用户名: 密码: 验证码:
水稻叶形及产量相关性状主效QTL的精细定位与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
株型改良是提高水稻产量的重要途径之一,适当的叶形和株高对于提升冠层的光合利用率、促进作物增产具有积极的作用。QTL定位是解析水稻复杂农艺性状遗传基础的主要手段之一。前期,我们利用优良籼稻保持系珍汕97和株叶形态优良的强势恢复系93-11为亲本构建回交重组自交系,并对一系列株型性状和产量相关性状进行QTL定位,发现许多一因多效或多基因紧密连锁的QTL区段控制水稻株型和产量相关性状。在此基础上,本研究主要针对位于第一和第8染色体上的两个效应较大的QTL簇进行精细定位和图位克隆,解析水稻株叶形态及产量形成的分子遗传基础,为水稻高产分子育种提供有用的靶基因。主要结果如下:
     1.针对第1染色体短臂RM283—RM8083区间上同时控制剑叶长宽、一二次枝梗数和穗重的QTL簇,通过筛选高世代回交群体中重组交换单株,构建覆盖该区段的纯合染色体片段代换系,以及利用后代家系测验的方法缩小和锚定目的基因的位置,将控制剑叶长度的QTL (qFL1)精细定位在约31.3kb的范围内,该区域包含了4个候选基因。条件QTL分析发现,qFL1很可能是一个同时控制叶片大小和产量相关性状的多效性基因。另外,与qFLl紧密连锁的区段还存在一个影响剑叶宽的QTL qFW1.2。说明该区段存在紧密连锁的多基因共同决定叶片的形态和产量构成性状。
     2.qFL1区段上两个主要候选基因,成花素同源基因OsFTLl和ABC转运子,在亲本间存在序列差异。比较近等基因系NILZS97和NIL93-11的表达量发现,OsFTLl的表达量在栽后两周和40天的苗期叶片以及抽穗前7天的剑叶中均有极显著的差异,表明OsFTLl最有可能是影响叶片形态和产量相关性状的目的基因。
     3.针对第8染色体短臂RM5428—MRG2181区间上同时控制抽穗期、剑叶长宽、株高、叶片间距、穗长、穗抽出度、一二次枝梗数和穗重的QTL簇,我们利用三个杂合自交后代家系(HIFs)对其效应进行了验证和目标区段的缩小。利用新开发的一系列SSR、InDel和测序标记,结合重组交换单株的后代家系测验,将目标QTL精细定位在20kb的范围内,并确定了两个候选基因:CCAAT盒结合蛋白和转运酶蛋白。转基因互补测验显示,CCAAT盒结合蛋白能够不同程度地互补珍汕97遗传背景的近等基因系受体,使抽穗期、株高和产量相关性状同时发生改变;而转运酶蛋白没有产生明显的表型,说明CCAAT盒结合蛋白就是控制多个表型的目标基因,具有一因多效的作用。我们将其命名为Ghd8(Grain number, plant height, and heading date8)。
     4.利用HIFs对目标QTL效应区段验证表明,Ghd8效应受背景中其它基因比如qHD6.1和Ghd7的影响。在Ghd7为品种93-11的基因型时,Ghd8区间表现为完全显性;当Ghd7为珍汕97基因型时,Ghd8效应大大减小,说明Ghd7与Ghd8存在遗传互作。
     5.Ghd8近等基因系和转基因株系的表达谱分析发现,该基因在全生育期内都有表达,其中在剑叶和根内表达量较高。在短日照条件下,Ghd8具有上调Ehdl、 Hd3a和RFT1表达的作用,促进抽穗;在长日照条件下,Ghd8抑制Ehd1、Hd3a和RFT1的表达,能够延迟抽穗;但在长短日照条件下,Ghd8均不影响节律钟基因OsGI和早开花基因OsMADS50, OsMADS51和RID1表达。表明Ghd8在长短日照条件对Ehd1-Hd3a开花路径具有双向调控的作用。
Improvement of plant morphology is an important approach to increase rice yield. The proper leaf shape and plant height can increase photosynthetic efficiency of rice, which thus is important target for high yield breeding. QTL mapping is one of the main methods for dissection of the genetic base of complex agronomic traits in crops. In a previous study, through using a backcross recominbant inbred lines (BRILs) derived from a cross of93-11and Zhenshan97, both elite indica hybrid rice parents, we found that about7genomic regions on chromosome1,3,6,7,8,11and12showed the pleiotropy, which were controlling the leaf shape and yield traits simultaneously. To deepen our understanding of the molecular and genetic base of the plant morphology, and to provide desirable genes for marker-assisted breeding for improvement of high-yield potential in rice, two QTL clusters each on chromosomes1and8with large effects controlling the leaf shape and yield traits have been targeted for fine mapping and cloning in our study. The main results are present below:
     1. To dissect the cluster QTL in the region of RM283—RM8083on the short arm of chromosome1affecting flag leaf length (FL), flag leaf width (FW), primary branch number (PBN), secondary branch number (SBN) and panicle weight (PW), we developed a subset of homologous CSSLs covering the target region, and screened recombinant plants from an advanced backcross population, and employed progeny test for precisely phenotyping the recombinants. The target QTL (qFL1) affecting various traits was narrowed to a31.3kb region that contains four candidate genes. Using conditional QTL analysis, we found that qFL1had a pleiotropic effect on the leaf size and yield related traits; and another minor-effect QTL (qFW1.2) close to qFL1was also detected for flag leaf width. These results suggest that the pleiotropy of qFL1and its closely linked gene affected the leaf size and yield related traits.
