用户名: 密码: 验证码:
海南岛热带低地雨林自然恢复过程中木本植物幼苗功能性状及增补动态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物种多样性维持机制是群落生态学研究中的一个核心问题。幼苗库是热带森林生态系统的一个基本的组成部分,在群落动态、多样性维持和生态系统运行中发挥着重要作用。然而目前热带林的群落生态学研究主要以胸径(DBH)1cm以上的个体为对象,而对DBH<1cm的幼苗关注较少。幼苗性状对成年树木在生态系统中的地位和作用可能具有决定性的影响,相对于热带树木成年个体,幼苗的功能性状更容易准确获取。本文以海南岛不同恢复阶段的热带低地雨林(刀耕火种后自然恢复30年,60年的次生林和老龄林)为对象,研究了不同生长型木本植物(乔木、灌木和木质藤本)幼苗功能性状随自然恢复过程的变化趋势及其影响因素;通过比较不同恢复阶段幼苗与成年树群落的物种组成及多样性特征,揭示了不同恢复阶段热带低地雨林幼苗的增补动态;通过优势种幼苗移栽试验,分析了幼苗在不同群落中建立的可能性和限制性因子。主要研究结果如下:
     1.与老龄林中的优势种幼苗相比,刀耕火种后自然恢复30年和60年次生林群落中的优势种幼苗具有更高的比叶面积、比茎长和比根长,并在两个恢复阶段间没有显著性差异;随着恢复时间的增加,叶干物质比例显著增加,而根干物质比例随恢复逐渐降低,茎干物质比例则在3个恢复阶段没有显著差异;基于幼苗功能性状,应用PCA分析可以将不同恢复阶段的幼苗分成不同的功能群组,老龄林中的物种比次生林中的物种聚集的更为紧密。
     2.环境因子随恢复时间的增加而发生变化,土壤含水量在30年次生林中显著低于60年次生林和老龄林,冠层开阔度和土壤养分含量随着恢复时间的增加逐渐降低;幼苗的功能性状与环境因子的相关性随自然恢复过程而发生相应的变化,在恢复30年的次生林中,幼苗的多数功能性状都与土壤含水量密切相关,但到了60年的次生林和老龄林阶段,幼苗的所有功能性状均与其不相关;在恢复30年和60年的次生林中,幼苗的所有功能性状与冠层开阔度均不相关,但在老龄林中比叶面积、叶干物质比例和茎干物质比例都与其显著相关;幼苗功能性状与土壤养分含量在各个恢复阶段中都显著相关。
     3.在各恢复阶段的群落中,功能性状随生长型和幼苗生长阶段(高度级)而发生显著变化。幼苗通过调节各功能性状之间的权衡来适应群落环境的变化,乔木和灌木幼苗通过低的比叶面积、低的叶干物质比例和高的茎干物质比例来适应群落下的低光环境,而藤本植物则通过相反的策略实现其在热带低地雨林中的生存。随着幼苗的生长,乔木和灌木植物的幼苗减少对同化器官的投入,增加支撑器官的投入;藤本植物幼苗对同化器官的投入增大,减少了对支撑器官的投入,这符合藤本植物依附于其他植物生长的特性。
     4.在各恢复阶段的群落中,幼苗层和成年树(DBH≥7.5cm)的功能性状(比叶面积、叶干物质含量和比茎密度)存在显著差异,幼苗层的叶干物质含量和比茎密度与成年树之间存在线性正相关关系;幼苗层和成年树的比叶面积随恢复阶段呈降低趋势,叶干物质含量和比茎密度均随恢复时间的增加逐渐升高;在次生林中,幼苗层和成年树层功能性状与环境之间的关系基本一致,老龄林中,幼苗层、成年树层功能性状与环境之间的关系有差异。在海南岛热带低地雨林中,虽然幼苗功能性状并不能完全取代成年树的功能性状,但可根据幼苗层的功能性状推测成年树功能性状随自然恢复的变化趋势,在次生林中可以根据幼苗层的功能性状推测成年树功能性状对环境因子的响应规律。
     5.随着恢复时间的增加,幼苗的种―面积和种―个体累积速度都在增加,老龄林的累积速度显著高于次生林;群落内幼苗多度及丰富度呈先增大后降低的趋势;次生林与老龄林的幼苗层组成的相似性也逐渐增加;幼苗物种丰富度与不同环境之间的关系随恢复阶段而变化:恢复30年次生林幼苗丰富度与土壤含水量、全氮、全磷含量显著相关,恢复60年次生林幼苗丰富度与冠层开阔度、土壤水分、土壤钾含量显著相关,而老龄林丰富度与冠层开阔度、有效磷、有效钾显著相关;幼苗多度和丰富度随以高度级划分的生长阶段的增加呈逐渐递减的趋势。
     6.对不同恢复阶段的幼苗物种组成异质性和环境因子进行冗余分析,结果显示:在30年和60年次生林中,环境因子对幼苗层物种组成异质性的解释方差分别为55.1%和53.5%,而在老龄林中环境因子的解释方差较低,为43.4%。不同恢复阶段幼苗样方分布与环境因子之间的关系不同,恢复30年次生林的幼苗分布主要受土壤含水量和冠层开阔度的影响;恢复60年次生林的幼苗分布主要受土壤养分含量的影响。影响老龄林幼苗分布的环境因子主要是土壤含水量和全磷含量。
     7.刀耕火种后自然恢复30年、60年的次生林以及老龄林幼苗的物种丰富度分别占整个群落物种丰富度的63.5%、60.6%和54.9%,说明海南岛热带低地雨林幼苗库是生物多样性中一个重要的组成部分。不同恢复阶段的幼苗(DBH<1cm)、幼树(1cm≤DBH<7.5cm)和成年树(DBH≥7.5cm)之间的补充比例不同,恢复30年次生林分别有71.9%和39.7%物种的幼苗能够进入幼树和成年树层,而恢复60年次生林分别有65.0%和38.0%物种的幼苗能够进入幼树和成年树层,老龄林分别有74.9%和50.9%幼苗进入到幼树和成年树层。
     8.以热带低地雨林中分布的4个落叶物种山乌桕(Sapium discolor)、厚皮树(Lanneacoromandelica)、野漆树(Toxicodendron succedaneum)、银珠(Peltophorum tonkinense)和4个常绿物种:米槠(Castanopsis carlesi)、芳槁润楠(Machilus suaveolens)、乌墨(Syzygiumcumini)青梅(Vatica mangachapoi)为研究对象,分别进行4种改变地上和地下竞争的处理(移除地上植被、挖沟、移除地上植被并挖沟和对照)试验,分析了热带低地雨林幼苗更新与生长的影响因素。结果表明:移除地上植被和移除地上植被并挖沟能够显著增加幼苗的相对生长速率,而挖沟对移栽幼苗的相对生长速率影响不显著;落叶树种的幼苗生长速率明显高于常绿树种;幼苗相对生长速率随着光合有效辐射的增大逐渐升高。我们的研究结果表明,光照(地上竞争)是限制海南岛热带低地雨林幼苗生长的最主要因子,随着光合有效辐射的增加,幼苗的相对生长速率显著增加。
Understanding mechanism of species diversity maintenance has been one of the centralissues in community ecology. The seedling bank is a basic component in tropical forestecosystems, which play important roles in community dynamics, diversity maintenance andecosytem functioning.However, the seedlings with a diameter of less than1cm are usuallyneglected. However, seedling functional traits are often strongly related to the performance andfunction of adult plants in an ecosystem. Measurements of seedling traits are easy and accuratecompared to measurements of adult traits.In this thesis,we investigated the diversity andfucntional traits of woody plant(including trees,shrubs and lianas) seedlings in a tropicallowland rain forest of different recovery stages(30years and60years after shifting cultivationand old growth forest) on Hainan island, South China. The variation of seedling functionaltraits of woody plants during the recovery process and its influencing factors were explored.Seedling recruitment dynamics were analyzed by comparing the composition,abundance anddiversity of seedling and tree communities in each recovery stages of the tropical lowlandrainforest. The factors influencing the relative growth rate of8representative speceis of treeseedlings in the tropical lowland rain forest were examined through field experiments. Themain results are as follows.
