用户名: 密码: 验证码:
柳属植物对重金属镉胁迫的生长与生理响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属作为最常见的不可降解的污染物,对生物的危害日益受到全世界的关注。镉污染范围广、毒性较强,这主要是因为镉具有易被植物吸收与积累的特点,可造成植物的生理过程受到抑制,甚至死亡。柳树(Salix spp.)是Cd~(2+)高积累型速生树种,对修复镉引起的环境污染有极大潜力。因此研究柳树对镉胁迫下的生长与生理响应有意义。主要结果如下:
     1.采用沙培法,研究Cd~(2+)胁迫对旱柳、银芽柳、杞柳根系形态的影响。在Cd~(2+)处理6天、9天时,旱柳根系长度显著低于对照;在处理9天时,杞柳根系长度显著低于对照;在处理9天时,银芽柳根系长度也低于对照,但差异不显著,说明在Cd~(2+)处理下,银芽柳对镉的耐性较旱柳、杞柳强。
     在Cd~(2+)处理6天、9天时:旱柳根系的表面积、体积在较对照无明显差异,但是根系中起主要吸收功能的直径≤0.5mm的根系长度、表面积、体积明显低于对照。可能因为直径≤0.5mm的根系吸收能力强,被动吸收Cd~(2+)多,富集的镉浓度大,进而受到镉的伤害严重。杞柳根系长度、表面积、平均直径、根尖数量以及直径≤0.5mm的根系长度、表面积、体积,在Cd~(2+)处理3天、6天时,与对照无显著差别;在处理9天时,则显著低于对照,印证了Cd~(2+)处理强烈抑制根尖的产生的现象。
     2.以沙培条件下浇灌Cd~(2+)处理液的方法研究镉在旱柳、杞柳、银芽柳中的积累特性及Cd~(2+)处理对钙、镁、钾三种元素分配的影响。结果表明,随着Cd~(2+)处理时间的延长,三种柳树根、茎、叶中的镉浓度逐渐升高,在处理9天时,三种柳树地上部的镉浓度均超过了100mg/kg。镉处理9天时,三种柳树的地上部、地下部生物量均未受到显著影响,三种柳树对镉表现出较强的抗性,具备了镉修复植物的潜在特性。Cd~(2+)处理下,三种柳树根中的镉浓度远大于茎和叶片,镉在植物体内被限制运输到茎、叶,这在一定程度上降低了镉对植物地上部的毒害。Cd~(2+)处理下,三种柳树根中的钾浓度显著降低,且处理9天时茎、叶中的钾浓度较3天降低,三种柳树根系对钾的吸收能力和钾向地上部的转运能力均受镉的抑制。
     Cd~(2+)处理9天,旱柳根、茎、叶中的镉浓度较3天分别提高了3.04、2.36和21.56倍,旱柳地上部对镉的富集能力随着处理时间的延长持续增加。Cd~(2+)处理3、6天时,镉的分布比例以地上部为主,处理时间延长至9天时,镉向地上部的转运能力受到了抑制,根中镉的分布比例超过了地上部。Cd~(2+)胁迫下,旱柳根系加速了对钙的吸收,并将其转运到地上部,处理9天时旱柳茎中的钙浓度较3、6天分别显著上升了21.73%、23.66%。旱柳茎、叶对镁的转运能力受Cd~(2+)的抑制。Cd~(2+)胁迫下,旱柳根系对钾的吸收能力和钾向地上部的转运能力均受镉的抑制,处理9天时旱柳根中的钾浓度较3、6天分别显著下降了51.98%和66.79%。Cd~(2+)胁迫下,旱柳根中镁的分布比例显著升高,处理9天时较3、6天显著提高了80.22%和77.57%。
     Cd~(2+)处理下,三种柳树中,除旱柳根中镉的分布比例与镁的分布比例显著正相关、杞柳茎中钾的分布比例与镉的分布比例显著正相关外,矿质元素的其他分配格局均未受到镉的显著影响。旱柳、杞柳、银芽柳对矿质元素的分配具有较强的调节能力。
     3.以盆栽银芽柳为材料,利用Mini-Imaging-PAM荧光成像测定系统,研究了Cd~(2+)胁迫下叶片叶绿素荧光参数的变化及其光响应曲线。结果表明,初始荧光Fo与最大荧光Fm随着Cd~(2+)浓度的增大而呈现先升后降的趋势,Fo与Fm在200mg/L的Cd~(2+)处理4周时达到最高值,400mg/L的Cd~(2+)处理则显著下降;PSⅡ最大光化学效率(Fv/Fm)与PSⅡ潜在光化学效率(Fv/Fo)显著受Cd~(2+)胁迫抑制,但随Cd~(2+)浓度的增加呈先降后升的变化趋势。Cd~(2+)胁迫下各叶绿素荧光参数的光响应结果表明,PSⅡ实际光量子效率Y(Ⅱ)、荧光淬灭系数(qP)随光化光强度的增加呈下降趋势,而同光强下高浓度Cd~(2+)使Y(Ⅱ)与(qP)显著降低;PSⅡ调节性能量耗散的量子产额Y(NPQ)、非光化学淬灭系数(qN)与表观电子传递速率(ETR)则随着光强增加呈上升趋势,同光强下高浓度Cd~(2+)处理显著提高Y(NPQ)、qN与ETR。Cd~(2+)胁迫下,PSⅡ非调节性能量耗散的量子产额Y(NO)稳定在较低水平,同光强下Y(NO)随Cd~(2+)浓度增加略有提高。说明,银芽柳通过调节PSⅡ反应中心开放程度与活性,对Cd~(2+)胁迫表现出较强的耐性,高浓度Cd~(2+)胁迫导致PSⅡ反应中心关闭或不可逆失活,表现出光抑制。
     基于以上研究结果,旱柳、杞柳、银芽柳对高浓度Cd~(2+)胁迫均有较强抗性,可用于重度镉污染地区的植物修复,并且是选育用于重金属植物修复的柳树品种的良好材料。
     4.利用分类统计分析和Fisher判别分析,对银芽柳、垂柳、旱柳、蒿柳、杞柳、沙柳、苏172、苏799、垂爆柳9种柳属植物的叶长、叶宽、叶最宽处距叶尖距离、叶柄长、腋芽长、叶片密度和叶序比等7个指标进行分析,得出这9种柳属植物的判别函数,构建判别模型,再将这9种柳属植物的形态指标数据代入相应判别模型,检验其判别效果。结果表明,判别模型对柳属植物的识别正确率高于95%。
As the most common non-degradable pollutants, heavy metal is harmful to organisms,which have caused an increasing concern around the world. Cadmium is a common, highlytoxic heavy metal. There is a cause that cadimium is easily absorbed and accumulated by plants,and thus it is easy to suppress the physiological processes in plants. It leads to inhibit theplants’ normal growth and development, even to death. Willow(Salix spp.) is a kind ofcadmium high-accumulation-type fast-growing tree, which has great potential forenvironmental cadmium pollution repair. There is academic significance to study physiologicalchanges in Salix under cadimium stress. Main results obtained are as following:
     1. Studied on the effect of Cd~(2+)solution on morphology in root of Salix matsudana, Salixintegra, Salix leucopithecia under sand culture condition. The results showed that, under Cd~(2+)stress for6days,9days, Salix matsudana root length was significantly lower than CK; treated9days, Salix integra root length was significantly lower than CK; treated9days, Salixleucopithecia root length was lower than CK without significantly difference. This showed thatSalix leucopithecia had stronger cadmium tolerance than Salix matsudana and Salix integraunder Cd~(2+)stress.