     2. The comparative expression analysis in leaves of a pariwise of near-isogenic lines (NILs) at three leaf developmental phases, which including the young leaf stage of seedlings, about40days after transplantation, and the mature stage about seven days before heading, shows that two annotated genes, OsFTL1a homolog of florigen FT (Flowering locus T) in Arabidopsis, and ATP-binding cassette (ABC) transporter in the31.3kb region are the most likely candidates for qFLl. Particularly, the expression of OsFTL1at all the three stages differed between the near-isogenic lines that carry the alleles of Zhenshan97and93-11respectively.
     3. For the cluster QTL on the short arm of chromosome8affecting heading date (HD), flag leaf length (FL), flag leaf width (FL), plant height (PH), distance between flag leaf and secondary leaf (FD), panicle length (PL), panicle exsertion (PE), primary branch number (PBN), secondary branch number (SBN) and panicle weight (PW), three heterogeneous inbred families (HIFs) with the heterozygous target region in different genetic backgrounds were used to vadidate the QTL effect and to narrow down the target gene. One of three HIFs with large effect at the QTL was used to construct a large segregative population to screen the recombinant plants for fine-mapping. Through developing a set of SSR, InDel and sequencing markers, and progeny testing of the recombinants, a20kb region containing two ORFs (Open Reading Frames) was determined as candidates for the QTL. The two annotated genes are CCAAT-box binding factor and transferase protein. Complemention test showed that CCAAT-box binding factor is that target gene affecting various traits including grains number, heading date and plant height. We thus renamed it Ghd8.
     4. The effect magnitudes of Ghd8in the three HIFs depended on the other QTLs in the genetic background, especially qHD6.1and qHD7on chromosomes6and7. When the alleles of qHD7, a QTL corresponding a cloned gene Ghd7, was from93-11, the distribution of heading date in the HIF carrying the alleles of93-11at qHD7showed an obvious segregation of two peaks with the3:1ratio, and the alleles of93-11is complete dominance; but the other two HIFs carrying the alleles of Zhengshan97at qHD7showing normal distribution demonstrated the effect of Ghd8was small. These results indicate that Ghd7might interact with Ghd8.
     5. Ghd8was constitutively expressed in different tissues, of which the expression level in flag leaf and root were a little higher than other tissues. Through comparative analysis of the expressive profile of several flowering genes of the photoperiod pathway in the Ghd8positive and negative transgenic plants, we found that Ghd8could up-regulate Ehdl, Hd3a and RFT1, and promote flowering in the short-day conditions, and down-regulate Ehdl, Hd3a and RFT1and delay flowering in the long-day conditions; however, the circadian clock gene OsGI and early flowering gene OsMADS50,OsMADS51and RID1were not altered in both conditions. These results indicate that Ghd8has a dual regulatory function in the Ehd1-Hd3a pathway.