     1. Seedlings in30-year and60-year secondary forests had higher specific leaf area,specific stem length and specific root length. Leaf mass fraction increased significantly, whileroot mass fraction reduced gradually during the recovery process. The seedlings can beaggregated into3functional groups by ordination of Principal compoent analysis The speciesin old growth forest clusted more closely than those in the secondary forests.
     2. Environmental factors changed significantly during the recovery process. Soil watercontent were significantly low in30-year forest, while there was no significant difference in60-year forest and old growth forest. Canopy openness and soil nutrient contents decreased withrecovery time. The correlations between seedling functional traits and environmental factors changed correspondingly with the natural recovery process. Most of the seedlings functionaltraits were significantly correlated with soil water content in the30-year forest but nocorrelations existed in the60-year and old growth forests. Seedling functional traits were notcorrelated with canopy openness in the30-year and60-year secondary forests while hadsignificant correaltions in the old growth forest. Seedling functional traits was correlated withsoil nutrient contents in each recovery stage.
     3. The functional traits varied significantly with life form and growth stage (height class).Seedlings adapte to the community environment by making the trade-offs between differentfunctional traits. Tree and shrub seedlings adapt to the stressful rainforest understoryenvironment (such as low light) by decreasing specific leaf area and increasing stem massfraction. However, lianas adapt to the environment through the opposite strategy. With thegrowth of seedlings, trees and shrubs reduced the investment to assimilation, and increased theinvestment to support organ. Lianas increased investment to assimilation organs, and reducedto support organs. This is consistent with characteristics of liana attanching to other plants togrowth.
     4. Functional traits of seedlings were significantly different from those of the adulttrees(DBH>7.5cm) in each recovery stage. Leaf dry mass content and specific stem density ofseedlings and adult trees were positively correlated. Specific leaf area of both seedlings andadult trees decreased, while leaf dry mass content and specific stem density increased duringthe recovery process. The environmental factors that affected functional traits of both seedlingsand trees were same to a certain extent in secondary forests, but different in old growthforest.These above results suggest that the patterns of change in functional traits and theirrelations with the environmental conditions for adult trees can be indicated in certain degree bythose of the the seedlings in this lowland rain forest.
     5. The species-area and species-individual cumulative rates of seedlings increased withthe recovery time. Species accumulation rates in old growth forest were faster than those in thesecondary forests. The seedling abundance and richness first increased and then decreased withrecovery time, which was in line with the intermediate disturbance hypothesis. Species richness of seedlings was correlated with soil water content, total nitrogen and total phosphoruscontent in the30-year forest,while it was correlated with canopy openness, soil water contentand potassium content in the60-year forest; and it was correlated with canopy openness,available phosphorus, and available potassium in the old growth forest. Seedling abundanceand richness showed a gradually decreasing trend with increasing growth stage (height class).
     6. The relationships between seedling species composition heterogeneity andenvironmental factors in three successional stages were assessed using redundancy analysis.The variance of environmental factors to interpret heterogeneity of seedlings were55.1%and53.5%respectively in30-year and60-year secondary forests, while lower (43.4%) in oldgrowth forest. The relationship between distribution of seedlings and environmental factors inthree recovery stages were different. Distribution of seedligns in30-year forest was mainlyaffected by soil water content and canopy openness. Distribution of seedligns in60-year forestwas mainly affected by soil nutrient content. Distribution of seedligns in old growth forest wasmainly affected by soil water content and total phosphorus.
     7. The species richness of seedlings in30-year forest,60-year forest and old growthforest.accounted for63.5%,60.6%and54.9%of those for the whole coummunity respectively.This result showed that seedling bank is an important component, which should not beneglected in the study of biodiversity in this lowland rain forest. The recruitment rates fromseedlings (DBH<1cm) to saplings (1cm≤DBH<7.5cm) and from seedlings to adult trees(DBH≥7.5cm) were71.9%and39.7%respectively in30-year forest, while those were65.0%and38.0%respectively in60-year forest. In old growth forest,74.9%and50.9%of seedlingspecies grew into saplings and adult trees.
     8. Eight representative species (Sapium discolor, Lannea coromandelica, Toxicodendronsuccedaneum, Peltophorum tonkinense, Castanopsis carlesi, Machilus suaveolens, Syzygiumcumini, Vatica mangachapoi) in the tropical lowland rain forest were selected to do thefollowing treatments: removal of the above vegetation (R), trenching (T), removal of the abovevegetation and trenching (R+T), and controlled (C). We measured the relative growth rate ofthese seelings to assess the factors affecting regeneration and growth of the seedlings. We found that the treatments of R and R+T significantly increased the growth rate of seedlings.But the effect of T was not significant. The growth rate of decidous species was higher thanevergreen species. Seedling growth rate increased with the increase of photosyntheticallyactive radiation. The relationship between them could be described by a linear equation. Allthese results showed that light was the most important factor for seedling growth in the tropicallowland rain forest. The below-ground competition had no significant effects on the growth ofseedlings.