     Under Cd~(2+)stress for6days,9days, Salix matsudana root surface area, volume had nosignificant difference on CK; but roots (diameter≤0.5mm) which take leading role inabsorption, their length, surface area, volum were significantly lower than CK. It was probablycaused by their strong absorption, which passive absorpted and enriched more cadmium. UnderCd~(2+)stress for3days,6days, in Salix integra, there was no significant difference betweentreatment and CK in root length, surface area, average diameter, root tip number androots(diameter≤0.5mm) length, surface area, volum; treated9days, there were significantdiffernces. This confirmed that the Cd~(2+)stress strongly inhibited the growth of apical cell,resulted that root tip number was significantly lower than CK.
     2. Studied on the cadmium accumulation characteristics and effect on the distribution ofmineral elements in Salix matsudana, Salix integra, Salix leucopithecia under highconcentration of Cd~(2+)solution treatment with sand culture. The results showed that, with theprolonged Cd~(2+)stress, concentration of cadmium in the three kind of willow roots, stems,leaves gradually increased. Treated9days under Cd~(2+)stress, the cadmium concentrations inshoots of the three kind of willow were more than100mg/kg respectively; the shoots and rootsbiomass of the three kind of willow were not significantly affected; the three kind of willowhad strong resistance to cadmium, with the potential for cadmium phytoremediation plant.Under Cd~(2+)stress, the concentration of cadmium in roots of the three kind of willow weremuch higher than stems and leaves. cadmium in plants was limitedly transported to the stems,leaves to reduce the poisoning of cadmium in shoots. Under Cd~(2+)stress, the potassiumconcentration was significantly decreased in roots of the three kind of willow, and treated9days under Cd~(2+)stress, potassium concentration in stems and leaves were lower than3days.Capacities of absorb potassium and transport potassium to aboveground in root of the threekind of willow were suppressed by Cd~(2+)stress.
     Treated9days under Cd~(2+)stress, the concentration of cadmium in root, stem, leaf of Salixmatsudana, increased3.04,2.36,21.56times respectively than treated3days; ability ofcadmium accumulation in shoot of Salix matsudana continued to increase with prolongedtreatment. Treated3,6days under Cd~(2+)stress, the cadmium content in shoot of Salixmatsudana was more than root; treated9days, capacity of transport cadmium was suppressed,it resulted that cadium content in root was more than shoot. Under Cd~(2+)stress, Salix matsudanaroot accelerated the absorption of calcium, and transported to shoot. Treated9days, theconcentration of calcium in stem of Salix matsudana significantly increased21.73%,23.66%than3days,6days respectively. The capacity of transport magnesium of Salix matsudana stem,leaf was suppressed by Cd~(2+)stress. Treated9days, the concentration of potassium in Salixmatsudana root significantly decreased than3,6days by51.98%,66.79%respectively. UnderCd~(2+)stress, the distribution ratio of magnesium in Salix matsudana root significantly increased, compared with treated3,6days, treated9days significantly increased80.22%,77.57%respectively.
     Under Cd~(2+)stress, in the three kind of willow, the proportions of distribution of themineral elements were not significantly affect by Cd~(2+)stress except that the proportions ofdistribution of magnesium and cadmium in root of Salix matsudana were significantlypositively correlated, and the proportions of distribution of potassium and cadmium in stem ofSalix integra were significantly positively correlated. Salix matsudana, Salix integra, Salixleucopithecia had strong abilities to regulate the distribution of mineral elements.
     3. The efects of Cd~(2+)stress on rapid light-response curves of photochemical andnon-photochemical chlorophyll fluorescence quenching parameters including darkfluorescence yield (Fo), maximal fluorescence yield (Fm), maximal PSⅡ quantum yield(Fv/Fm), and latent PSⅡ quantum yield (Fv/Fo) of Salix leucopithecia were investigatedunder different concentrations of Cd~(2+)solutions (0,50,100,200,400mg/L) byMini-Imaging-PAM Chlorophyll Fluorometer.
     The results showed that Fo and Fm present trend of first increased and then decreased, andthe two parameters reached the maximum when Salix leucopithecia were subjected to200mg/L Cd~(2+)solution after four weeks. The Fv/Fm declined significantly under cadmium-bearingsolution, but it was higher in the same Cd~(2+)solution after four weeks than after two weeks. TheFv/Fm rebounded slightly in200mg/L Cd~(2+)condition after two weeks and then dropped tothe minimum in the same condition after four weeks. Fv/Fo was also inhibited significantly byCd~(2+)stress, and showed the similar trend with the changes of Fv/Fm.
     The rapid light-response curves of chlorophyll fluorescence parameters were alsomeasured at various light intensities (0,20,60,100,300,500,600,800,1000, and1200μmol·m-2·s-1). The effective PSⅡ quantum yield(Y(Ⅱ)) and coefficient of photochemicalquenching(qP) decreased with the increase of light intensity. The Y(Ⅱ) and qP declinedsignificantly subjected to high concentration of Cd~(2+)solution compared with low concentrationunder the same light intensity. The parameters of quantum yield of regulated energy dissipation(Y(NPQ)), coefficient of nonphotochemical quenching (qN), and electron transportrate (ETR) increased with elevation of light intensity. The Y(NPQ), qN, and ETR increasedsharply subjected to high concentration of Cd~(2+)solution compared with low concentrationunder the same light condition. Quantum yield of non-regulated energy dissipation(Y(NO))kept a lower level, although Y(NO) increased slightly with the aggrandizement of light intensity.The results indicate that Salix leucopithecia has strong tolerance to Cd~(2+)stress by irreversibleinactivation of PSⅡreaction centers. However, under high concentration of Cd~(2+)solution forprolonged stress, PSⅡreaction centers were closed or irreversible inactivated with showing thephenomenon of photoinhibition.