引文
1.王鹏.利用回交重组自交系分析水稻株型与穗部性状的遗传基础.[硕士学位论文].武汉:华中农业大学图书馆,2007
    2.工智权,刘喜,江玲,杨超,刘世家,陈亮明,翟虎渠,万建民.利用染色体片段置换系(CSSLs)群体检测水稻剑叶形态性状QTL.南京农业大学学报,2010,33:1-6
    3.吕川根,谷福林,邹江石,陆曼丽.水稻理想株型品种的生产潜力及其相关特性研究.中国农业科学,1991,24:15-23
    4.朱金燕,嵇朝球,周勇,工军,王中德,杨杰,范方军,梁国华,仲维功.利用染色体单片段代换系定位水稻株高QTL.植物学报,2011,46:632-641
    5.李睿,赵妹丽,毛艇,徐正进,陈温福.水稻剑叶形态性状QTL分析.作物杂志,2010,3:26-29
    6.汪庆,汪得凯,陶跃之.一个新的水稻半矮化小穗突变体的遗传分析与基因定位.中国水稻科学,2011,25:677-680
    7.严长杰,严松,张正球,梁国华,陆驹飞,顾铭洪.一个新的水稻卷叶突变体rl9(t)的遗传分析和基因定位.科学通报,2005,50:2757-2762
    8.林拥军.农杆菌介导的水稻转基因研究.[博士学位论文].武汉:华中农业大学图书馆,2001
    9.邵高能,唐绍清,罗炬,焦桂爱,唐傲,胡培松.水稻剑叶形态与稻米粒形QTL分析及相应剩余杂合体衍生群体的构建.分子植物育种,2009,7:16-22
    10.周桂林.水稻叶片大小QTL的鉴定与分析.[硕士学位论文].武汉:华中农业大学图书馆,2009
    11.周开达,马玉清,刘太清,沈茂松.杂交水稻亚种间重穗型组合选育——杂交水稻超高产育种的理论与实践.四川农业大学学报,1995,13:403-407
    12.周开达,汪旭东,李仕贵,李平,黎汉云,黄国寿,刘太清,沈茂松.亚种间重穗型杂交稻研究.中国农业科学,1997,30:91-93
    13.陈华夏,周成博,邢永忠.水稻Dwarfl移码突变的新突变体鉴定.遗传,2011,33:397-403
    14.陈温福,徐正进,张文忠,张龙步,杨守仁.水稻新株型创造与超高产育种.作物学报,2001,27:665-672
    15.罗伟,胡江,孙川,陈刚,姜华,曾大力,高振宇,张光恒,郭龙彪,李仕贵,钱前.水稻抽穗期功能叶叶型相关性状遗传分析.分子植物育种,2008,6:853-860
    16.杨守仁,张龙步,工进民.水稻理想株型育种的理论和方法初论.中国农业科学,1984,3:6-12
    17.杨守仁.籼粳稻杂交育种的进展与前景.中国农业科学,1986,19:15-18
    18.封超年,郭文善.高产小麦株型的指标体系.扬州大学学报(自然科学版),1998,1:24-30
    19.侯昕.水稻SKIP同源基因的功能研究.[博士学位论文].武汉:华中农业大学图书馆,2009
    20.胡文新,彭少兵,高荣孚,Ladha JK.新株型水稻的光合效率.中国农业科学,2005,38:2205-2210
    21.郑伟.水稻白叶枯病菌遗传多样性分析.[博士学位论文].武汉:华中农业大学图书馆,2008
    22.袁隆平.杂交水稻超高产育种.杂交水稻,1997,12:1-6
    23.徐正进,陈温福,周洪飞,张龙步,杨守仁.直立穗型水稻群体生理生态特性理生态特性及其利用前景.科学通报,1996,41:1122-1126
    24.黄耀祥,林青山.水稻超高产、特优质株型模式的构想和育种实践.广东农业科学,1994,4:1-6
    25.黄耀祥.半矮秆、早长根深、超高产、特优质中国超级稻生态育种工程.广东农业科学,2001,3:2-6
    26.梁国华,曹小迎,隋炯明,赵祥强,严长杰,裔传灯,顾铭洪.水稻半矮秆基因Sd-g的精细定位.科学通报,2004,49:778-783
    27.童汉华,梅捍卫,邢永忠,曹一平,余新桥,章善庆,罗利军.水稻生育后期剑叶形态和生理特性的QTL定位.中国水稻科学,2007,21:493-499
    28.路铁刚,孙敬三.植物逆转座子及其在基因功能和基因组分析中的应用.遗传,1997,19:39-44
    29. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science,2005,309:1052-1056.