引文
Adedeji FO. Nutrient cycles and successional changes following shifting cultivation practice in moistsemi-deciduous forests in nigeria. Forest Ecology and Management,1984,9(2):87-99
    Agyeman VK, Swaine MD, Thompson J. Responses of tropical forest tree seedlings to irradiance and thederivation of a light response index. Journal of Ecology,1999,87(5):815-827
    Aiba S-i, Hill DA, Agetsuma N. Comparison between old-growth stands and secondary stands regeneratingafter clear-felling in warm-temperate forests of yakushima, southern Japan. Forest Ecology andManagement,2001,140(2-3):163-175
    Albrecht MA, McCarthy BC. Seedling establishment shapes the distribution of shade-adapted forest herbsacross a topographical moisture gradient. Journal of Ecology,2009,97(5):1037-1049
    Antúnez I, Retamosa EC, Villar R. Relative growth rate in phylogenetically related deciduous and evergreenwoody species. Oecologia,2001,128(2):172-180
    Augspurger CK. Light requirements of neotropical tree seedlings: A comparative study of growth andsurvival. Journal of Ecology,1984,72(3):777-795
    Baraloto C, Timothy Paine CE, Pati o S et al. Functional trait variation and sampling strategies inspecies-rich plant communities. Functional Ecology,2010,24(1):208-216
    Barberis IM, Tanner EVJ. Gaps and root trenching increase tree seedling growth in panamaniansemi-evergreen forest. Ecology,2005,86(3):667-674
    Barton AM. Factors controlling plant distributions: Drought, competition, and fire in montane pines inarizona. Ecological Monographs,1993,63(4):367-397
    Bautista-Cruz A, del Castillo RF. Soil changes during secondary succession in a tropical montane cloudforest area. Soil Science Society of American Journal.,2005,69(3):906-914
    Bazzaz FA. The physiological ecology of plant succession. Annual Review of Ecology and Systematics,1979,10:351-371
    Bazzaz FA. Succession on abandoned fields in the shawnee hills, southern illinois. Ecology,1968,49(5):924-936
    Bazzaz FA, Bassow SL, Berntson GM et al. Elevated CO2and terrestrial vegetation: Implications for andbeyond the global carbon budget, in Global change and terrestrial ecosystems, Walker B, Steffen W(eds). Cambridge, Cambridge University Press,1996:43-76
    Beckage B, Clark JS. Seedling survival and growth of three forest tree species: The role of spatialheterogeneity. Ecology,2003,84(7):1849-1861
    Bohn H, McNeal B, O'Connor G. Soil chemistry,3rd ed. New York: John Wiley&Sons,2001
    Canham CD, Denslow JS, Platt WJ et al. Light regimes beneath closed canopies and tree-fall gaps intemperate and tropical forests. Canadian Journal of Forest Research,1990,20(5):620-631
    Capers RS, Chazdon RL, Brenes AR et al. Successional dynamics of woody seedling communities in wettropical secondary forests. Journal of Ecology,2005,93(6):1071-1084
    Casper BB, Jackson RB. Plant competition underground. Annual Review of Ecology and Systematics,1997,28:545-570
    Cavender-Bares J, Bazzaz FA. Changes in drought response strategies with ontogeny in Quercus rubra:Implications for scaling from seedlings to mature trees. Oecologia,2000,124(1):8-18
    Chazdon RL. Beyond deforestation: Restoring forests and ecosystem services on degraded lands. Science,2008,320(5882):1458-1460
    Chazdon RL, Careaga S, Webb C et al. Community and phylogenetic structure of reproductive traits ofwoody species in wet tropical forests. Ecological Monographs,2003,73(3):331-348
    Chazdon RL, Finegan B, Capers RS et al. Composition and dynamics of functional groups of trees duringtropical forest succession in northeastern costa rica. Biotropica,2010,42(1):31-40
    Chen JW, Zhang Q, Li XS et al. Steady and dynamic photosynthetic responses of seedlings from contrastingsuccessional groups under low-light growth conditions. Physiologia Plantarum,2011,141(1):84-95
    Chen YJ, Bongers F, Cao KF et al. Above-and below-ground competition in high and low irradiance: Treeseedling responses to a competing liana Byttneria grandifolia. Journal of Tropical Ecology,2008,24(5):517-524
    Chinea JD. Tropical forest succession on abandoned farms in the Humacao municipality of eastern PuertoRico. Forest Ecology and Management,2002,167(1-3):195-207
    Clark DA, Clark DB. Life history diversity of canopy and emergent trees in a neotropical rain forest.Ecological Monographs,1992,62(3):315-344
    Clark DA, Piper SC, Keeling CD et al. Tropical rain forest tree growth and atmospheric carbon dynamicslinked to interannual temperature variation during1984-2000. Proceedings of the National Academy ofSciences,2003,100(10):5852-5857
    Clark DB, Palmer MW, Clark DA. Edaphic factors and the landscape-scale distributions of tropical rainforest trees. Ecology,1999,80(8):2662-2675
    Classen AT, Norby RJ, Campany CE et al. Climate change alters seedling emergence and establishment in anold-field ecosystem. PLoS One,2010,5(10): e13476,doi:1371/journal. pone.0013476
    Cochrane MA. Fire science for rainforests. Nature,2003,421(6926):913-919
    Comita LS, Hubbell SP. Local neighborhood and species' shade tolerance influence survival in a diverseseedling bank. Ecology,2009,90(2):328-334
    Comita LS, Muller-Landau HC, Aguilar S et al. Asymmetric density dependence shapes species abundancesin a tropical tree community. Science,2010,329(5989):330-332
    Condit R, Hubbell SP, RB. F. Recruitment near conspecific adults and the maintenance of tree and shrubdiversity in a neotropical forest. American Naturalist,1992140(2):261-286
    Connell JH. Diversity in tropical rain forests and coral reefs. Science,1978,199:1302-1310
    Connell JH, Green PT. Seedling dynamics over thirty-two years in a tropical rain forest tree. Ecology,2000,81(2):568-584
    Connell JH, Tracey JG, Webb LJ. Compensatory recruitment, growth, and mortality as factors maintainingrain forest tree diversity. Ecological Monographs,1984,54(2):141-164
    Coomes DA, Grubb PJ. Impacts of root competition in forests and woodlands: A theoretical framework andreview of experiments. Ecological Monographs,2000,70(2):171-207
    Cornelissen JHC, Cerabolini B, Castro-Díez P et al. Functional traits of woody plants: Correspondence ofspecies rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science,2003a,14(3):311-322