     Therefore, Salix matsudana, Salix integra, Salix leucopithecia have strong tolerance tohigh concentration Cd~(2+)stress. They can be used for phytoremediation of severe cadmiumpolluted area, and they are good material for breeding of willow varieties for heavy metalphytoremediation.
     4. Using classification statistical function and Fisher discriminate function, analyzed7indexes (leaf length, leaf width, distance from the widest to the tip, petiole length, axillary budLength, leaf density, phyllotaxis ratio) of9species of Salix (Salix gracilistyla, Salix babylonica,Salix matsudana, Salix viminalis, Salix integra, Salix psammophila, Salix JiangsuensisCL.‘172’, Salix Jiangsuensis CL.‘799’, Salix babylonica×Salix fragilis). It resulted thediscriminate function equation of the9species of Salix and constructed identification model,then put morphological indexes data of the9species of Salix into the correspondingidentification model to test its discriminate results. The results indicated that precision of the9species of Salix recognition was higher than95%.
引文
艾伦弘,汪模辉,李鉴伦,等.镉及镉锌交互作用的植物效应.广东微量元素科学,2005,12(12):6~10
    白志英,李存东,赵金锋,等.干旱胁迫对小麦代换系叶绿素荧光参数的影响及染色体效应初步分析.中国农业科学,2011,44(1):47~57
    毕淑峰,朱显灵,马成泽.判别分析在烤烟品质鉴定中的应用.中国农学通报,2005,21(1):79~80
    布坎南,格鲁伊森姆,琼斯.植物生物化学与分子生物学.北京:科学出版社,2003,976~983
    柴阿丽,廖宁放,田立勋,等.基于高光谱成像和判别分析的黄瓜病害识别.光谱学与光谱分析,2010,30(5):1357~1361
    常学秀,王焕校,文传浩.Cd2+,Al3+对蚕豆胚根根尖细胞遗传学毒性效应研究.农业环境保护,1999,18(1):1~3
    陈刚,王海光,马占鸿.利用判别分析方法预测小麦条锈病.植物保护,2006,32(4):24~27
    陈宏,彭永康.镉对小麦幼苗脂质过氧化和保护酶活性的影响.西北植物学报,2000,20(3):399~403
    陈良,隆小华,郑晓涛,等.镉胁迫下两种菊芋幼苗的光合作用特征及镉吸收转运差异的研究.草业学报,2011,20(6):60~67
    程建峰,潘晓云,刘宜柏,等.水稻抗旱性鉴定的形态指标.生态学报,2005,25(11):3117~3125
    丁小余,施国新,常福辰,等.Cd2+污染对莼菜叶片形态学伤害反应的研究.西北植物学报,1998,18(3):417~422
    段昌群,王焕校.重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨.植物学报,1995,37(1):14~24
    范璐,吴娜娜,霍权恭,等.模式识别法分析5种植物油脂.分析化学研究简报,2008,36(8):1133~1137
    冯保民,麻密.植物络合素及其合酶在重金属抗性中的功能研究进展.应用与环境生物学报,2003,9(6):657~661
    何冰,叶海波,杨肖娥.铅胁迫下不同生态型东南景天叶片抗氧化酶活性及叶绿素含量比较.农业环境科学学报,2003,22(3):274~278
    何翠屏,王慧忠.重金属镉、铅对草坪植物根系代谢和叶绿素水平的影响.湖北农业科学,2003,5:60~63
    何东健,张海亮,宁纪锋,等.农业自动化领域中计算机视觉技术的应用.农业工程学报,2002,18(2):171~175
    何俊瑜,任艳芳,王阳阳,等.不同耐性水稻幼苗根系对镉胁迫的形态及生理响应.生态学报,2011,3(2):522~528
    何俊瑜,任艳芳,王阳阳,等.镉对小麦根尖细胞的遗传损伤效应.生态环境学报,2009,18(3):830~834
    胡宁静,李泽琴,黄朋,等.我国部分市郊农田的重金属污染与防治途径.矿物岩石地球化学通报,2003,22(3):251~254
    胡秀娟,汤晓华.植物根系图像监测分析系统的设计.林业机械与木工设备,2003,11(2):24~25,28
    黄德崇,张大业,刘宗镇.逐步判别分析法在小麦品种抗赤霉病性评价中的应用.上海农业学报,1991,7:71~78
    黄会一,蒋德明,张春兴等.木本植物对土壤中镉吸收、积累和耐性.中国环境科学,1989,9(5):323~330
    江行玉,赵可夫.植物重金属伤害及其抗性机理.应用与环境生物学报,2001,7(1):92~99
    姜丽娜,邵云,李春喜,等.镉在小麦植株体内的吸收、分配和积累规律研究.河南农业科学,2004,(7):13~17
    匡少平,徐仲,张书圣.水稻对土壤中环境重金属激素铅的吸收效应及污染防治.环境科学与技术,2002,25(2):32~36
    雷鸣,秦普丰,铁柏清.湖南湘江流域重金属污染的现状与分析.农业环境与发展,2010,2:62~65
    李德文.耕作土壤条件下冬小麦根系形态与吸水功能的计算机分形模拟.西安:西北农林科技大学,2000:1~23
    李锋,李木英,潘晓华,等.不同水稻品种幼苗适应低磷胁迫的根系生理生化特性.中国水稻科学,2004,18(1):48~52
    李俊梅,王焕校.镉胁迫下玉米生理生态反应与抗性差异研究.云南大学学报(自然科学版),200,22(4):311~317
    李鹏民,高辉远,Strasser RJ.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用.植物生理与分子生物学学报,2005,31(6):559~566
    李隼,黄胜东,赵福庚.重金属镉对水稻根毛细胞钾离子吸收过程的影响.植物生理学报,2011,47(5):481~487
    李文学,陈同斌.超富集植物吸收富集重金属的生理和分子生物学机制.应用生态学报,2003,14(4):627~631
    李裕红,黄小瑜.重金属污染对植物光合作用的影响.引进与咨询,2006,6:23~24
    李子芳,刘慧芬,熊晓霞,等.镉胁迫对小麦种子萌发幼苗生长及生理生化特性的影响.农业环境科学学报,2005,24(A02):17~20
    梁泉,廖红,严小龙.植物根构型的定量分析.植物学通报,2007,24(6):695~702
    梁一池,邱葵东.杉木、台湾杉、香杉逐步判别分析.亚热带植物通讯,1995,24(2):16~21
    廖荣伟,刘晶淼.作物根系形态观测方法研究进展讨论.气象科技,2008,36(4):429~435
    林世青,许春辉,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用.植物学通报,1992,9(1):1~16
    刘东华,蒋悟,李海峰,等.镉对大蒜根生长和根尖细胞超微结构的影响.华北农学报,2000,15(3):66~71
    刘建新.镉胁迫下玉米幼苗生理生态的变化.生态学杂志,2005,24(3):265~268
    刘凌燕,张明理,李建强,等.国产青冈属的数量分类学研究.武汉植物学研究,2008,26(5):466~475
    刘桃菊,唐建军,戚昌瀚.水稻形态的分形特征及其可视化模拟研究.江西农业大学学报:自然科学版,2002,32(6):24~25
    刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)-一种新的镉超富集植物.科学通报,2003,48(19):2046~2049
    刘文龙,王凯荣,王铭伦.花生对镉胁迫的生理响应及品种间差异.应用生态学报,2009,20(2):451~459
    刘晓燕,何萍,金继运.钾在植物抗病性中的作用及机理的研究进展.植物营养与肥料学报,2006,12(3):445~450
    鲁敏,李英杰.绿化树种对大气金属污染物吸滞能力.城市环境与城市生态,2003,16(1):51~52.