    30. Andres F, Galbraith DW, Talon M, Domingo C. Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol,2009,151:681-690
    31. Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J,2007,51:1019-1029
    32. Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol,2009,50:1416-1424
    33. Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M. Loss-of-function of a rice gibberellins biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice "Green Revolution". Breeding Sci,2002,52:143-150
    34. Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science,2005,309:741-745
    35. Ashikari M. Wealthy Farmer's Panicle, promotes rice yield is restricted its expression by two-way epigenetic silencing. Abstract,9th International Symposium of Rice Functional Genomics,2011, Taiwan, China
    36. Bartrina I, Otto E, Strnad M, Werner T, Schmulling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell,2011,23:69-80
    37. Cai XN, Ballif J, Endo S, Davis E, Liang MX, Chen D, DeWald D, Kreps J, Zhu T, Wu YJ. A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant Physiol,2007,145:98-105
    38. Chen G, Komatsuda T, Ma JF, Nawrath C, Pourkheirandish M, Tagiri A, Hu YG, Sameri M, Li X, Zhao X, Liu Y, Li C, Ma X, Wang A, Nair S, Wang N, Miyao A, Sakuma S, Yamaji N, Zheng X, Nevo E. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. Proc Natl Acad Sci USA,2011,108:12354-12359
    39. Chen ML, Luo J, Shao GN, Wei XJ, Tang SQ, Sheng ZH, Song J, Hu PS. Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1. Plant Cell Rep,2011, DOI:10.1007/s00299-011-1207-7
    40. Churchill GA, Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics,1994,138:963-971
    41. Clark RM, Wagler TN, Quijada P, Doebley J. A distant upstream enhancer at the maize domestication gene tbl has pleiotropic effects on plant and inflorescent architecture. Nat Genet,2006,38:594-597
    42. Cui KH, Peng SB, Xing YZ, Yu SB, Xu CG, Zhang Q. Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theor Appl Genet,2003,106:649-658
    43. Ding XP, Li XK, Xiong LZ. Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice. Theor Appl Genet,2011,123:815-826
    44. Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997,386:845-488
    45. Donald CM. The breeding of crop ideotypes. Euphyica,1968,17:385-403
    46. Efron I, Eshed Y, Lifschiz E. Morphogenesis of simple and compound leaves:A critical review. Plant Cell,2010,22:1019-1032
    47. Endo-Higashi N, Izawa T. Flowering time genes heading date 1 and early heading date 1 together control panicle development in rice. Plant Cell Physiol,52:1083-1094
    48. Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet,2006,112:1164-1171
    49. Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH. Alignment of genetic maps and QTLs between inter-and intra-specific sorghum populations. Theor Appl Genet,2006,112:1295-1305
    50. Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genom, 2008,279:499-507
    51. Gyenis L, Yun SJ,Smith KP, Steffenson BJ,Bossolini E, Sanguineti MC, Muehlbauer GJ. Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome,2007, 50:714-723
    52. Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 1998,125:1509-1517
    53. Hu J, Zhu L, Zeng DL, Gao ZY, Guo LB, Fang YX, Zhang GH, Dong GJ, Yan MX, Liu J, Qian Q. Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol,2010,73:283-292
    54. Huang XZ, Qian Q, Liu ZB, Sun HY, He SY, Luo D, Xia GM, Chu CC, Li JY, Fu XD. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009,41:494-497
    55. Huang XH, Zhao Y, Wei XH, Li CY, Wang AH, Zhao Q, Li WJ, Guo YL, Deng LW, Zhu CR, Fan DL, Lu YQ, Weng QJ, Liu KY, Zhou TY, Jing YF, Si LZ, Dong GJ, Huang T, Lu TT, Feng Q, Qian Q, Li JY, Han B. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet,2012,44:32-41
    56. Ishirnaru K, Ono K, Kashiwagi, T. Identificationof a new gene controlling plant height in rice using the candidate-gene strategy. Planta,2004,218:388-395
    57. Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol,2005, 46:79-86
    58. Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Gene Dev,2002,16:2006-2020
    59. Jiang SK, Zhang XJ, Wang JY, Chen WF, Xu ZJ. Fine mapping of the quantitative trait locus qFLL9 controlling flag leaf length in rice. Euphytica,2010,176:341-347
    60. Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX. Genetic control of rice plant architecture under domestication. Nat Genet,2008,40:1365-1369