    Cornelissen JHC, Dietz PC, Hunt R. Seedling growth, allocation and leaf attributes in a wide range of woodyplant species and types. Journal of Ecology,1996,84(5):755-765
    Cornelissen JHC, Lavorel S, Garnier E et al. A handbook of protocols for standardised and easymeasurement of plant functional traits worldwide. Australian Journal of Botany,2003b,51:335-380
    Cornwell WK, Ackerly DD. Community assembly and shifts in plant trait distributions across anenvironmental gradient in coastal california. Ecological Monographs,2009,79(1):109-126
    Díaz S, Lavorel S, McIntyre SUE et al. Plant trait responses to grazing-a global synthesis. Global ChangeBiology,2007,13(2):313-341
    Dalling JW, Winter K, Nason JD et al. The unusual life history of alaeis baackana: A shade persistent pioneertree? Ecology,2001,82(4):933-945
    Deb P, Sundriyal RC. Tree regeneration and seedling survival patterns in old-growth lowland tropicalrainforest in namdapha national park, north-east india. Forest Ecology and Management,2008,255(12):3995-4006
    Denslow JS. Functional groups diversity and recovery from disturbance, in Biodiversity and ecosystemprocesses in tropical forests. Orinas, GH, Dirzo, R, Cushman, JH. Berlin (eds), Springer-Verlag Press,1996:127-152
    Diaz S, Hodgson JG, Thompson K et al. The plant traits that drive ecosystems: Evidence from threecontinents. Journal of Vegetation Science,2004,15(3):295-304
    Dormann CF, Woodin SJ. Climate change in the arctic: Using plant functional types in a meta-analysis offield experiments. Functional Ecology,2002,16(1):4-17
    Duru M, Al Haj Khaled R, Ducourtieux C et al. Do plant functional types based on leaf dry matter contentallow characterizing native grass species and grasslands for herbage growth pattern? Plant Ecology,2009,201(2):421-433
    Edwards EJ, Benham DG, Marland LA et al. Root production is determined by radiation flux in a temperategrassland community. Global Change Biology,2004,10:209-227
    Endara M-J, Coley PD. The resource availability hypothesis revisited: A meta-analysis. Functional Ecology,2011,25(2):389-398
    Englund G, Leonardsson K. Scaling up the functional response for spatially heterogeneous systems. EcologyLetters,2008,11(5):440-449
    Ewel JE, Bigelow SW. Six plant life-forms and tropical ecosystem functioning. Biodiversity and ecosystemprocesses in tropical forests. Orinas, H, Dirzo, R, Cushman, JH. Berlin, Springer-Verlag Press,1996:101-126
    Finér L, Ohashi M, Noguchi K et al. Factors causing variation in fine root biomass in forest ecosystems.Forest Ecology and Management,2011,261(2):265-277
    Fonseca CR, Overton JM, Collins B et al. Shifts in trait-combinations along rainfall and phosphorusgradients. Journal of Ecology,2000,88(6):964-977
    Garnier E, Cortez J, Billès G et al. Plant functional markers capture ecosystem properties during secondarysuccession. Ecology,2004,85:2630-2637
    Gilbert B, Wright SJ, Muller-Landau HC et al. Life history trade-offs in tropical trees and lianas. Ecology,2006,87(5):1281-1288
    Goddard MA, Dougill AJ, Benton TG. Scaling up from gardens: Biodiversity conservation in urbanenvironments. Trends in Ecology and Evolution,2010,25(2):90-98
    Graefe S, Hertel D, Leuschner C. N, P and K limitation of fine root growth along an elevation transect intropical mountain forests. Acta Oecologica,2010,36(6):537-542
    Grime JP. Plant strategies, vegetation processes and ecosystem properties (2nd edition). Chichester: Wiley,2002
    Grime JP. Trait convergence and trait divergence in herbaceous plant communities: Mechanisms andconsequences. Journal of Vegetation Science,2006,17(2):255-260
    Grubb PJ. Control of forest growth and distribution on wet tropical mountains: With special reference tomineral nutrition. Annual Review of Ecology and Systematics,1977a,8:83-107
    Grubb PJ. The maintenance of species richness in plant communities: The importance of the regenerationniche. Biological Review,1977b,52:107-147
    Grytnes JA, Beaman JH. Elevational species richness patterns for vascular plants on Mount Kinabalu,Borneo. Journal of Biogeography,2006,33(10):1838-1849
    Guariguata MR, Ostertag R. Neotropical secondary forest succession: Changes in structural and functionalcharacteristics. Forest Ecology and Management,2001,148(1-3):185-206
    H ttenschwiler S. Tree seedling growth in natural deep shade: Functional traits related to interspecificvariation in response to elevated CO2. Oecologia,2001,129(1):31-42
    Haines BL. Plant response to mineral nutrient accumulations in refuse dumps of a leaf-cutting ant in Panama.Duke University PhD,1971
    Harper JL. Population biology of plants. London: Academic Press,1977
    Hjerpe J, Heden s H, Elmqvist T. Tropical rain forest recovery from cyclone damage and fire in Samoa.Biotropica,2001,33:249-259
    Holmgren M, Scheffer M, Huston MA. The interplay of facilitation and competition in plant communities.Ecology,1997,78(7):1966-1975
    Horn HS. Forest succession. Scientific American,1975,232:90-98
    Hubbell SP, Foster RB, O'Brien ST et al. Light gap disturbances, recruitment limitation, and tree diversity ina neotropical forest. Science,1999,283:554-557
    Jung V, Violle C, Mondy C et al. Intraspecific variability and trait-based community assembly. Journal ofEcology,2010,98(5):1134-1140
    Kahmen S, Poschlod P. Plant functional trait responses to grassland succession over25years. Journal ofVegetation Science,2004,15(1):21-32
    Kamiyama C, Oikawa S, Kubo T et al. Light interception in species with different functional groupscoexisting in moorland plant communities. Oecologia,2010,164(3):591-599
    Katabuchi M, Kurokawa H, Davies SJ et al. Soil resource availability shapes community trait structure in aspecies-rich dipterocarp forest. Journal of Ecology,2012,100(3):643-651
    Kattge J, DíAz S, Lavorel S et al. Try-a global database of plant traits. Global Change Biology,2011,17(9):2905-2935
    Kitajima K. Relative importance of photosynthetic traits and allocation patterns as correlates of seedlingshade tolerance of13tropical trees. Oecologia,1994,98:419-428
    Kitajima K, Poorter L. Functional basis for resource niche partitioning by tropical trees. Tropical forestcommunity ecology. Carson, WP, Schnitzer, SA. Oxford, Wiley-Blackwell Publications,2008:179-200
