用户名: 密码: 验证码:
不同产区皱皮木瓜有机酸组成及主要活性成分分离纯化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皱皮木瓜(Chaenomeles speciosa (Sweet) Nakai)是蔷薇科(Rosaceae)苹果亚科(Maloideae)木瓜属(Chaenomeles)多年生落叶小乔木,原产于亚洲东部,世界各地均有分布,是我国南北各地广范栽培的重要果树资源。皱皮木瓜果实营养丰富、气味芳香,富含超氧化物歧化酶、齐墩果酸、熊果酸、黄酮类、皂甙类、有机酸类等多种活性成分,是一种药食兼用的水果类型。然而皱皮木瓜果肉维管系统发达、石细胞丰富、有机酸含量极高,质地坚硬、口感酸涩,除药用外,难以作为鲜食水果供人们食用,由此造成大量的野生皱皮木瓜资源浪费。随着近年来国内外植物提取物市场需求量的激增,以皱皮木瓜果实为原料进行活性成分的规模化生产已成为我国皱皮木瓜果树资源产品深度开发的新方向;同时作为蔷薇科典型高酸果树品种,对皱皮木瓜果实高酸积累机理的探索研究,可以为苹果亚科近缘果树果实有机酸代谢及调控研究提供基础数据。但国内外对皱皮木瓜果实活性成分的提取、分离纯化工艺研究及果实有机酸代谢均在不同程度上受到研究方法陈旧和技术手段落后等瓶颈问题制约,尚处于起步阶段。
     代谢组学(Metabonomics/Metabolomics)研究技术是对某一生物或细胞在特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科,它是以组群指标分析为基础,以高通量检测和数据处理为手段,以信息建模与系统整合为目标的系统生物学分支,适用于生物体复杂组分代谢机理的研究。低温超声萃取技术(Low-temprature Ultrasound Extracting Technology)是近年来发展起来的一种新型分离技术,它是在低温条件下通过空化效应实现对萃取的强化作用,在超声场中空化效应产生的微小气泡瞬间被激活,一系列动力学过程伴随超声空化产生的微射流、冲击波等机械效应,加快两相间的传质速度,从而促进细胞内有效成分的溶出。离心分配色谱(Centrifugal Partition Chromatography, CPC)属于现代液液逆流分配色谱的一种,高效离心分配色谱技术(High Performance Centrifugal Partition Chromatography, HPCPC)是由离心分配色谱发展来的液相色谱新技术,具有很强的分离纯化性能,已被广泛应用于天然产物和中药有效成分的分离纯化。但以上技术迄今均鲜见于皱皮木瓜果实开发方面的研究报道。
     本论文以我国特色果树资源皱皮木瓜为试材,利用基于RP-HPLC-PDA检测平台与GC-MS检测平台的植物代谢组学研究技术对皱皮木瓜果实中的水溶性和脂溶性有机酸的组成、含量波动范围以及果实全发育期主要有机酸代谢规律进行探索研究,获得了代表样品有机酸组分定性定量检测数据、全国十个道地产区12批样品有机酸组成和含量差异数据及重庆皱皮木瓜全发育期果实有机酸代谢规律数据,分析了皱皮木瓜果实高酸积累机制;同时利用现代低温超声萃取技术、高效离心分配色谱分离技术、高效液相色谱以及气相-质谱联用检测技术,对其果实超氧化物歧化酶、齐墩果酸熊果酸、挥发油等3大类活性成分进行了提取、分离纯化和鉴定研究,并进行皱皮木瓜果实SOD酶学性质检测、齐墩果酸熊果酸提取工艺优化和纯度鉴定以及挥发油组成和含量检测,完善相关工艺并获得相应数据。有关研究结果如下:
     1.不同产区皱皮木瓜有机酸组成检测及全发育期果实有机酸代谢规律
     采用HPLC-PDA法共检出皱皮木瓜水溶性有机酸13种,采用GC-MS共检出其脂溶性有机酸43种,方法稳定可靠。国内十个道地产区12批样品水溶性有机酸总含量范围为:119.841-276.046mg·g-1,四川仪陇最高而重庆綦江三角最低;样品脂溶性有机酸总含量以山东沂州最高而陕西白河最低;聚类分析筛选出水溶性有机酸和脂溶性有机酸高、中、低酸典型品种各一组,且其组成各不相同。采用代谢组学方法研究重庆皱皮木瓜果实不同生长期水溶性与脂溶性有机酸的动态变化,结果表明:在果实发育前期两类有机酸的种类和数量随时间的增高而提高,7月中下旬达高最高水平,果实成熟期时随生长时间迅速减少;全发育期苹果酸、富马酸与水溶性总有机酸积累过程呈显著正相关,而α-酮戊二酸与之呈负相关;苹果酸、柠檬酸、奎尼酸等9种与果实脂溶性有机酸积累过程呈显著正相关,而戊酸与之呈负相关,说明苹果酸是皱皮木瓜果实高酸积累的关键因子。本节建立了皱皮果实有机酸代谢组学基本研究方法,揭示了重庆皱皮木瓜全发育期果实有机酸代谢规律。
     2.皱皮木瓜超氧化物歧化酶提取工艺优化与酶学性质检测
     皱皮木瓜果实超氧化物歧化酶最佳提取工艺为:以pH=9.32的0.05mol·L-1磷酸氢二钠溶液作为提取溶剂,料液比1:3,以聚乙烯聚吡咯烷酮作为果实酚类物质吸附剂,采用低温(0℃)超声(800W)萃取处理20mmin,目标酶蛋白提取率达到最大值。皱皮木瓜果实超氧化物歧化酶蛋白分子量约为38.5kD,在347nm波长处具有特征性紫外吸收峰,且双氧水和氯仿-乙醇(3:5)对目标酶蛋白活性具有明显抑制作用而氰化物作用不明显,因此初步皱皮木瓜超氧化物歧化酶为铁型SOD;同时酶液在60℃,恒温水浴中酶活保持时间约为10-15min,在pH=6.0-9.0酸度范围内目标酶蛋白活性较稳定。本研究有效消除了多酚与高酸对皱皮木瓜超氧化物歧化酶溶出率的抑制,明确了皱皮木瓜超氧化物歧化酶的酶学性质。
     3.皱皮木瓜齐墩果酸和熊果酸提取纯化与高效离心分配色谱分离
     皱皮木瓜齐墩果酸和熊果酸最佳提取工艺为:以95%乙醇作提取溶剂,料液比1:30,250W60℃超声处理20min,目标化合物提取率达到最大;总浸提物经过碱溶酸沉与氯仿萃取处理可使目标提取物得到进一步纯化;以正己烷-乙酸乙酯-甲醇-水(7:3:5:1,V/V)作为两相系统,下相作为固定相,上相作为流动相,采用上行模式洗脱,在流动相流速1.5mL·min-1、转速1000rpm条件下,齐墩果酸和熊果酸混合物在180min内得到有效分离,馏份重结晶后高效液相色谱仪纯度鉴定结果分别为96.9%与94.3%。本研究解决了皱皮木瓜三萜类成分同分异构体分离的难题。
     4.皱皮木瓜挥发油提取与分离鉴定
     采用水蒸汽蒸馏法提取皱皮木瓜鲜果挥发油,提取率约为0.016%;气相-质谱联用仪分离鉴定出样品挥发油组分106种,其中酯类物质(52种)占80.95%、醇类物质(18种)占6.16%、羧酸类(12种)占4.80%、烷烃和烯烃类(14种)占4.29%、酮类(3种)占1.62%,及少量萘类、吡喃类、醛类成分。皱皮木瓜果实挥发油提取率低于光皮木瓜(0.022%),皱皮木瓜果实极性挥发油组成与光皮木瓜相似但含量低于光皮木瓜,弱极性挥发油组分数量高于光皮木瓜。二者均含有多个应用价值较高的挥发油组分。本研究解决了重庆皱皮木瓜果实挥发油组成不明的问题。
     综上所述本研究结果不仅对于阐明皱皮木瓜果实有机酸组成及全发育期果实有机酸代谢机理,丰富蔷薇科果树果实有机酸代谢理论,而且对我国皱皮木瓜资源果实超氧化物歧化酶、齐墩果酸熊果酸、挥发油等3大类活性成分深度开发提供基础数据。研究结果具有重要的理论意义和实践价值。