    61. Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF, Dong GJ, Zeng DL, Lu ZF, Zhu XD, Qian Q, Li JY. Regulation of OsSPL 14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet,2010,42:541-544
    62. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day conditions. Plant Cell Physiol,2002, 43:1096-1105
    63. Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J. LAX and SPA:Major regulators of shoot branching in rice. Proc Natl Acad Sci USA,2003,100:11765-11770
    64. Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development,2008,135:767-774
    65. Komorisono M, Ueguchi-Tanaka M, Aichi I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M, Sazuka T. Analysis of the rice mutant dwarf and gladius leaf 1. aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling. Plant Physiol,2005, 138:1982-1993
    66. Khush GS. Origin, dispersal, cultivation and variation of rice. Plant Mol Biol,1997, 35:25-34
    67. Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliffe OJ. The nuclear factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. Planta,2008,228:709-723
    68. Lee H, Fischer RL, Goldberg RB, Harada JJ. Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc Natl Acad Sci USA,2003,100:2152-2156
    69. Li CL, Wang YQ, Liu LC, Hu YC, Zhang FX, Mergen S, Wang GD, R. Schlappi M, Chu CC. A rice plastidial nucleotide sugar epimerase is involved in galactolipid biosynthesis and improves photosynthetic efficiency. PLoS Genet,2011,7:e1002196, DOI:10.1371/journal.pgen.1002196
    70. Li F, Liu W, Tang J, Chen J, Tong H, Hu B, Li C, Fang J, Chen M, Chu C. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res,2010,20:838-849
    71. Li L, Shi ZY, Li L, Shen GZ, Wang XQ, An SL, Zhang JL. Overexpression of ACLl (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant,2010,3:807-817
    72. Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng DL, Wang XQ, Liu XF, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li JY. Control of tillering in rice. Nat Genet, 2003,422:618-621
    73. Li YB, Fan CC, Xing YZ, Jiang YH, Luo LJ, Sun L, Shao D, Xu CJ, Li XH, Xiao JH, He YQ, Zhang Q. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet,2011,43:1266-1269
    74. Lin H, Wang R, Qian Q, Yan MX, Meng XB, Fu ZM, Yan CY, Jiang B, Su Z, Li JY, Wang YH. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell,2009,21:1512-1525
    75. Lin HX, Yamamoto T, Sasaki T, Yano M. Characterization and detection of epistatic interactions of 3 QTLs, Hdl, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet,2000,101:1021-1028
    76. Lin HX, Liang ZW, Sasaki T, Yano M. Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breeding sci, 2003,53:51-59
    77. Liu W, Wu C, Fu Y, Hu G, Si H, Zhu L, Luan W, He Z, Sun Z. Identification and characterization of HTD2:a novel gene negatively regulating tiller bud outgrowth in rice. Planta,2009,230:649-658
    78. Liu TM, Mao DH, Zhang SP, Xu CG, Xing YZ. Fine mapping SPP1, a QTL controlling the number of spikelets per panicle, to a BAC clone in rice (Oryza sativa). Theor Appl Genet,2009,118:1509-1517
    79. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods,2001,25:402-408
    80. Luo JJ, Hao W, Jin J, Gao JP, Lin HX. Fine mapping of Spr3, a locus for spreading panicle from African cultivated rice (Oryza glaberrima Steud.). Mol Plant,2008, 1:830-838
    81. Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA,2010,107:19579-19584
    82. Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang ZX, Minobe Y, Yano M. Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J,2011,66:603-612
    83. McCouch SR, CGSNL (Committee on Gene Symbolization, Nomenclature, Linkage, Rice Genetics Cooperative). Gene nomenclature system for rice. Rice,2008,1:72-84
    84. Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet,2010,42:545-549
    85. Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1:rice "Green Revolution Gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res,2002,9:11-17
    86. Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M, Matsuoka M. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol,2006,141:924-931
    87. Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science,2003,302:81-84
    88. Murray MG, Thompson WF. Rapid isolation of highmolecular weight plant DNA. Nucleic Acids Res,1980,8:4321
    89. Ogiso E, Takahashi Y, Sasaki T, Yano M, Izawa T. The role of casein kinase II in flowering time regulation has diversified during evolution. Plant Physiol,2010, 152:808-820