    Kitajima K, Poorter L. Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespanand shade tolerance of tropical tree species. New Phytologist,2010,186(3):708-721
    Kraft NJB, Valencia R, Ackerly DD. Functional traits and niche-based tree community assembly in anamazonian forest. Science,2008,322(5901):580-582
    Kyle G, Leishman MR. Functional trait differences between extant exotic, native and extinct native plants inthe Hunter River, NSW: A potential tool in riparian rehabilitation. River Research and Applications,2009,25(7):892-903
    Laskurain NA, Escudero A, Olano JM et al. Seedling dynamics of shrubs in a fully closed temperate forest:Greater than expected. Ecography,2004,27(5):650-658
    Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from planttraits: Revisiting the Holy Grail. Functional Ecology,2002,16(5):545-556
    Lavorel S, Grigulis K. How fundamental plant functional trait relationships scale-up to trade-offs andsynergies in ecosystem services. Journal of Ecology,2012,100(1):128-140
    Lavorel S, Grigulis K, Lamarque P et al. Using plant functional traits to understand the landscapedistribution of multiple ecosystem services. Journal of Ecology,2011,99(1):135-147
    Lebrija-Trejos E. Tropical dry forest recovery: Processes and causes of change. Wageningen University,2009
    Lebrija-Trejos E, Pérez-García EA, Meave JA et al. Functional traits and environmental filtering drivecommunity assembly in a species-rich tropical system. Ecology,2010,91(2):386-398
    Lebrija-Trejos E, Pérez-Garcia EA, Meave J et al. Environmental changes during secondary succession in atropical dry forest in mexico. Journal of Tropical Ecology,2011,27(05):477-489
    Letcher SG, Chazdon RL. Lianas and self-supporting plants during tropical forest succession. Forest Ecologyand Management,2009a,257(10):2150-2156
    Letcher SG, Chazdon RL. Rapid recovery of biomass, species richness, and species composition in a forestchronosequence in northeastern Rosta Rica. Biotropica,2009b,41(5):608-617
    Leuschner C, Rode MW. The role of plant resources in forest succession: Changes in radiation, water andnutrient fluxes, and plant productivity over a300-yr-long chronosequence in nw-germany. Perspectivesin Plant Ecology, Evolution and Systematics,1999,2(1):103-147
    Lewis SL, Phillips OL, Baker TR. Impacts of global atmospheric change on tropical forests. Trends inEcology and Evolution,2006,21:173-174
    Lewis SL, Tanner EVJ. Effects of above-and belowground competition on growth and survival of rainforests tree seedling. Ecology,2000,81(9):2525-2538
    Loik ME, Holl KD. Photosynthetic responses of tree seedlings in grass and under shrubs inearly-successional tropical old fields, Costa Rica. Oecologia,2001,127(1):40-50
    Longstreth DJ, Nobel PS. Nutrient influences on leaf photosynthesis: Effects of nitrogen,phosphorus,andpotassium for gossypium hirsutuml. Plant physiology,1980,65(3):541-543
    Lusk CH, Duncan RP, Bellingham PJ. Light environments occupied by conifer and angiosperm seedlings ina new zealand podocarp-broadleaved forest. New Zealand Journal of Ecology,2009,33(1):83-89
    MacKinnon K. Parks, people, and policies: Conficting agendas for forests in southeast Asia, in Tropicalrainforests: past, present, and future. Bermingham E, Dick C, Moritz C (eds). Chicago, University ofChicago Press,2005:558-582
    Maharjan SK, Poorter L, Holmgren M et al. Plant functional traits and the distribution of west african rainforest trees along the rainfall gradient. Biotropica,2011,43(5):552-561
    Malhi Y, Phillips OL. Tropical forests and global atmospheric change: A synthesis. PhilosophicalTransactions of the Royal Society of London, Series B,2004,359:549-555
    Markesteijn L, Poorter L. Seedling root morphology and biomass allocation of62tropical tree species inrelation to drought-and shade-tolerance. Journal of Ecology,2009,97(2):311-325
    Marks CO, Lechowicz MJ. A holistic tree seedling model for the investigation of functional trait diversity.Ecological Modelling,2006,193(3-4):141-181
    McGill BJ, Enquist BJ, Weiher E et al. Rebuilding community ecology from functional traits. Trends inEcology&Evolution,2006,21(4):178-185
    Meinzer F. Functional convergence in plant responses to the environment. Oecologia,2003,134(1):1-11
    Michalski F, Nishi I, Peres CA. Disturbance-mediated drift in tree functional groups in amazonian forestfragments. Biotropica,2007,39(6):691-701
    Miller PM, Kauffman JB. Effects of slash and burn agriculture on species abundance and composition of atropical deciduous forest. Forest Ecology and Management,1998,103(2-3):191-201
    Mori A, Takeda H. Functional relationships between crown morphology and within-crown characteristics ofunderstory saplings of three codominant conifers in a subalpine forest in central japan. Tree Physiology,2004,24(6):661-670
    Naeem S, Chapin III C, F.S., Costanza R et al. Biodiversity and ecosystem functioning: maintaining naturallife support processes. Ecology Issues,1999,4,1-12
    Nelson E, Mendoza G, Regetz J et al. Modeling multiple ecosystem services, biodiversity conservation,commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment,2009,7(1):4-11
    Niklas KJ, Cobb ED. Ontogenetic changes in the numbers of short-vs. long-shoots account for decreasingspecific leaf area in Acer rubrum (Aceraceae) as trees increase in size. American Journal of Botany,2010,97(1):27-37
    Norden N, Chave J, Belbenoit P et al. Interspecific variation in seedling responses to seed limitation andhabitat conditions for14neotropical woody species. Journal of Ecology,2009,97(1):186-197
    O'Connell BM, Kelty MJ. Crown architecture of understory and open-grown white pine (Pinus strobus L.)saplings. Tree Physiology,1994,14(1):89-102
    Ordo ez JC, van Bodegom PM, Witte J-PM et al. A global study of relationships between leaf traits, climateand soil measures of nutrient fertility. Global Ecology and Biogeography,2009,18(2):137-149
    Ostertag R. Belowground effects of canopy gaps in a tropical wet forest. Ecology,1998,79:1294-1304