Chaenomeles speciosa (Sweet) Nakai is Dicotyledoneae Rosaceae Maloideae Chaenomeles Lindl. defoliate perennial small tree. C. speciosa is native to eastern Asia, widely natively distributed in the world, and is one of the most important fruit tree resources in China. The fruit of C. speciosa has abundant nutrients and aromatic smell, and it contains many biological active components including superoxide dismutase (SOD), oleanolic acid(OA) and ursolic acid (UA), flavonoids, saponins and organic acids, etc. and is an edible fruit and can be used as medicine. However, there are strengthed vascular bundles, rich stone cells and extremly high organic acids content in its fruit flesh. Excepting for being used for medicine, the fruit has hard texture and tastes sour and puckery, and it is difficult to directly supply for people as fresh fruit. Which caused great wastes of C. speciosa fruits. With the significant increasing demand of plant extracts in domestic and foreign markets in recent years, scale Production of its biological active components extracts regarding C. speciosa fruit as materials has become a new way for developping of C. speciosa. At the same time, C. speciosa fruit organic acids metabolism studying is especially necesarry as a high organic acids contents fruit tree type. Which could provide the basic data for metabolism researching and regulating of organic acids in fruit of the fruit tree which is closely related to Maloideae. But researching on the extracting, seperating and purifying technology of the main biological active components and studying of the fruit organic acids metabolizing are conditioned by the old studying methods and backward technological means in different degree, that is still in its beginning stage.
     Metabonomics is a new subject that qualitatively and quantitatively analyze metabolites within a certain period in some living thing or cells. Metabonomics is branch of systems biology that is on the basis of cluster-parameters testing, and by the means of high-throughput detecting, to have information modeling and system integrating as a purpose. So it is suitable to study on the metabolism of the complicated metabolites in organism. Ultrasound extracting technology is a new extracting technology developed in recent years. This way realized strengthening effect to the active component extracting by ultrasonic cavitation. The micro bubbles were created in ultrasonic treatment field and cultivated for a moment. At the same time a series of dynamics process following along with its mechanical effects including micro-jet and shock-wave etc. produced by ultrasounic cavitation field accelerates the mass spectra transfer velocity between two phases. Which gives a boost to dissolution rate of the effective components. Centrifugal partition chromatography(CPC) technology is one of the modern liquid-liquid counter current chromatography technologies. High performance centrifugal partition chromatography (HPCPC) is a new technology of liquid chromatography derived from centrifugal partition chromatography(CPC). And HPCPC has a very strong seperating and purifying ability. Nowaway it has been widely used to seperating and purifying of the natural products and effective components of traditional Chinese drugs(TCD). But up to the present time, these technologies are rarely used to exploitation studying of Chaenomeles speciosa fruit product.