    90. Orsi CH, Tanksley SD. Natural variation in an ABC transporter gene associated with seed size evolution in tomato species. PLoS Genet,2009,5:e1000347
    91. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP. "Green revolution" genes encoding mutant gibberellins response modulators. Nature,1999,400:256-261
    92. Piao R, Jiang W, Ham TH, Choi MS, Qiao Y, Chu SH, Park JH, Woo MO, Jin Z, An G, Lee J, Koh HJ. Map-based cloning of the ERECT PANICLE 3 gene in rice. Theor Appl Genet,2009,119:1497-1506
    93. Qi J, Qian Q, Bu Q, Li S, Chen Q, Sun J, Liang W, Zhou Y, Chu C, Li X, Ren F, Palme K, Zhao B, Chen J, Chen M, Li C. Mutation of the rice Narrow leaf 1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol,2008,147:1947-1959
    94. Qiao Y, Piao R, Shi J, Lee SI, Jiang W, Kim BK, Lee J, Han L, Ma W, Koh HJ. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet,2011, 122:1439-1149
    95. Quilichini TD, Friedmann MC, Samuels AL, Douglas CJ. ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis. Plant Physiol,2010,154:678-690
    96. Rea PA. Plant ATP-binding cassette transporters. Annu Rev Plant Biol.2007, 58:347-375
    97. Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, et al. Green revolution:a mutant gibberellin-synthesis gene in rice. Nature,2002,416:701-702
    98. Saisho D, Tanno K, Chono M, Honda I, Kitano H, Takeda K. Spontaneous brassinolide-insensitive barley mutants "uzu" adapted to East Asia. Breeding Sci, 2004,54:409-416
    99. Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol,2006,24:105-109
    100.Shang Y, Xiao J, Ma LL, Wang HY, Qi ZJ, Chen PD, Liu DJ, Wang XE. Characterization of a PDR type ABC transporter gene from wheat (Triticum aestivum L.). Chin Sci Bull, 2009,54:2500-2507
    101.Shao YJ, Pan CH, Chen ZX, Zuo SM, Zhang YF, Pan XB. Fine mapping of an incomplete recessive gene for leaf rolling in rice(Oryza sativa L.). Chin Sci Bull, 2005,50:2466-2472
    102.Shen B, Yu WD, Zhu YJ, Fan YY, Zhuang JY. Fine mapping of a major quantitative trait locus, qFLL6.2, controlling flag leaf length and yield traits in rice(Oryza sativa L.). Euphytica,2012,184:57-64
    103.Shi Z, Wang J, Wan X, Shen G, Wang X, Zhang J. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta, 2007,226:99-108
    104.Shibaya T, Nonoue Y, Ono N, Yamanouchi U, Hori K, Yano M. Genetic interactions involved in the inhibition of heading by heading date QTL, Hd2 in rice under long-day conditions. Theor Appl Genet,2011, DOI:10.1007/s00122-011-1654-0
    105.Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet,2008,40:1023-1028
    106.Sinha S, Maity SN, Lu JF, Crombrugghe BD. Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci USA,1995, 92:1624-1628
    107.Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet,2007, 39:623-630
    108.Spielmeyer W, Ellis MH, Chandler PM. Semidwarf(sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA,2002, 99:9043-9048
    109.StatSoft. Statistica. StatSoft Incorporated, Tusla, OK,1997
    110.Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tbl. Nat Genet,2011,43:1160-1163
    111.Sui JM, Guo BT, Wang JS, Qiao LX, Zhou Y, Zhang HG, Gu MH, Liang GH. A new GA-insensitive semidwarf mutant of rice (Oryza sativa L.) with a missense mutation in the SDG gene. Plant Mol Biol Rep,2011, DOI:10.1007/s11105-011-0321-6
    112.Sun FL, Zhang WP, Xiong GS, Yan MX, Qian Q, Li JY, Wang YH. Identification and functional analysis of the MOC1 interacting protein 1. J Genet Genomics,2010, 37:69-77
    113.Takeda S, Matsuoka M. Genetic approaches to crop important:responding to environmental and population changes. Nat Rev,2008,9:444-457
    114.Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice. Plant J, 2003,33:513-520
    115.Tan LB, Li XR, Liu FX, Sun XY, Li CG, Zhu ZF, Fu YC, Cai HW, Wang XK, Xie DX, Sun CQ. Control of a key transition from prostrate to erect growth in rice domestication. Nat Genet,2008,40:1360-1364
    116.Tan YF, Li JX, Yu SB, Xing YZ, Xu CG, Zhang Q. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor Appl Genet,1999,99:642-648
    117.Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase K, Yamaguchi M, Nakashima C, Purwestri AY, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K.14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature,2011,476:332-338