    Osunkoya OO. Light requirements for regeneration in tropical forest plants: Taxon-level and ecologicalattribute effects. Australian Journal of Ecology,1996,21(4):429-441
    Osunkoya OO, Sheng TK, Mahmud N-A et al. Variation in wood density, wood water content, stem growthand mortality among twenty-seven tree species in a tropical rainforest on borneo island. Austral Ecology,2007,32(2):191-201
    Ozaki K, Ohsawa M. Successional change of forest pattern along topographical gradients in warm-temperatemixed forests in mt kiyosumi, central japan. Ecological Research,1995,10(3):223-234
    Pausas JG. Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: Asimulation approach. Journal of Vegetation Science,1999,10:717-722
    Paz H. Root/shoot allocation and root architecture in seedlings: Variation among forest sites, microhabitats,and ecological groups1. Biotropica,2003,35(3):318-332
    Pennington RT, Lavin M, Oliveira-Filho A. Woody plant diversity, evolution, and ecology in the tropics:Perspectives from seasonally dry tropical forests. Annual Review of Ecology, Evolution andSysrematics,2009,40:437-457
    Peres CA, Barlow J, Laurance WF. Detecting anthropogenic disturbance in tropical forests. Trends inEcology& Evolution,2006,21(5):227-229
    Phillips OL, Martínez RV, Arroyo L et al. Increasing dominance of large lianas in amazonian forests. Nature,2002,418:770-774
    Pico FX, Quintana-Ascencio PF, Menges ES et al. Recruitment rates exhibit high elasticity and hightemporal variation in populations of a short-lived perennial herb. Oikos,2003,103(1):69-74
    Pizano C, Mangan SA, Herre EA et al. Above-and belowground interactions drive habitat segregationbetween two cryptic species of tropical trees. Ecology,2010,92(1):47-56
    Pons TL. An ecophysiological study in the field layer of ash coppice. Π. Experiments with geum urbanumand cirsium palustre in different light intensities. Acta Boanicat Neerlandica,1977,26:29-42
    Poorter L. Are species adapted to their regeneration niche, adult niche, or both? American Naturalist,2007,169(4):433-442
    Poorter L. Growth responses of15rain-forest tree species to a light gradient: The relative importance ofmorphological and physiological traits. Functional Ecology,1999,13(3):396-410
    Poorter L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.New Phytologist,2009,181(4):890-900
    Poorter L. Light-dependent changes in biomass allocation and their importance for growth of rain forest treespecies. Functional Ecology,2001,15:113-123
    Poorter L, Arets EJMM. Light environment and tree strategies in a bolivian tropical moist forest:A test of thelight-partitioning hypothesis. Plant Ecology,2003,166:295-306
    Poorter L, Bongers F. Leaf traits are good predictors of plant performance across53rain forest species.Ecology,2006,87(7):1733-1743
    Poorter L, Bongers F, Sterck FJ et al. Beyond the regeneration phase: differentiation of height–lighttrajectories among tropical tree species. Journal of Ecology,2005a,93(2):256-267
    Poorter L, Rose S. Light-dependent changes in the relationship between seed mass and seedling traits: Ameta-analysis for rain forest tree species. Oecologia,2005,142(3):378-387
    Poorter L, Rozendaal D. Leaf size and leaf display of thirty-eight tropical tree species. Oecologia,2008,158(1):35-46
    Poorter L, van de Plassche M, Willems S et al. Leaf traits and herbivory rates of tropical tree speciesdiffering in successional status. Plant Biology,2004,6(6):746-754
    Poorter L, Wright SJ, Paz H et al. Are functional traits good predictors of demographic rates? Evidence fromfive neotropcial forests. Ecology,2008,89(7):1908-1920
    Poorter L, Zuidema PA, Pe A-Claros M et al. A monocarpic tree species in a polycarpic world: how canTachigali vasquezii maintain itself so successfully in a tropical rain forest community? Journal ofEcology,2005b,93(2):268-278
    Putz FE. The natural history of lianas on borro colorado island, panama. Ecology,1984,65:1713-1724
    Quétier F, Thébault A, Lavorel S. Plant traits in a state and transition frameword as markers of ecosystemresponse to land-use change. Ecological Monographs,2007,77:33-52
    R Development Core Team. R: A language and environment for statistical computing. R Foundation forStatistical Computing. Austria, Vienna.2011
    Rees M, Condit R, Crawley M et al. Long-term studies of vegetation dynamics. Science,2001,293:650-655
    Reich PB. Variation among plant species in leaf turnover rates and associated traits: implications for growthat all life stages, in Inherent variation in plant growth, physiological mechanisms and ecologicalconsequences. Lambers H, Poorter H, Vuuren MMIV (eds). Leiden, Backhuys Publication.1998,467-487
    Reich PB, Buschena C, Tjoelker MG et al. Variation in growth rate and ecophysiology among34grasslandand savanna species under contrasting n supply: a test of functional group differences. New Phytologist,2003a,157(3):617-631
    Reich PB, Ellsworth,D.S.,and Uhl,C. Leaf carbon and nutrient assimilation and conservation in species ofdiffering successional status in an ologotrohic amazonian forest. Functional Ecology,1995,9:65-76
    Reich PB, Tjoelker MG, Walters MB et al. Close association of rgr, leaf and root morphology, seed mass andshade tolerance in seedlings of nine boreal tree species grown in high and low light. Functional Ecology,1998,12(3):327-338
    Reich PB, Wright IJ, Cavender‐Bares J et al. The evolution of plant functional variation: Traits, spectra,and strategies. International Journal of Plant Sciences,2003b,164(S3): S143-S164
    Richards PW. The tropical rain forest: an ecological study Cambridge: Cambridge University Press,1952
    Roderick ML. On the measurement of growth with applications to the modelling and analysis of plantgrowth. Functional Ecology,2000,14(2):244-251
    Rosenthal G. Secondary succession in a fallow central european wet grassland. Flora-Morphology,Distribution, Functional Ecology of Plants,2010,205(3):153-160
    Rossatto DR, Hoffmann WA, Franco AC. Differences in growth patterns between co-occurring forest andsavanna trees affect the forest–savanna boundary. Functional Ecology,2009,23(4):689-698
    Roy V, Blois Sd. Using functional traits to assess the role of hedgerow corridors as environmental filters forforest herbs. Biological Conservation,2006,130(4):592-603