     Regarding Chaenomeles spesiosa which is pensable resources in China as experimential material, Metabonomics technology basing on RP-HPLC-PDA and GC-MS was utilized for its fruit organic acids studying including compositon, concentration range of fruit water-soluble and fat-soluble organic acids of12samples from10main producing areas of China. In addition,organic acids metabolizing law was explored during the whole developping period of C. speciosa produced in Qijiang,Chongqing and its high-acids mechanism was analyzed. At the same time, this paper has studied on extraction,seperation and purification technologies of the3main functional components including superoxide dismutase (SOD), oleanolic acid(OA) and ursolic acid (UA), essential oil etc. in its fruit. Its'SOD enzyme properties was detected, extraction routes of OA and UA was optimized and their products purity was determined, and the composition and relative content of fruit essential oil were measured, all the data was obtained. The results of this study are as follows:
     1. Determination of organic acids in C. speciosa fruits samples from defferent producing area in China and studying on metabolizing raw of organic acids during the whole developping period of C.speciosa fruit produced in Chongqing
     The study detected13water-soluble organic acids from C. speciosa fruit by HPLC-PDA and43fat-soluble organic acids by GC-MS.The steady and reliable detecting method were set up. The total water-soluble organic acids content is from119.841to276.046mg·g-1, the highest sample is from Yilong,Sichuan and the lowest is from Qijiang,Chongqing. The highest fat-soluble total organic acids sample is from Qizhong,Shandong and the lowest one is from Baihe,Shanxi. SPSS13.0clustering analysis found the high, middle and low acids strains of each water-soluble organic acids and fat-soluble organic acids. The dynamic expressing law of organic acids accumulating of C. speciosa fruit were detected and analyzed by Metabonomics technology basing on principal components analysis (PCA) of HPLC-PDA and GC-MS dectectong data. The results showed that the species and quantities of two types of organic acids increased in growing time during the earlier-developing stage, but decreased in the later-developing stage. Their main parameters reached the maximum value in July. The accumulation process of malate and fumaric acid were significantly positive with total water-organic acids but a-ketoglutarate was negative with them during the whole developing period of C. speciosa fruit.9kinds of fat-soluble acids including Malate, citrate and quinic acid etc. were significantly positive with total fat-organic acids but pentanoic acid was negative with total fat-organic acids during the whole developing period of C. speciosa fruit. The results set up the basic Metabonomics studying method of fruits organic acids,showed that malate is one of the key factors for C.speciosa fruit high-acids accumulation and explored the organic acids metabolizing law during the whole developing period of C. speciosa fruit produced in Qijiang, Chongqing.
