, Zhou T, Li G X, Qiu H J, Wei T C and Yuan X F. Highly virulent porcine reproductive and respiratory syndrome virus emerged in China. Transbound Emerg Dis,2008,55(3-4):152-164
    162.Ziebuhr J, Snijder E J and Gorbalenya A E. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol,2000,81(Pt 4):853-879

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700