    Ruijven Jv, Berendse F. Diversity enhances community recovery, but not resistance, after drought. Journal ofEcology,2010,98(1):81-86
    Sack L. Responses of temperate woody seedlings to shade and drought: Do trade-offs limit potential nichedifferentiation? Oikos,2004,107(1):110-127
    Santiago LS, Wright SJ. Leaf functional traits of tropical forest plants in relation to growth form. FunctionalEcology,2007,21(1):19-27
    Santiago LS, Wright SJ, Harms KE et al. Tropical tree seedling growth responses to nitrogen, phosphorusand potassium addition. Journal of Ecology,2012,100(2):309-316
    Saura-Mas S, Shipley B, Lloret F. Relationship between post-fire regeneration and leaf economics spectrumin mediterranean woody species. Functional Ecology,2009,23(1):103-110
    Schnitzer SA. A mechanistic explanation for global patterns of liana abundance and distribution. AmericanNaturalist,2005,166(2):262-276
    Schnitzer SA, Bongers F. The ecology of lianas and their role in forests. Trends in Ecology and Evolution2002,17(5):223-230
    Schnitzer SA, Bongers F. Increasing liana abundance and biomass in tropical forests: Emerging patterns andputative mechanisms. Ecology Letters,2011,14(4):397-406
    Sezgin U, Hayati K. Quantitative effects of planting time on vegetative growth of Broccoli (Brassicaoleracea var. Italica). Pakistan Journal of Botany,2004,36(4):769-777
    Sheil D, Burslem DFRP. Disturbing hypotheses in tropical forests. Trends in Ecology& Evolution,2003,18(1):18-26
    Shevtsova A, Graae BJ, Jochum T et al. Critical periods for impact of climate warming on early seedlingestablishment in subarctic tundra. Global Change Biology,2009,15(11):2662-2680
    Sletvold N, Rydgren K. Population dynamics in digitalis purpurea: The interaction of disturbance and seedbank dynamics. Journal of Ecology,2007,95(6):1346-1359
    Stephenson NL, van Mantgem PJ, Bunn AG et al. Causes and implications of the correlation between forestproductivity and tree mortality rates. Ecological Monographs,2011,81(4):527-555
    Sterck FJ, Bongers F. Crown development in tropical rain forest trees: patterns with tree height and lightavailability. Journal of Ecology,2001,89(1):1-13
    Sterck FJ, Poorter L, Schieving F. Leaf traits determine the growth-survival trade-off across rain forest treespecies.2006,167(5):758-765
    Sun G, Coffin DP, Lauenroth WK. Comparison of root distributions of species in north american grasslandsusing gis. Journal of Vegetation Science,1997,8(4):587-596
    Swamy V, Terborgh J, Dexter KG et al. Are all seeds equal? Spatially explicit comparisons of seed fall andsapling recruitment in a tropical forest. Ecology Letters,2011,14(2):195-201
    Tanner EVJ, Barberis IM. Trenching increased growth, and irrigation increased survival of tree seedlings inthe understorey of a semi-evergreen rain forest in panama. Journal of Tropical Ecology,2007,23(03):257-268
    Teegalapalli K, Hiremath AJ, Jathanna D. Patterns of seed rain and seedling regeneration in abandonedagricultural clearings in a seasonally dry tropical forest in india. Journal of Tropical Ecology,2010,26(01):25-33
    ter Steege H, Hammond DS. Character convergence,diversity,and disturbance in tropical rain forest inguyana. Ecology,2001,82(11):3197-3212
    Thomas SC, Winner WE. Photosynthetic differences between saplings and adult trees: an integration of fieldresults by meta-analysis. Tree Physiology,2002,22(2-3):117-127
    Thomas WS. Field experiments on interspecific competition. American Naturalist,1983,122:240-285
    Tilman D. Resouce competition and community structure. Princeton: Princeton University Press,1982
    Toledo M. Neotropical lowland forests along environmental gradients. Wageningen University,2010
    Toledo M, Poorter L, Pe a-Claros M et al. Climate is a stronger driver of tree and forest growth rates thansoil and disturbance. Journal of Ecology,2011,99(1):254-264
    Uhl C. Factors controlling succession following slash-and-burn agriculture in amazonia. Journal of Ecology,1987,75:377-407
    Uhl C, Clark K, Dezzeo N et al. Vegetation dynamics in amazonian treefall gaps. Ecology,1988,69(3):751-763
    Uriarte M, Canham CD, Thompson J et al. Seedling recruitment in a hurricane-driven tropical forest: Lightlimitation, density-dependence and the spatial distribution of parent trees. Journal of Ecology,2005,93(2):291-304
    van Breugel M. Dynamics of secondary forests. PhD thesis, Wageningen University,2007
    van Breugel M, Martínez-Ramos M, Bongers F. Community dynamics during early secondary succession inmexican tropical rain forests. Journal of Tropical Ecology,2006,22(06):663-674
    van Dam NM. Belowground herbivory and plant defenses. Annual Review of Ecology, Evolution, andSysrematics,2009,2009(40):373-391
    van Gelder HA, Poorter L, Sterck FJ. Wood mechanics, allometry, and life-history variation in a tropical rainforest tree community. New Phytologist,2006,171(2):367-378
    Veenendaal EM, Swaine MD, Lecha RT et al. Responses of west african forest tree seedlings to irradianceand soil fertility. Functional Ecology.,1996,10(4):501-511
    Violle C, Navas M-L, Vile D et al. Let the concept of trait be functional! Oikos,2007,116(5):882-892
    Vitousek PM, Walker LR, Whiteaker LD et al. Nutrient limitations to plant growth during primarysuccession in hawaii volcanoes national park. Biogeochemistry,1993,23(3):197-215
    Wacker L, Baudois O, Eichenberger-Glinz S et al. Diversity effects in early-and mid-successional speciespools along a nitrogen gradient. Ecology,2009,90(3):637-648
    Wagenius S, Dykstra AB, Ridley CE et al. Seedling recruitment in the long-lived perennial, Echinaceaangustifolia: a10-year experiment. Restoration Ecology,2011,20(3):352-359
    Walker LR. Seedling and sapling dynamics of treefall pits in puerto rico. Biotropica,2000,32(2):262-275
    Walker LR, Landau FH, Velázquez E et al. Early successional woody plants facilitate and ferns inhibit forestdevelopment on puerto rican landslides. Journal of Ecology,2010,98(3):625-635
    Walters MB, Reich PB. Low-light carbon balance and shade tolerance in the seedlings of woody plants:Dowinter deciduous and broad-leaved evergreen species differ? New Phytologist,1999,143:143-154