     2. Extraction of SOD and determination of the enzyme properties in C. speciosa fruit
     The best process conditions of SOD extraction in C. speciosa fruit:extraction solvent is pH=9.32,0.05mol·L-1Na2HOP4solution, the ratio of gardenia to liquor was1:3, phenolic constituents adsorptive material is PVPP, and in0℃low temperature with800W ultrasonic assisting extration for20min. Now target SOD Enzyme extracting rate reached maximum. The molecular weight of C. speciosa fruit SOD is38.5kD and its characteristic absorption peak is at347nm. H2O2and chloroform-alcohol(3:5) significantly inhibited its SOD enzyme acitivity, but KCN didn't. So C. speciosa fruit SOD is Fe-SOD. At the same time, the enzyme activity was stable within pH6.0-9.0and within10-15min at60℃. The studying results removed the inhibit of high acid and phenolic Constituents to the dissolution efficiency of fruit SOD and SOD enzyme properties were clear.
     3. Extraction and purification of OA and UA of C. speciosa fruit and their seperation by HPCPC
     The best process conditions of OA and UA extraction in C. speciosa fruit:extraction solvent is alcohol(95%), the ratio of gardenia to liquor is1:30, at60℃and with250W ultrasonic assisting extration for20min. When OA and UA extracting rate reach maximum. The rude extracts were further purified by means of aqueous alkali and acid precipitation and chloroform extraction. Hexane-ethyl Acetoacetate-methanol-water(7:3:5:1. V|V) was used as two phases system, the lower phase was used as stationary phase and the upper phase was used as mobile phase, increased model eluting, and with1.SmL·min-1flowing rate and at1000rpm rotating speed, OA and UA were effectively seperated within180min by HPCPC. The two fractions were further purified by recrystallization. The two samples purity seperately is96.9%and94.3%determined by HPLC. The studying result disposed of the seperating problem of OA and UA isomers.
     4. Extraction, seperation and identification of essential oil from C.speciosa
     The C. speciosa fresh fruit essential oil was extracted by steam distilling method and its extracting rate is about0.016%. GC-MS seperated and identified106components of C. speciosa fruit essential oil including80.95%ester matter,6.16%alcohols,4.80%organic acids,4.29%alkanes and alkenes,1.62%ketones, and some naphthalenes, pyrans, aldehydes,etc. Its extracting rate was lower than C. sinensis (0.022%). The polar fractions of its essential oil components composition is similar with C. sinensis but their content was a bit lower lower than C. sinensis but there are more non-polar fractions constituents in C. speciosa than C. sinensis. Both of them contain several valuable active components. The studying result discovered the composition of essential oil of C. speciosa and C. sinensis produced in Chongqing.
     In conclusion, this paper not only discovered the composition of organic acids in C. speciosa fruit from defferent producing area in China and metabolizing law of its fruit during its developing period from Qijiang,Chongqing, but also provided the basic theoretical data for mai functionall active components including SOD.OA and UA, essential oil of its" fruit.What we have studied above, there were an important theory meaning and practical value direction for enriching fruit organic acids matabolizing studying theory of Rosaceae fruit.