    吕朝晖,王焕校.镉铅对小麦醇脱氢酶ADH基因表达影响初步研究.环境科学学报,1998,18(5):500~503
    罗锡文,周学成,严小龙,等.基于XCT技术的植物根系原位形态可视化研究.农业机械学报,2004,35(2):133~136
    马建军,张淑霞,吴贺平.镍污染对小麦幼苗矿质营养元素吸收与累积的影响研究,2004,12(3):89~91
    马元喜.小麦的根.北京:农业出版社,1999,3~6
    莫文红,李懋学.镉离子对蚕豆根尖细胞分裂的影响.植物学通报,1992,9(3):30~34
    倪才英,李华,骆永明,等.铜、镉及其交互作用对泡泡草细胞超微结构的影响.环境科学学报,2004,24(2):343~348
    彭鸣,王焕校.镉、铅诱导的玉米幼苗细胞超微结构的变化.中国环境科学,1991,1l(6):426~431
    钱永强,周晓星,韩蕾,等.3种柳树叶片PSⅡ叶绿素荧光参数对Cd2+胁迫的光响应.北京林业大学学报,2011,33(6):8~14.
    全先庆,张洪涛,单雷,等.植物金属硫蛋白及其重金属解毒机制研究进展.遗传,2006,28(3):375~382
    茹淑华,苏德纯,王激清.土壤镉污染特征及污染土壤的植物修复技术机理.中国生态农业学报,2006,14(4):29~33
    沈宏,严小龙.根系分泌作用及其诱导机制.土壤与环境,2001,10(4):339~342
    宋浩,沈明星,陈凤生,等.蔬菜对土壤高浓度镉的吸收与积累特点及耐性.江苏农业科学,2011,39(4):195~197
    宋玉芳,许华夏,任丽萍,等.土壤重金属对白菜种子发芽与根伸长抑制的生态毒性效应.环境科学,2002,23(1):103~107
    孙光闻,陈日远,刘厚诚,等.镉对植物光合作用及氮代谢影响研究进展.中国农学通报,2005a,21(9):234~236
    孙光闻,朱祝军,方学智.不同Cd水平对小白菜生长及其营养元素含量的影响.农业环境科学学报,2005b,24(4):658~661
    孙瑞莲,周启星.高等植物重金属耐性与超积累特性及其分子机理研究.植物生态学报,2005,29(3):497~504
    谭万能,李志安,邹碧.植物对重金属耐性的分子生态机理.植物生态学报,2006,30(4):703~712
    滕中华,智丽,宗学凤,等.高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响.作物学报,2008,34(9):1662~1666
    田晓锋,魏虹,贾中民,等.重金属镉(Cd2+)对梧桐幼苗根生长及根系形态的影响.西南师范大学学报(自然科学版),2008,33(2):93~98
    铁梅,粱彦秋,张朝红,等.Cd污染地草坪草中Cd分布特征及化学形态的研究.应用生态学报,2002,13(2):175~178
    涂从,郑春荣,陈怀满.土壤-植物系统中重金属与养分元素交互作用.中国环境科学,1997,17(6):256~259
    涂忠虞,潘明健,郭群,等.银芽柳的选育.江苏林业科技,2000,27(2):1~11
    万雪琴,张帆,夏新莉,等.镉处理对杨树光合作用及叶绿素荧光参数的影响.林业科学,2008,44(6):73~78
    万雪琴,张帆,夏新莉,等.镉胁迫对杨树矿质营养吸收和分配的影响.林业科学,2009,45(7):45~50
    汪有良,王保松,施士争.乔木型柳树杂种无性系对镉的吸收和积累特性.南京林业大学学报(自然科学版),2011,35(2):135~138
    王焕校.污染生物学基础.昆明:云南大学出版社.1990:91~108
    王慧忠,何翠屏.重金属离子胁迫对草坪草根系生长及其活力的影响.中国草地,2002,24(3):55~63
    王可玢,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响.生物物理学报,1997,13(2):273~278
    王兰州,柴中林,马志娟,等.植物叶序的几何计量分析.中国计量学院学报,2006,17(2):99~102
    王利,杨洪强,范伟国,等.平邑甜茶叶片光合速率及叶绿素荧光参数对氯化镉处理的响应.中国农业科学,2010,43(15):3176~3183
    王源秀,徐立安,黄敏仁.杞柳和簸箕柳候选杂交亲本SSR指纹分析.南京林业大学学报,2008,32(2):1~5
    王战,方振福,周以良,等.中国植物志.北京:科学出版社.1984
    魏复盛,陈静生,吴燕玉,等.中国土壤元素背景值.北京:中国环境科学出版社,1990:87
    吴长高,罗锡文.计算机视觉技术在根系形态和构型分析中的应用.农业机械学报,2000,31(3):156~160
    吴海燕,台培东,李培军,等.馒头柳对镉的耐性、运输途径和累积特征.生态学杂志,2011,30(6):1222~1228.