    Webb CO, Peart DR. Habitat associations of trees and seedlings in a bornean rain forest. Journal of Ecology,2000,88(3):464-478
    Webb CO, Peart DR. Seedling density dependence promotes coexistence of bornean rain forest trees.Ecology,1999,80(6):2006-2017
    Westley LC. The effect of inflorescence bud removal on tuber production in Helianthus tuberosus L.(Asteraceae). Ecology,1993,74(7):2136-2144
    Westoby M, Falster D, Moles A et al. Plant ecological strategies: Some leading dimensions of variationbetween species. Annual Review of Ecology and Systematics,2002,33(1):125-159
    Westoby M, Wright IJ. Land-plant ecology on the basis of functional traits. Trends in Ecology&Evolution,2006,21(5):261-268
    Whitmore TC. An introduction to tropical rain forests. Oxford: Oxford University Press,1998
    Whittaker R. Evolution and measurement of species diversity. Taxon: Evolution, ecology, plant communities,1972
    Wilson EO. The diversity of life. Cambridge, Massachusetts, USA: Harvard University Press,1992
    Woodward FI, McKee IF. Vegetation and climate. Environment International,1991,17(6):535-546
    Wright IJ, Reich PB, Cornelissen JHC et al. Assessing the generality of global leaf trait relationships. NewPhytologist,2005,166(2):485-496
    Wright IJ, Reich PB, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content betweenspecies of high-and low-rainfall and high-and low-nutrient habitats. Functional Ecology,2001,15(4):423-434
    Wright IJ, Reich PB, Westoby M et al. The worldwide leaf economics spectrum. Nature,2004,428(6985):821-827
    Wright J. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia,2002,130(1):1-14
    Wright SJ. Tropical forests in a changing environment. Trends in Ecology and Evolution,2005,20:553-560
    Wright SJ, Kitajima K, Kraft NJB et al. Functional traits and the growth–mortality trade-off in tropical trees.Ecology,2010,91(12):3664-3674
    Wright SJ, Muller-Landau HC, Condit R et al. Gap-dependent recruitment,realized vital rates,and sizedistributions of tropical trees. Ecology,2003,84(12):3174-3185
    Yamada T, Zuidema PA, Itoh A et al. Strong habitat preference of a tropical rain forest tree does not implylarge differences in population dynamics across habitats. Journal of Ecology,2007,95(2):332-342
    Yavitt JB, Wright SJ. Seedling growth responses to water and nutrient augmentation in the understorey of alowland moist forest, panama. Journal of Tropical Ecology,2008,24(01):19-26
    Zang RG, Tao JP, Li CY. Within community patch dynamics in a tropical montane rain forest of hainanisland,south china. Acta Oecologica,2005,28:39-48
    Zhu W, Cheng S, Cai X et al. Changes in plant species diversity along a chronosequence of vegetationrestoration in the humid evergreen broad-leaved forest in the rainy zone of west China. EcologicalResearch,2009a,24(2):315-325
    Zhu YJ, Dong M, Huang ZY. Response of seed germination and seedling growth to sand burial of twodominant perennial grasses in Mu-Us sandy grassland, semiarid China. Rangeland Ecology&Management,2009b,62(4):337-344
    程瑞梅,肖文发,王晓荣等.三峡库区植被不同演替阶段的土壤养分特征.林业科学,2010,46(9):1-6
    邓福英,臧润国.海南岛热带山地雨林天然次生林的功能群划分.生态学报,2007,27(8):3240-3249
    丁易,臧润国.海南岛霸王岭热带低地雨林植被恢复动态.植物生态学报,2011,35(5):577-586
    丁易.海南岛退化热带森林植被恢复生态学研究.中国林业科学研究院博士学位论文,2006
    董莉莉,刘世荣,史作民等.中国南北样带上栲属树种叶功能性状与环境因子的关系.林业科学研究,2009,22(4):463-469
    高贤明,马克平等.暖温带若干落叶阔叶林群落物种多样性及其与群落动态的关系.植物生态学报,2001,25(3):283-290
    龚直文,亢新刚,顾丽.森林植被恢复阶段群落研究动态综述.江西农业大学学报,2009,31(2):283-291
    广东省植物研究所.海南植物志(第四卷).北京:科学出版社,1977
    郭柯.山地落叶阔叶林优势树种米心水青冈幼苗的定居.应用生态学报,2003,14(2):161-164
    郭全邦,刘玉成,李旭光.缙云山森林次生演替序列群落的物种多样性动态.应用生态学报,1999,10(5):521-524
    胡玉佳,李玉杏.海南岛热带雨林.广州:广东高等教育出版社,1992
    蒋有绪,王伯荪,臧润国等.海南岛热带林生物多样性及其形成机制.北京:科学出版社,2002
    金则新,蔡辉华.浙江天台山常绿阔叶林不同演替阶段优势种群动态.浙江林学院学报,2005,22(3):272-276
    李晓亮,王洪,郑征等.西双版纳热带森林树种幼苗的组成、空间分布和旱季存活.植物生态学报,2009,33(4):658-671
    李意德,陈步峰,周光益等.中国海南岛热带森林及其生物多样性保护研究.北京:中国林业出版社,2002
    李裕元,邵明安.子午岭植被自然恢复过程中植物多样性的变化.生态学报,2004,24(2):252-260
    李宗善,唐建维,郑征等.西双版纳热带山地雨林的植物多样性研究.植物生态学报,2004,28(6):833-843
    刘福德,王中生,张明等.海南岛热带山地雨林幼苗幼树光合与叶氮、叶磷及比叶面积的关系.生态学报,2007,11:4651-4661
    刘万德.海南岛热带季雨林群落生态学研究.中国林业科学研究院博士学位论文,2009
    柳新伟,申卫军,张桂莲南亚热带森林演替植物幼苗生态位适应度模拟.北京林业大学学报,2006,28(1):1-6
    卢俊培,曾庆波.海南岛尖峰岭半落叶季雨林“刀耕火种”生态后果的初步观测.植物生态学与地植物学丛刊,1981,5:271-280
    马姜明,刘世荣,史作民等.川西亚高山暗针叶林恢复过程中不同恢复阶段的定量分析.应用生态学报,2007,18(8):1695-1701
    孟京辉,陆元昌,刘刚等.不同演替阶段的热带天然林土壤化学性质对比.林业科学研究,2010,23(5):791-795
    孟婷婷,倪健,王国宏.植物功能性状与环境和生态系统功能.植物生态学报,2007,31(1):150-165
    彭少麟,陆宏芳.恢复生态学焦点问题.生态学报,2003,23(7):1249-1257
    宋洪涛,张劲峰,田昆等.滇西北亚高山地区黄背栎林植被演替过程中的林地土壤化学响应.西部林业科学,2007,36(2):65-70
    唐勇,曹敏.西双版纳热带森林土壤种子库与地上植被的关系.应用生态学报,1999,10(3):279-282
    陶建平,臧润国.海南霸王岭热带山地雨林林隙幼苗库动态规律研究.林业科学,2004,40(3):33-38
    陶建平.海南霸王岭热带森林群落物种多样性及其动态研究.中国林业科学研究院博士后研究工作报告,2003
    王仁卿,藤原一绘,尤海梅.森林植被恢复的理论和实践:用乡土树种重建当地森林—宫胁森林重建法介绍.植物生态学报,2002,(增刊):133-139
    王震洪,段昌群.滇中几种人工林生态系统恢复效应研究.应用生态学报,2003,14(9):1439-1445
    温远光,黄棉.大明山中山植被恢复过程植物物种多样性的变化.植物生态学报,1998,22(1):33-40
    谢玉彬,马遵平,杨庆松等.基于地形因子的天童地区常绿树种和落叶树种共存机制研究.生物多样性,2012,20:159-167
    熊文愈,骆林川.植物群落演替研究概述.生态学进展,1989,6(4):229-235
    许涵,李意德,骆土寿等.尖峰岭热带山地雨林不同更新林的群落特征.林业科学,2009,45(1):14-20
    杨梅娇.不同光照强度对一年生油樟苗生长的影响.浙江林业科技,2006,26(3):41-43
    杨万勤,钟章成,陶建平等.缙云山森林土壤速效K的分布特征及其与物种多样性的关系.生态学杂志,2001,20(6):1-3
    杨小波,张桃林,吴庆书.海南琼北地区不同植被类型物种多样性与土壤肥力的关系.生态学报,2002,22(2):190-196
    于洋,曹敏,郑丽等.光对热带雨林冠层树种绒毛番龙眼种子萌发及其幼苗早期建立的影响.植物生态学报,2007,31(6):1028-1036
    臧润国,安树青,陶建平等.海南岛热带林生物多样性维持机制.北京:科学出版社,2004
    臧润国,丁易,张志东等.海南岛热带天然林主要功能群保护与恢复的生态学基础.北京:科学出版社,2010a
    臧润国,井学辉,丁易等.新疆阿尔泰山小东沟林区木本植物群落数量分类、排序及其环境解释.林业科学,2010b,46(2):24-31
    臧润国,杨彦承.海南岛霸王岭热带山地雨林群落结构及树种多样性特征的研究.植物生态学报,2001,25(3):270-275
    臧润国,余世孝.海南霸王岭热带山地雨林森林循环与树种多样性动态.生态学报,2002,22(1):24-32
    张大勇.理论生态学研究.北京:中国高等教育出版社,2000,32-38
    张峰,张金屯.我国植被数量分类和排序研究进展.山西大学学报:自然科学版,2000,23(3):278-282
    张金屯.排序轴分类法及其应用.生态学杂志,1994,13(3):73-75
    张明,刘福德,王中生等.热带山地雨林演替早期先锋树种与非先锋树种叶片特征的差异.南京林业大学学报(自然科学版),2008,32(4):28-32
    张庆费,由文辉.浙江天童植物群落演替对土壤化学性质的影响.应用生态学报,1999,10(1):19-22
    中国科学院生物多样性委员会.中国生物物种名录:2011版.北京:物种2000中国结点,2011
    中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法.北京:科学出版社,1983
    周鹏,耿燕,马文红等.温带草地主要优势植物不同器官间功能性状的关联.植物生态学报,2010,34(1):7-16
    朱华,许再富.西双版纳片断热带雨林的结构,物种组成及其变化的研究.植物生态学报,2000,24(5):560-568

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700