引文
[1]中国科学院植物研究所编.中国植物志(第三十六卷,被子植物门·双子叶植物纲·蔷薇科(一)·绣线菊亚科-苹果亚科)[M].科学出版社,1974:351-351.
    [2]王云亮,张芬,张华,白志川.药用木瓜综合开发利用[J].河北农业科学,2010,14(6):120-122.
    [3]冯爱国,李春艳.木瓜的营养成分及功效价值[J].中国食物与营养,2008,5:59-60.
    [4]韩立敏.木瓜有效成分的研究[J].安徽农业科学,2009,37(23):10969-10970,11002.
    [5]白志川,刘世尧,周志钦.药用木瓜规范化栽培及开发利用[M].北京:中国农业出版社,2008.12:13-17.
    [6]刘世尧,白志川,李加纳.皱皮木瓜与光皮木瓜药材品质多性状指标综合评价研究[J].中国中药杂志,2012,38(5):426-430.
    [7]中国科学院植物研究所编.中国植物志(第三十六卷,被子植物门·双子叶植物纲·蔷薇科(一)·绣线菊亚科-苹果亚科)[M].科学出版社,1974:348-348.
    [8]王明明,陈化榜,王建华,宋振巧,李圣波.木瓜属品种亲缘关系的SRAP分析[J].中国农业科学,2010,43(3):542-551.
    [9]臧德奎,王关祥,郑林,陈红.我国木瓜属观赏品种的调查与分类[J].林业科学,2007,43(6):72-76.
    [10]中国科学院植物研究所编.中国植物志(第三十六卷,被子植物门·双子叶植物纲·蔷薇科(一)·绣线菊亚科-苹果亚科)[M].科学出版社,1974:350-350.
    [11]张茜,王光,何祯祥,钦佩.木瓜种质资源的植物学归类及管理原则[J].植物遗传资源学报,2005,6(3):339-343.
    [12]杨松杰.木瓜属植物种质资源研究进展[J].湖北农业科学,2011,50(20):4116-4150.
    [13]王嘉祥.山东皱皮木瓜品种分类探讨[J].园艺学报2004.,31(4):520-522.
    [14]彭华胜,王德群,安徽地道药材宣木瓜生产现状与保护对策[J].现代中药研究与实践,2003,17(2):17-18.
    [15]王有为,何敬胜,范建伟,黄博,班小泉.木瓜道地起源与道地产区形成研究[C].中华中医药学会.药用植物化学与中药有效成分分析研讨会论文集(上),北京:2008:11-16.
    [16]彭华胜,王德群.安徽地道药材宣木瓜生产现状与保护对策[J].现代中药研究与实践,2003,17(2):17-18.
    [17]白志川,刘世尧,周志钦.药用木瓜规范化栽培及开发利用[M].北京:中国农业出版社,2008.12:59-61.
    [18]国家药典委员会.中华人民共和国药典(2005年版一部)[M].北京:化学工业出版社,2004.12:41-41.
    [19]吴虹,魏伟,吴成义.木瓜化学成分及药理活性的研究[J].安徽中医学院学报.2004,23(2):62-64.
    [20]陈勤.宜木瓜的化学成分与药理研究进展[J].现代中药研究与实践,2008,22(6):76-80.
    [21]国家药典委员会.中华人民共和国药典(2010年片一部)[M].北京:中国医药科技出版社,2010,4:57-57.
    [22]陈日来,吴廷俊,戴跃进.四种木瓜主要化学成分的比较[J].华西药学杂志,2000,15(16):38-39.
    [23]McCord Joe M,et al.Superoxide dismutase-Enzymic function for erythrocuprem(hemocuprein).J Biol Chem,1969,244(22):6049-6055.
    [24]Khan M A,Van D J,Yeung I W,et al. Partial volume rat lung irradiation assessment of early DNA damage in different lung regions and effect of radical scavengers[J]. Radiother Oncol,2003,66(1):95-102.
    [25]王中凤,张敏,杨红,李奇,马正耕.仙人掌超氧化物歧化酶提取与纯化工艺研究[J].中国林副特产,2009,103(6):13-17.