    吴立洲,晋欣桥,杜志敏.基于Fisher判别分析法的空调系统传感器故障诊断.能源技术,2007,28(1):45~48
    肖欣,冯启言,刘忠伟,等.重金属Cu、Pb、Zn、Cd在小麦中的富集特征.能源环境保护,2004,18(3):28~31
    熊咏梅,朱纯,何仲坚.我国植物群落数量分类的研究进展.广东园林,2008,30(4):49~51
    徐爱春,陈益泰,王树凤,等.柳树对Cd吸收、积累和耐性的初步研究.环境科学研究,2006,19(5):96~100
    徐克学.数量分类学.北京:科学出版社.1994
    徐勤松,施国新,郝怀庆.Cd、Cr(VI)单一及复合污染对菹草叶绿素含量和抗氧化酶系统的影响.广西植物,2001,21(1):87~90
    许嘉琳,杨居荣.陆地生态系统中的重金属.北京:中国环境科学出版社,1995:24~36
    杨国梁,张光年,葛庆平,等.计算机视觉技术在植物根系形态研究中的应用.首都师范大学学报(自然科学版),2006,27(1):18~31
    杨居荣,久保井徹.镉、铜对植物细胞的毒性及元素吸收特性的影响.环境科学学报,1991,11(3):381~386
    杨卫东,陈益泰,王树凤.镉胁迫对旱柳光合作用和内肽酶变化的影响.植物研究,2009,29(4):428~432
    杨卫东,陈益泰.不同杞柳品种对镉(Cd)吸收与忍耐的差异.林业科学研究,2008,21(6):857~861
    杨勇,王巍,江荣风,等.3超累积植物与高生物量植物提取镉效率的比较.生态学报,2009,29(5):2732~2737
    姚广,高辉远,王未未,等.铅胁迫对玉米幼苗叶片光系统功能及光合作用的影响.生态学报,2009,29(3):1162~1169
    衣艳君,李芳柏,刘家尧.尖叶走灯藓(Plagiomnium cuspidatum)叶绿素荧光对复合重金属胁迫的响应.生态学报,2008,28(11):5437~5444
    尹克林.蛇龙珠与赤霞珠葡萄品种的判别鉴定研究.西南农业大学学报,1998,20(3):207~211
    尹永强,胡建斌,邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展.中国农学通报,2007,23(1):105~110
    袁祖丽,马新明,韩锦峰,等.镉污染对烟草叶片超微结构及部分元素含量的影响.生态学报,2005,25(11):2919~2927
    翟丽梅,廖晓勇,闫秀兰,等.广西西江流域农业土壤镉的空间分布与环境风险.中国环境科学,2009,29(6):661~667
    张恩和,张新慧,王惠珍.不同基因型春蚕豆对磷胁迫的适应性反应.生态学报,2004,24(8):1589~1593
    张艳,杨传平,王玉成.柽柳金属硫蛋白基因(MT2)的过量表达对烟草耐Cd2+性的促进效应.植物生理学通讯,2007,43(4):693~696
    张义贤.重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报,1997,17(2):199~205
    张玉秀,柴团辉.植物重金属调节基因的分离和功能.北京:中国农业出版社.2006
    张正斌,王德轩.小麦生态类型的判别分析.西北植物学报,1989,9(2):110~115
    赵科理,刘杏梅,徐建明.浙江省水稻产地环境镉污染分布及其风险评价.土壤通报,2009,40(2):394~399
    赵学茂.土壤重金属污染的防治方法.甘肃农业,2006,2:228
    赵中秋,崔玉静,朱永官.菌根和根分泌物在植物抗重金属中的作用.植物学杂志,2003,22(6):81~84
    赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素.生态环境,2005,14(2):282~286
    中科院《中国植物志》编委会.中国植物志.科学出版社,1984,20(2):81~381
    钟秀明,武学萍.我国农田污染与农产品质量完全现状、问题及对策.中国农业资源与区划,2007,28(5):27~32
    周卫,汪洪,李春花,等.添加碳酸钙对土壤中镉形态转化与玉米叶片镉组分的影响.土壤学报,2001,38(2):219~225
    周卫,汪洪,林葆.镉胁迫下钙对镉在玉米细胞中的分布及对叶绿体结构与酶活性的影响.植物营养与肥料学报,1999,5(4):335~340
    朱红霞,杨小勇,葛才林,等.重金属对水稻过氧化物同工酶的影响.核农学报,2004,18(3):233~236
    Ahsan N, Lee S H, Lee D G, et al. Physiological and protein profiles alternation of germinating riceseedlings exposed to acute cadmium toxicity. Comptes Rendus Biologies,2007,330(10):735-746
    Alcantara E, Romera F J, Canete M, et al. Effects of heavy metals on both induction and function of root Fe(ш) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. Journal of experimental botany,1994,45(12):1893-1898
    Arduini I, Godbold D L, Onnis A. Cadmium and copper uptake and distribution in Mediterranean treeseedlings. Physiologia Plantarum,1996,97(1):111-117
    Aronsson P, Perttu K. Willow vegetation filters for wastewater treatment and soil remediation combined withbiomass production. Forestry Chronicle,2001,77(2):293-299
    Athar R, Ahmad M. Heavy metal toxicity: Effect on plant growth and metal uptake by wheat and on freeliving Azotobacter. Water, Air,&Soil Pollution,2002,138(1):165-180
    Baker A, McGrath S, Reeves R, et al. Metal hyperaccumulator plants: a review of the ecology andphysiology of a biological resource for phytoremediation of metal-polluted soils. Phytoremediation ofcontaminated soil and water,2000,2(5):1-25
    Baszyńki T, Wajda L, Król M, et al. Photosynthetic activities of cadmium-treated tomato plants. PhysiologiaPlantarum,1980,48:365-370
    Berndes G, Fredrikson F, Borjesson P. Cadmium accumulation and Salix-based phytoextraction on arableland in Sweden. Agriculture, Ecosystems&Environment,2004,103(1):207-223
    Bernier M, Popovic R, Carpentier R. Mercury inhibition at the donor side of photosystem II isreversed bychloride. FEBS Letters,1993,321:19-23
    Blamey F, Joyce D, Edwards D, et al. Role of trichomes in sunflower tolerance to manganese toxicity. Plantand soil,1986,91(2):171-180
    Boominathan R, Doran P. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmiumhyperaccumulator, Thlaspi caerulescens. Biotechnology and bioengineering,2003,83(2):158-167
    Broadley M, White P, Hammond J, et al. Zinc in plants. New Phytologist,2007,173(4):677-702
    Brooks R. Plants that hyper accumulate Heavy Metals. Wallingford:CAB intenational,1998:141
    Bush D S. Regulation of cytosolic calcium in plants. Plant Physiology,1993,103(1):7-13
    Chaney R. Public Health and sludge utilization. Biocycle,1990,31(10):68-73
    Clarkson D, Luettge U. Physiology. III, Mineral nutrition: divalent cations, transport and compartmentation.Progress in botany,1989,51:93-112
    Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta,2001,212(4):475-486
    Cobbett C. Phytochelatin biosynthesis and function in heavy-metal detoxification. Current Opinion in PlantBiology,2000,3(3):211-216
    Cunha K, Nascimento C, Pimentel R, et al. Cellular localization of cadmium and structural changes in maizeplants grown on a cadmium contaminated soil with and without liming. Journal of hazardous materials,2008,160(1):228-234
    Cutler J M, Rains D W.1974. Characterization of cadmium uptake by plant tissue. Plant Physiology,54(1):67-71
    Das P, Samantaray S, Rout GR. Studies on cadmium toxicity in plants: a review. Environmental pollution,1997,98(1):29-36
    De Dorlodot S, Forster B, Pages L., et al. Root system architecture: opportunities and constraints for geneticimprovement of crops. Trends Plant Sci,2007,12:474-481
    Demmig B, Bj rkman O. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) andphoton yield of O2evolution in leaves of higher plants. Planta,1987,171:171-184
    Deng D M, Shu W S, Zhang J, et al.2007. Zinc and cadmium accumulation and tolerance in population ofSedum alfredii. Environmental Pollution,147:381-386
    Dickinson N M, Pulford I D.Cadmium Phytoextraction using short-rotation coppice Salix:the evidence trail.Environment international,2005,31(4):609-613