    118.Teper-Bamnolker P, Samach A. The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell,2005, 17:2661-2675
    119.Theodoulou F L. Plant ABC transporters. Biochim Biophys Acta,2000,1465:79-103
    120.Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellins. Nature,2005,437:693-698
    121.Wang CR, Chen S, Yu SB. Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet,2011, 122:905-913
    122.Wang ET, Wang JJ, Zhu XD, Hao W, Wang LY, Li Q, Zhang LX, He W, Lu BR, Lin HX, Ma H, Zhang GQ, He ZH. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet,2008,40:1370-1374
    123.Wang G, Schmalenbach I, von Korff M, Leon J, Kilian B, Rode J, Pillen K. Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. Theor Appl Genet,2010,120:1559-1574
    124. Wang P, Zhou GL, Cui KH, Li ZK, Yu SB. Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.). Mol Breeding,2012,29:99-113
    125.Wang SC, Basten CJ, Zeng ZB. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.,2007 http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
    126. Wang YH, Li JY. The plant architecture of rice. Plant Mol Biol,2005,59:75-84
    127.Wei XJ, Xu JF, Guo HN, Jiang L, Chen S, Yu CY, Zhou ZL, Hu PS, Zhai HQ, Wan JM. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol,2010,153:1747-1758
    128.Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell,2006, 18:2971-2984
    129.Woo YM, Park HJ, Su'udi M, Yang JI, Park JJ, Back K, Park YM, An G. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol, 2007,65:125-136
    130.Wu RH, Li SB, He S, WaBmann F, Yu CH, Qin GJ, Schreiber LK, Qu LJ, Gu HY. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell,2011,23:3392-3411
    131.Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol,2010, 61:421-442
    132.Xiong GS, Hu XM, Jiao YQ, Yu YC, Chu CC, Li JY, Qian Q, Wang YH. LEAFYHEAD2, which encodes a putative RNA-binding protein, regulates shoot development of rice. Cell Res,2006,16:267-276
    133.Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet,2008,40:761-767
    134.Yamamoto T, Lin HX, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics,2000,154:885-891
    135.Yan CJ, Zhou CJ, Yan S, Chen F, Yeboah M, Tang SZ, Liang GH, Gu MH. Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.). Theor Appl Genet,2007,115:1093-1100
    136.Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang Q. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant,2011,4:319-330
    137.Yang J, Hu C, Hu H, Yu R, Xia Z, Zhu J. QTLNetwork:mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008,24:721-723
    138.Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasak T. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell,2000,12:2473-2484
    139.Yoshida H, Nagato Y. Flower development in rice. J Exp Bot,2011,62:4719-4730
    140.Yoshidq S, Cock JH. Growth performance of an improved rice variety on the tropics. Int. Rice Comm Newsl,1971,20:1-15
    141.Yu HH, Xie WB, Wang J, Xing YZ, Xu CG, Li XH, Xiao JH, Zhang Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One,2011,6:e17595
    142.Yu SB, Li JX, Xu CG, Tan YF, Li XH, Zhang Q. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet,2002,104:619-625
    143.Zhang GH, Xu Q, Zhu XD, Qian Q, Xue HW. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxia cell development. Plant Cell,2009,21:719-735
    144.Zhang Q. Strategies for developing green super rice. Proc Natl Acad Sci USA,2007, 104:16402-16409
    145.Zhang Q, Li JY, Xue YB, Han B, Deng XW. Rice 2020:A call for an international coordinated effort in rice functional genomics. Mol Plant,2008,1:715-719
    146.Zhao LN, Zhou HJ, Lu LX, Liu L, Li XH, Lin YJ, Yu SB. The identification of quantitative trait loci controlling rice mature seed culturability using chromosomal segment substitution lines. Plant Cell Rep,2009,28:247-256
    147.Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics,1995,141:1633-1639
    148.Zhu K, Tang D, Yan C, Chi Z, Yu H, Chen J, Liang J, Gu M, Cheng Z. Erect panicle2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics,2010,184:343-350
    149.Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J,2006, 48:687-698
    150.Zou LP, Sun XH, Zhang ZG, Liu P, Wu JX, Tian CJ, Qiu JL, Lu TG. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol,2011,156:1589-1602
    151.Zhou PH, Tan YF, He YQ, Xu CG, Zhang Q. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet,2003,106:326-331

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700