    [26]姜云,茅力,蔡云清.果蔬中超氧化物歧化酶的提纯与测活技术研究进展[J].食品科学,2008,29(12):780-785.
    [27]赵靖,糜漫天,唐勇,张婷,王建.木瓜超氧化物歧化酶粗提物颗粒的加工及生物学效应研究[J].第三军医大学学报,2008,30(6):514-516.
    [28]姜云,茅力,蔡云清.果蔬中超氧化物歧化酶的提纯与测活技术研究进展.[J].食品科学,2008,29(12):780-785.
    [29]蔡志华.木瓜超氧化物歧化酶粗酶提取工艺初探[J].安徽农业科学.2008,36(5):1796-1797,1849.
    [30]柳建平.皱皮木瓜超氧化物歧化酶分离纯化研究[J].安徽农业科学.2009,37(1):222-223.
    [31]何晓红,王雪松,陈智博,于笑坤,张博殉,刘兰英.茶花粉超氧化物歧化酶的性质研究[J].食品科学,2006,27(04):85-88.
    [32]赵华,陶静.玉米超氧化物歧化酶的纯化及性质研究[J].中国粮油学报,2006,21(4):40-44.
    [33]张雷,曲和之,黄露,杜姗姗,郝东云,王晓平.无花果叶超氧化物歧化酶的分离、纯化及性质研究[J].高等学校化学学报,2008,29:1588-1591.
    [34]许平,袁原.大蒜超氧化物歧化酶活性测定及某些性质研究[J].渝州大学学报(自然科学版),1997,14(1):43-48.
    [35]王岱杰,王晓,耿岩玲,李圣波,反相高效液相色谱测定不同品种皱皮木瓜中齐墩果酸和熊果酸含量[J].食品科学,2008,29(10):197-199.
    [36]盛艳乐,赵大球,周春华,陶俊.植物熊果酸和齐墩果酸分析的研究进展[J].中国农学通报2009,25(23):347-350.]
    [37]王立新,韩广轩,刘文庸,张卫东.齐墩果酸的化学及药理研究[J].药学实践杂志,2001,19(2):104-107.]
    [38]韩小龙.从枇杷叶中提取、分离熊果酸的工艺研究[D].陕西杨陵:西北大学化学学院,2005:2-4.]
    [39]宁兰,杨来秀,王亚辉,潘永玉,张春花.中药中齐墩果酸的提取工艺研究进展[J].内蒙古中医药,2000,19(增刊):109-110.
    [40]刘柯彤,陶亮亮,马雄,刘军海.熊果酸的生物活性及其提取工艺的研究进展[J].化工技术与开发,2010,39(8)41-44.
    [41]邹盛勤,许华,陈武.白苏中齐墩果酸和熊果酸的RP-HPLC分离和检测[J].食品工业,2008(4):72-75.
    [42]吕寒,陈剑,李维林,张涵庆.枇杷叶中三萜酸类成分的提取工艺研究[J].时珍国医国药.200718(11):2791-2792.
    [43]蒋珍菊,李玲,王周玉.微波辅助提取枇杷叶中齐墩果酸工艺研究[J].西华大学学报(自然科学版),2009,28(5):94-97.
    [44]林舒,陈玉枝.大孔吸附树脂对女贞子中齐墩果酸吸附纯化的研究[J].福建中医学院学报,2002,12(4):47-48.
    [45]张健全,张文成,刘玲,郑仁娟,张海涛,王武.齐墩果酸在超临界CO2中的溶解度研究[J].安徽化工,2009,36(5):13-16.
    [46]曹学丽主编.高速逆流色谱分离技术及应用[M].北京:化学工业出版社,2005,2:188-278.
    [47]易德玮,方俊,蒋红梅,董清平.植物挥发油及其主要化学成分抗菌作用研究综述[J].现代农业科 技,2008,23:357-358.
    [48]张玲,徐国兵,彭华胜,谢晓梅,孙爱萍.木瓜类药材挥发油化学成分的GC-MS比较[J].中药材,2009,32(4):535-539.
    [49]王健美,冯蕾.顶空固相微萃取与气质联用分析光皮木瓜果实中的挥发性成分[J].精细化工,2007,24(12):1215-1217.39.