    Dong J, Wu F, Zhang G. Influence of cadmium on antioxidant capacity and four microelement concentrationsin tomato seedlings (Lycopersicon esculentum). Chemosphere,2006,64(10):1659-1666
    Drazic G, Mihailovic N, Lojic M. Cadmium accumulation in Medicago sativa seedlings treated with salicylicacid. Biologia plantarum,2006,50(2):239-244
    Duarte B, Delgado M, Ca ador I. The role of citric acid in cadmium and nickel uptake and translocation inHalimione portulacoides.Chemosphere,2007,69(5):836-840
    Ekmek i Y, Tanyola D, Ayhan B. Effects of cadmium on antioxidant enzyme and photosynthetic activitiesin leaves of two maize cultivars. Journal of Plan t Physiology,2008,165(6):600-611
    Felix H. Field trials for in situ deconiamination of heavy metal polluted soils using crops ofmetal-accumulating plants. Journal of Plant Nutrition and Soil Science,1997,160(4):525-529
    Fischerová Z, Tlustos P, Jirina Száková J, et al. A comparison of phytoremediation capability of selectedplant species for given trace elements. Environmental Pollution,2006,144(1):93-100
    Foy C, Chaney R, White M. The physiology of metal toxicity in plants. Ann Rev Plant Physiol,1978,29:511-566
    Foyer C, Theodoulou F, Delrot S. The functions of inter-and intracellular glutathione transport systems inplants. Trends in plant science,2001,6(10):486-492
    Freeman J, Persans M, Nieman K, et al. Increased glutathione biosynthesis plays a role in nickel tolerance inThlaspi nickel hyperaccumulators. The Plant Cell Online,2004,16(8):2176-2191
    Gallego S M, Benavides M P, Tomaro M L. Effect of heavy metal ion excess on sunflower leaves:evidencefor involvement of oxidative stress. Plant Science,1996,121(2):151-159
    Galli U, Schuepp H, Brunold C. Heavy metal binding by mycorrhizal fungi. Physiologia Plantarum,1994,92:364-368
    Gardea-Torresdey J L, Peralta-Videa J R, Montes M, et al. Bioaccumulation of cadmium, chromium andcopper by Convolvulus arvensis L.:impact on plant growth and uptake of nutritional elements.Bioresource technology,2004,92(3):229-235
    Genty B, Briantais JM, Bakern R. The relationship between the quantum yield of photosynthetic electrontransport and quenching of chlorophyll fluorescence. Biochimica BiophysicaActa,1989,990:87-92
    Ghnaya T, Nouairi I, Slama I, et al. Cadmium effects on growth and mineral nutrition of two halophytes:Sesuvium portulacastrum and Mesembryanthemum crystallinum. Journal of Plant Physiology,2005,162(10):133-140
    Gordon R B, Bertram M, Graedel T E. Metal stocks and sustainability. Proceedings of the National Academyof Sciences of the United States of America,2006,103(5):1209-1214
    Goyal K, Walton L J, Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress.Biochemical Journal,2005,388:151-157
    Granel T, Robinson B, Mills T, et al. Cadmium accumulation by willow clones used for soil conservation,stock fodder, and phytoremediation. Australian Journal of Soil Research,2002,40(8):1331-1337.
    Grant C A, Baily L D, Therrien M C. Effect o f N, P, and KCl fertilizer s on grain yield and Cdconcentration of malting barley. Nutrient Cycling in Agro ecosystems,1995,45(2):153-161
    Guo T R, Zhang G P, Zhou M X, et al. Influence of Aluminum and Cadmium Stresses on Mineral Nutritionand Root Exudates in Two Barley Cultivars. Pedosphere,2007,17(4):505-512
    Hall J L. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany,2002,53(366):1-11
    Hammer D, Kayser A, Keller C. Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Useand Management,2003,19(3):187-192
    Hanif A, Bhatti H N, Hanif M A. Removal and recovery of Cu (II) and Zn (II) using immobilized Menthaarvensis distillation waste biomass. Ecological Engineering,2009,35(10):1427-1434
    Harrison M D, Jones C E, Dameron C T. Copper chaperones: function, structure and copper-bindingproperties. Journal of Biological Inorganic Chemistry,1999,4(2):145-153
    Jamali M K, Kazi T G, Arain M B, et al. Heavy metal accumulation in different varieties of wheat (Triticumaestivum L.) grown in soil amended with domestic sewage sludge. Journal of hazardous materials,2009,164(2-3):1386-1391
    Jannssen LHJ, Warm HW, Van Hasselt PR. Temperature dependence of chlorophyll fluorescenceinductionand photosynthesis in tomato as affected by temperature and light conditions during growth. Journal ofPlant physiology,1992,139:549-554
    Jasinski M, Ducos E, Martinoia E, et al. The ATP-binding cassette transporters: structure, function and genefamily comparison between rice and Arabidopsis. Plant Physiology,2003,131(3):1169-1177
    Jensen J, Holm P, Nejrup J, et al. The potential of willow for remediation of heavy metal polluted calcareousurban soils. Environmental Pollution,2009,157:931-937
    Jentschke G, Goldbold D. Metal toxicity and ectomycorrhizas. Physiologia Plantarum,2000,109:107-116
    Jiang C D, Gao H Y, Zou Q. Changes of donor and accepter side in photosystem II complex induced by irondeficiency in attached soybean and maize leaves. Photosynthetica,2003,41:267-271
    Kahle H. Response of roots of trees to heavy metals. Environmental and Experimental Botany,1993,33(1):99-119
    Kastori R, Petrovic M, Petrovic N. Effects of excess lead, cadmium, copper and zinc on water relations insunflower. Journal of Plant Nutrition,1992,15:2427-2439
    Klang-Westin E, Perttu K. Effects of nutrient supply and soil cadmium concentration on cadmium removalby willow. Biomass&Bioenergy,2002,23(6):415-426
    Klang-Westin E,Eriksson J. Potential of Salix as phytoextractor for Cd on moderately contaminated soils.Plant and soil,2003,249(1):127-137
    Koeppe D. The uptake, distribution, and effect of cadmium and lead in plants. Sci Tot Environ,1977,7:197-206