    [50]史亚歌,刘拉平.光皮木瓜挥发油成分的GC-MS分析[J].西北农业学报,2005,14(3):163-166.
    [51]龚复俊,卢笑丛,陈玲,王有为.西藏木瓜挥发油化学成分研究[J].中草药,2006,37(11):1634-1635.
    [52]洪永福,孙连娜,郭学敏,郭美丽,李医明.三种木瓜的乙醚提取部分的气相色谱-质谱分析[J].第二军医大学学报,2000,21(8):749-783.
    [53]张上隆,陈昆松.果实品质形成与调控的分子生理[M].北京:中国农业出版社,2007,9:1-106
    [54]陈发兴,刘星辉,陈立松.果实有机酸代谢研究进展[J].果树学报,2005,22(5):526-531.
    [55]刘世尧,白志川,李加纳.皱皮木瓜与光皮木瓜药材品质多性状指标综合评价研究[J].中国中药杂志,2012,38(5):901-907.
    [56]高诚伟,康勇,雷泽模,段志红,李蕾.皱皮木瓜中有机酸的研究[J].云南大学学报(自然科学版),1999,21(4):319-321.
    [57]龚复俊,陈玲,卢笑丛,王有为.皱皮木瓜果实中有机酸成分的GC-MS分析[J].植物资源与环境学报,2005,14(4):55-56,58.
    [58]刘晓棠,张卫明,姜洪芳,单承莺.不同种类木瓜样品的总有机酸含量测定[J].食品研究与开发,2010,31(1):100-102.
    [59]李娜,金敬红,姜洪芳,张卫明.宣木瓜总有机酸的纯化及镇痛抗炎作用[J].中国实验方剂学杂志,2011,17(1):113-117.
    [60]Weckw Erthw.Metabolomics in systems biology [J].Annu Rev Plant Biol,2003,54:669-689.
    [61]Maud M. Koek, Renger H. Jellema, Jan van der Greef, Albert C. Tas and Thomas Hankemeier. Quantitative metabolomics based on gas chromatograpHy mass spectrometry:status and perspectives[J]. Metabolomics,2011,7(3):307-328.
    [62]Goodacre R. Metabolic profiling:pathways in discovery. Drug Discovery Today,2004,9:260-261.
    [63]TANG Hui-Ru.WANG Yu-Lan. Metabonomics:a Revolution in Progress[J]. Progress in Biochemistry and BiopHysics,2006,33(5):401-417.
    [64]Weckwerth W,Annu. Metabolomics in systems biology[J] Rev. Plant Biol.,2003,54:669-689.
    [65]尹恒,李曙光,白雪芳,杜昱光.植物代谢组学的研究方法及其应用[J].植物学通报,2005,22(5):532-540.
    [66]许国旺编著.代谢组学——方法与应用[M].北京:科学出版社,2008,8:354-378.
    [67]Maciej Stobiecki,Piotr Kachlicki. Metabolomics and metabolite profiling-can we achieve the goal?[J]. Acta Physiologiae Plantarum,2005,27(1):109-116.
    [68]Huhman D V.Summer L W. Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer[J].Phytochemistry,2002,59:151.
    [69]邱德有,黄璐琦.代谢组学研究——功能基因组学研究的重要组成部分[J].分子植物育种,2004,12(12):165-177.
    [70]漆小泉,王玉兰,陈晓亚编著.植物代谢组学——方法与应用[M].北京:化学工业出版社,2011,9:13-14.
    [71]袁勤生主编.超氧化物歧化酶[M].广州:华东理工大学出版社,2009,5:127-159.
    [72.谢岩黎,李元瑞,张广彬,谷瑞芳,魏国翔.大蒜细胞溶质中超氧化物歧化酶的性质研究[J].食品科学,2003,24(4):140-141.
    [73]江红霞,季本华,朱素琴.植物超氧化物歧化酶的制备工艺研究[J].时珍国医国药,2008,19(7):1746-1748.
    [75]Destandau E, Toribio A, Lafoss M E, et al. Centrifugal partition chromatograpHy directly interfaced with mass spectrometry for the fast screening and fractionation of major xanthones in Garcina mangostana[J]. Journal of Chromatography A,2009,1216:1390-1394.
    [76]lto Y. Countercurrent ChromatograpHy[M].Journal of Chromatography Library,1992,52A:69-69.
    [77]Ito Y. Countercurrent ChromatograpHy[M]. Journal of Chromatography Library,1992,52A:78-81.
    [78]张荣劲,杨义芳.高速逆流色谱分离天然产物的溶剂体系选择[J].中草药,2008,39(2):298-303.
    [79]金瑛,许英爱,王艳军,梁毅.薄层扫描法测定水蜡树果实及叶子中齐墩果酸的含量[J].药学实践杂志,18(3):157-158.
    [80]董海丽,纵伟.分光光度法测定竹节参中齐墩果酸皂甙含量[J].安徽农业科学,2007,13(5):26-26.
    [81]赵蓉.正交试验法优选女贞子中齐墩果酸的提取工艺[J].海峡药学,2007,19(12):18-20.
    [82]赵红岩,翟文俊.光皮木瓜齐墩果酸和熊果酸乙醇提取工艺研究[J].陕西教育学院学报,2010,26(3):81-85.
    [83]王志芳,汪芳安,彭光华,张声华.木瓜中齐墩果酸和熊果酸提取工艺的研究[J].食品科技,2006,7:134-137.
    [84]李海鹏,徐怀德,孟祥敏,李钰金.光皮木瓜齐墩果酸超声波辅助提取及纯化工艺[J].农业工程学报,2008,24(10):222-226.
    [85]杨胜丹,余林春,付大友.半制备高效液相色谱法分离纯化川木通中齐墩果酸[J].应用化工,2011,41(1):143-145.
    [86]谭穗懿,杨旭锐,杨洁,等.青果挥发油化学成分的GC-MS分析[J].中药材,2008,31(6):842-844.
    [87]林晓敏,李文杰.油酸异丙酯的合成研究[J].化学工程与装备,2011,10:26-28.
    [88]刘学民.棕榈酸异丙酯的合成[J].香料香精化妆品,2004,6:14-16.
    [89]吴志平,张治柳,黄克瀛.肉豆蔻酸异丙酯的合成工艺研究[J].中南林学院学报,2000,20(4):72-75.
    [90]Michael H. Abraham, William E. Acree Jr. Characterisation of the water-isopropyl myristate system[J]. International Journal of Pharmaceutics 2005,294(1-2):121-128.
    [91]牛淑妍,张前前,许良忠,曹亮.油酸乙酯的气相色谱分析[J].青岛化工学院学报,2002,23(2):51-53.
    [92]赵振东,苏文强,陈风雨,毕良武.金合欢醇的资源及其生物活性应用研究进展[J].林产化学与工业,2005,25(增刊):175-178.
    [93]李珍,杨得坡.共轭亚油酸构效关系及其分子药理研究进展[J].国外医学:药学分册,2007.34(1):26-30.
    [94]刘文静,潘葳.采用反相高效液相色谱法同时测定杨梅果实中的有机酸.热带作物学报,2011,32(1):172-175.
    [95]郭根和,潘葳,苏德森,饶秋华,何志刚,陈涵贞.反相高效液相色谱法同时测定枇杷中的某些有机酸[J].福建农业学报,2005,20(3):198-201.
    [96]MillerS S, DriscollB T, Gregerson R G, Gantt J S, Vance C P.1998. Alfalfamalate dehydrogenase (MDH): Molecular cloning and character-ization of five different forms reveals a unique noduleenhancedMDH. Plant J, 15:173-184.
    [97]Ahmad R Bahram,i Zhu-HuiChen, RobertPWalker, Richard C, Leegood, Julie E Gray.2001. Ripening-related occurrence of pHospHoenol-pyruvate carboxykinase in tomato fruit. Plant MolecularBiology, 47:499-506.
    [98]Davey M W,Montahu M V.Inzed,et al.Plant L-ascorbic acid:chemistry, function,metabolism, bioavailability and effects on processing Sci. Food Agric.,2000,80:825-860.
    [99]李宝盛,彭新湘,李明启.植物中草酸积累与光呼吸乙醇酸代谢的关系[J].2000,26(2):148-152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700