    Korshunova Y O, Eide D, Gregg Clark W, et al. The IRT1protein from Arabidopsis thaliana is a metaltransporter with a broad substrate range. Plant Molecular Biology,1999,40(1),37-44
    Kramer DM, Johnson G, Kiirats O, et al. New fluorescence parameters for the determination of QA redoxstate and excitation energy fluxes. Photosynth Research,2004,79:209-218
    Krezel A, Hao Q, Maret W. The zinc/thiolate redox biochemistry of metallothionein and the control of zincion fluctuations in cell signaling. Archives of biochemistry and biophysics,2007,463(2):188-200
    Krupa Z, Quist G, Huner N. The effects of cadmium on photosynthesis of Phaseolus vulgaris-afluorescenceanalysis. Physiologia Plantarum,1993,88(4):626-630
    Kuzovkina Y A, Quigley M F. Willows beyond wetlands:uses of Salix L. species for environmental projects.Water, Air, and Soil Pollution,2005,162(1):183-204
    Lang M, Zhang Y, Guan Z, et al. PCR-enriched cDNA pool method for cloning of gene homologues. PlantMolecular Biology Reporter,2005,23(3):219-226
    Lewis S, Donkin M, Depledge M. Hsp70expression in Enteromorpha intestinalis (Chlorophyta) exposed toenvironmental stressors. Aquatic toxicology,2001,51(3):277-291
    Li T Q, Yang X E, Lu L L, et al. Effects of zinc and cadmium interactions on root morphology and metaltranslocation in a hyper accumulating species under hydroponic conditions. Journal of HazardousMaterials,2009,169:734-741
    Lin T, Ding Z, Fujimura K, Ishikawa H. Department of Computer and Information Science and BiomedicalEngineering Center and Department of Plant Biology. Ohio State University, Columbus,1999,56(3):255-258
    Loomis J, Liu X, Ding Z, et al. Visualization of plant growth. Proceedings of the1997IEEE VisualizationConference:1997,192-194
    Lux A, Sottnikova A, Opatrna J, et al. Differences in structure of adventitious roots in Salix clones withcontrasting characteristics of cadmium accumulation and sensitivity. Physiological Plantarum,2004,120:537-545
    Ma J F, Zheng S J, Matsumoto H. Detoxifying aluminium with buckwheat. Nature,1997,390:569-570
    Mahalingam R, Fedoroff N. Stress response, cell death and signalling:the many faces of reactive oxygenspecies. Physiologia Plantarum,2003,119(1):56-68
    Mallick N, Rai LC. Physiological responses of non-vascular plants to heavy metals//Prasad M N V,StrzalkaK,eds. Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. Dordrecht: KluwerAcademic Publishers,2001:111-147
    Marschner H. Mineral nutrition of higher plants.2ndEd. New York: Academic Press,1995
    Maxwell K, Johnson GN. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany,2000,51:659-668
    McGrath S, Zhao F. Phytoextraction of metals and metalloids from contaminated soils. Current Opinion inBiotechnology,2003,14:277-282
    McLaughlin M J, Maier A, Freeman K, et al. Effect of potassic and phosphatic fertilizer type, fertilizer Cdconcentration and zinc rate on cadmium uptake by potatoes. Fertilizer Research,1995(40):63-70
    Mirck J, Isebrands J, Verwijst T, et al. Development of short-rotation willow coppice systems forenvironmental purposes in Sweden. Biomass and Bioenergy,2005,28(2):219-228
    Monni S, Salemaa M, White C, et al. Copper resistance of Calluna vulgaris originating from the pollutiongradient of a Cu-Ni smelter, in southwest Finland. Environmental pollution,2000,109(2):211-219
    Moreno-Caselles J, Moral R, Perez-Espinosa A, et al. Cadmium accumulation and distribution in cucumberplant. Journal of Plant Nutrition,2000,23(2):243-250
    Nishizono H, Ichikawa H, Suziki S, et al. The role of the root cell wall in the heavy metal tolerance ofAthyrium yokoscense. Plant and soil,1987,101(1):15-20
    Nriagu J, Pacyna J. Quantitative assessment of worldwide contamination of air, water and soils by tracemetals. Nature,1988,33(3):134-139
    Ouariti O, Gouia H, Ghorbal M H. Responses of bean and tomato plants to cadmium: Growth, mineralnutrition and nitrate reduction. Plant Physiology and Biochemistry,1997,35:347-354
    Patra J, Lenka M, Panda B B. Tolerance and co-tolerance of the grass Chloris barbata Sw. to mercury,cadmium and zinc. New Phytologist,1994,128(1):165-171
    Paulsen I, Saier M. A novel family of ubiquitous heavy metal transport proteins. Journal of MembraneBiology,1997,156(2):99-103
    Poovaiah B W, Reddy A S N, Carl Leopold A. Calcium messenger system in plants. Critiacl Reviews inPlant Sciences,1987,6(1):47-103
    Popelka J, Schubert S, Schulz R, et al. Cadmium uptake and translocation during reproductive developmentof peanut (Arachis hypogaea L.). Angewandte Botanik,1996,70(3-4):140-143
    Pulford I, Watson C. Phytoremediation of heavy metal-contaminated land by trees-a review. EnvironmentInternational,2003,29:529-540
    ydipati R, Burks T, Lee W. Identification of citrus disease using color texture features and discriminateanalysis. Comp&Electron Agric,2006,52:49-59
    Qin T C, Wu Y S, Wang H X, et al. Effect of cadmium,lead and their interactions on the physiologicalandecological characteristics of root system of Brassica chinensis. Acta Ecologica Sinca,1998,18(3):320-325
    Romero-Puertas M C, Palma J M, Gomez M, et al. Cadmium causes the oxidative modification of proteinsin pea plants. Plant, Cell&Environment,2002,25(5):677-686
    Romheld V, Awad F. Significance of root exudates in acquisition of heavy metals from a contaminatedcalcareous soil by graminaceous species. Journal of plant Nutrition,2000,23(11):1857-1866
    Ross S M. Toxic metals in soil-plant systems. Chichester: Wiley Ltd,1994,104-108
    Sako Y, Emilie E, Daoust T, et al.Computer image analysis and classification of giant ragweed seeds. WeedSci,2001,49:738-745
    Salt D E, Rauser W E. MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. PlantPhysiology,1995,107(4):1293-1301
    Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environmental and ExperimentalBotany,1999,41(2):105-130
    Schutzendubel A, Schwanz P, Teichmann T, et al. Cadmium-induced changes in antioxidative systems,hydrogen peroxide content,and differentiation in Scots pine roots. Plant Physiology,2001,127(3):887-892
    Sheoran I S, Aggarwal N, Singh R. Effects of cadmium and nickel on in vivo carbon dioxide exchange rateof pigeon pea (Cajanus cajan L.). Plant and soil,1990,129(2):243-249
    Smeets K, Ruytinx J, Semane B, et al. Cadmium-induced transcriptional and enzymatic alterations related tooxidative stress. Environmental and Experimental Botany,2008,63(1-3),1-8
    teffens J C. The heavy metal-binding peptides of plants. Annual Review of Plant Biology,1990,41(1):553-575
    Sukkariyah B F, Evanylo G, Zelazny L, et al. Cadmium, copper, nickel, and zinc availability in abiosolids-amended Piedmont soil years after application. Environ Qual,2005,34:2255-2262
    Sun Q, Ye Z H, Wang X R, et al. Cadmium hyperaccumulation leads to an increase of glutathione rather thanphytochelatins in the cadmium hyperaccumulator Sedum alfredii. Journal of plant physiology,2007,164(11):1489-1498
    Tong Y P, Kneer R, Zhu Y G. Vacuolar compartmentalization: a second-generation approach to engineeringplants for phytoremediation. Trends in plant science,2004,9(1):7-9
    Tsuji N, Hirayanagi N, Okada M, et al. Enhancement of tolerance to heavy metals and oxidative stress inDunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochemical and biophysical researchcommunications,2002,293(1):653-659
    Vallino M, Drogo V, Abba S, et al. Gene expression of the ericoid mycorrhizal fungus Oidiodendron maiusin the presence of high zinc concentrations. Mycorrhiza,2005,15(5):333-334
    Van der Zaal B J, Neuteboom L W, PInas J E, et al. Overexpression of a novel Arabidopsis gene related toputative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation.Plant Physiology,1999,119(3):1047-1055
    Vandecasteele B, Meers E, Vervaeke P, et al. Growth and trace metal accumulation of two Salix clones onsediment derived soils with increasing contamination levels. Chemosphere,2005,58(8):995-1002
    Vassilev A, Tsonev T, Yordanov I. Physiological response of barley plants (Hordeum vulgare) to cadmiumcontamination in soil during ontogenesis. Environmental Pollution,1998,103:287-293
    Verbruggen N, Hermans C, Schat H. Molecular mechanisms of metal hyperaccumulation in plants. NewPhytologist,2009,181(4):759-776
    Verkleij J A C, Koevoets P L M, Blake-Kalff M M A, et al. Evidence for an important role of the tonoplast inthe mechanism of naturally selected Zn tolerance in Silene Vulgaris. Journal of Plant Physiology,1998,153(1-2):188-191
    Vitoria A P, Rodriguez A P M, Cunha M, et al. Structura1changes in radish seedlings exposed to cadmium.Biologia Plantarum,2003,47(4):561-568
    Vyslouzilova M, Tlustos P, Szakova J, et al. As, Cd, Pb and Zn uptake by Salix spp. clones grown in soilsenriched by high loads of these elements. Plant Soil and Environment,2003,49(5):191-196
    Watanabe T, Osaki M, Yoshihara T, et al. Distribution and chemical speciation of aluminum in the Alaccumulator plant, Melastoma malabathricum L. Plant and soil,1998,201(2):165-173
    Weigel H J. Inhibition of photosynthetic reactions of isolated intact chloroplasts by cadmium. Journal ofplant physiology,1985,119(2):179-189
    Wu F B, Zhang G P, Dominy P. Four barley genotypes respond differently to cadmium: lipidperoxidationand activities of antioxidant capacity. Environmental and Experimental Botany,2003,50:67-78
    Yang Y, Qi M, Mei C. Endogenous salicylic acid protects rice plants from oxidative damage caused by agingas well as biotic and abiotic stress. The Plant Journal,2004,40(6):909-919
    Yu X Z, Gu J D. Uptake, metabolism, and toxicity of methyl tert-butyl ether (MTBE) in weeping willows.Journal of hazardous materials,2006,137(3):1417-1423
    Yu X, Trapp S, Zhou P. Phytotoxicity of cyanide to weeping willow trees. Environmental science andpollution research,2005,12(2):109-113
    Zalesny J A, Zalesny Jr R S, Wiese A H, et al. Choosing tree genotypes for phytoremediation of landfillleachate using phyto-recurrent selection.International Journal of Phytoremediation,2007,9(6):513-530
    Zalesny Jr R S, Bauer E O, Hall R B, et al. Clonal variation in survival and growth of hybrid poplar andwillow in an IN SITU trial on soils heavily contaminated with petroleum hydrocarbons. InternationalJournal of Phytoremediation,2005,7(3):177-197
    Zaurov D E, Perdomo P, Raskin I. Optimizing soil fertility and pH to maximize cadmium removed by Indianmustard from contaminated soils. Journal of plant Nutrition,1999,22(6):977-986
    Zhang J P, Chen J, Hu Y M, et al. Effects of Cadmium Stress on Photosynthetic Function of Leaves ofLemna minor L. Journal of Agro-Environment Science,2007,26(6):2027-2032
    Zhang N, Chaisattapagon C. Effective criteria for weed identification in wheat fields using machine vision.Transactions of the ASAE,1995,38(3):965-974
    Zhao J, Fu J, Liao H, et al. Characterization of root architecture in an applied core collection for phosphorusefficiency of soybean germplasm. China Sci Bull,2004,49,1611-1620
    Zhao Z Q, Zhu Y G, Li H Y, et al. Effects of forms an d rates o f potassium fertilizers on cadmium uptake bytwo cultivars of spring wheat (Triticum aestivum, L.). Environment International,2003(29):973-978
    Zhu Y L, Pilon-Smits E A H, Tarun A S, et al. Cadmium tolerance and accumulation in Indian mustard isenhanced by over expressing γ-glutamylcysteine synthetase.Plant Physiology,1999,121(4):1169-1177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700