用户名: 密码: 验证码:
烟草花青素合成相关基因及转录因子基因的克隆与功能验证研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花青素是多种植物体内产生的最重要的类群代谢产物之一,他不但可以吸引授粉者和种子传播者,还可以保护植物免受昆虫攻击、缓解UV-B辐射、保护叶绿体减缓过渡光照所带来的负面影响,且具有抗氧化活性及抗炎活性,近年来的研究表明,花青素的摄入还能够降低心血管疾病、糖尿病、关节炎和癌症的发病率。花青素生物合成途径是类黄酮途径的一个分支途径,对其生物合成途径基因及调控因子进行研究,不仅有助于通过产生或操控花青素来改造提升植物的抗性,还可以促进重要植物中保护健康的花青素的代谢工程,帮助人们获得具有高抗氧化性的食物。烟草是最具有农业价值的茄科农作物之一,由于其容易转化、生长周期较短,所以几十年来一直被用作植物分子生物学研究的模式植物,而且,生长快速的烟草细胞系,譬如Bright Yellow-2(BY-2)和Xanthi (用于本研究),提供了一个研究基因表达和次级代谢的良好研究体系。但是,到目前为止,鲜有关于烟草花青素生物合成途径基因及调控因子功能特性的研究报道。本研究对影响烟草花青素生物合成的主要调控因子碱性螺旋-环-螺旋(bHLH)转录因子基因以及关键酶二氢黄酮醇-4-还原酶(DFR)基因进行了分子克隆和功能验证研究。获得了以下主要结果:
     1.从烟草花器官中分离到两个bHLH转录因子基因,NtAn1a和NtAn1b,序列比对发现NtAn1a和NtAn1b与其它已知花青素/类黄酮相关bHLH转录因子序列同源性很高,进化树分析进一步将他们与矮牵牛An1、拟南芥TT8和葡萄MYC1归入同一组。
     2.利用位点特异引物在cDNA和基因组DNA的PCR扩增,证实NtAn1a和NtAn1b分别起源于烟草的两个祖先毛叶烟和拟茸毛烟草,基因序列分析表明,NtAn1a和NtAn1b都含有8个内含子和9个外显子。
     3.表达水平定量PCR (qPCR)分析显示,NtAn1a和NtAn1b主要在花朵中表达,且随着花朵成熟花器官中的转录本继续累积,利用基于PCR的基因组步移法,分离到一个1.1kb NtAn1a启动子片段,NtAn1a启动子驱动的GUS表达谱与NtAn1基因的表达基本一致,表明这种花器官特异表达受NtAn1启动子控制。
     4.酵母反式激活(单杂交)分析和烟草原生质体反式激活分析表明, NtAn1a和NtAn1b都是转录激活因子,NtAn1a或NtAn1b的异位表达促进了烟草花朵中花青素的积累,花青素的累积与NtAn1a或NtAn1b转录本的增加呈正相关。qPCR分析表明,在表达NtAn1a和NtAn1b的转基因烟草中,类黄酮途径前期基因查耳酮合成酶(CHS),查耳酮异构酶(CHI)和黄烷酮3-羟化酶(F3H)以及后期基因二氢黄酮醇-4-还原酶(DFR)和花青素合成酶(ANS)都上调表达。
     5.酵母双杂交(Y2H)分析表明,NtAn1a或NtAn1b与R2R3-MYB转录因子NtAn2之间存在强烈的蛋白质互作。瞬时烟草原生质体分析检测表明NtAn1a、NtAn1b与NtAn2三个转录因子单独都不能激活花青素途径的两个关键基因DFR或CHS的启动子,但二重组合(NtAn1a+NtAn2或NtAn1b+NtAn2)都能激活两个启动子,这种启动子激活作用可被NtAn1a或NtAn2的显性抑制形式(将SRDX抑制子区域与转录因子融合创制)显著抑制,说明NtAn1和NtAn2蛋白共同参与烟草花朵中花青素途径的调节。
     6. RT–PCR分析显示,过表达NtAn2可诱导NtAn1a和NtAn1b两个基因在叶片中的表达,而NtAn1基因的过表达对NtAn2表达无影响,这表明,NtAn1a和NtAn1b受花组织特异性MYB转录因子NtAn2的调节,但NtAn1对NtAn2没有调节作用。
     7.酵母双杂交(Y2H)分析表明,玉米R2R3MYB转录因子C1与bHLH转录因子Lc存在强烈互作,但它与NtAn1a或NtAn1b都不存在互作,这解释了“C1在烟草中单独表达为何不产生花青素”这一问题。
     8.从烟草花分离到两种二氢黄酮醇-4-还原酶(Dfr) cDNA,NtDfr1和NtDfr2,序列比对分析发现,这两个基因与多个分离自其它种属植物的Dfr基因具有高度的序列相似性,进化树分析将这两个基因排列在与牵牛花和马铃薯相邻的分支上。
     9.转录分析显示,NtDfr1和NtDfr2均只在花中表达,而且受到严格的发育调控,它们在幼龄花中高度表达,而在成熟期花中的表达量显著下降。
     10.利用位点特异引物对毛叶烟和拟茸毛烟草的花朵cDNA进行RT-PCR,PCR产物的序列分析表明,NtDfr1基因起源于拟茸毛烟草,而NtDfr2基因起源于毛叶烟。
     11. NtDfr1和NtDfr2基因的过表达可引起花青素在烟草花中的积累,而RNA干涉介导的NtDfr基因的抑制会导致烟草花变为淡粉红色甚至白色,qPCR分析表明,NtDfr过表达株系花朵中,NtDfr1和NtDfr2的mRNA水平也显著提高,而NtDfr RNA干涉烟草转基因株系花朵中,NtDfr的转录水平显著低于对照,这表明,来自两种烟草祖先的这两个Dfr基因在烟草上都具有功能活性。
     12.烟草原生质体瞬间检测结果显示,NtDfr是bHLH转录因子NtAn1及R2R3MYB转录因子NtAn2的直接靶基因,其表达受NtAn1和NtAn2复合体的调节。
Anthocyanins are one of the most important group metabolites produced in plants. Theroles of anthocyanins are their ability not only to attract pollinators and seed dispersers butalso to protect plants from insect attack, to attenuate UV-B radiation and to protectchloroplasts from the adverse effects of excess light. Recent studies suggest that theconsumption of anthocyanins is able to lower the risk of cardiovascular disease, diabetes,arthritis and cancer due to their anti-oxidant and anti-inflammatory activities. The synthesis ofanthocyanin is derived from a branch of the flavonoid biosynthetic pathway. Studies onanthocyanin biosynthesis pathway genes and regulatory factors should be possible not only toengineer improved plant resistance by generating or manipulating anthocyanins but also topromote metabolic engineering of health-protecting flavonoids in important plants, and thusto help human beings to obtain food with increased antioxidant capacity. Tobacco is amember of one of the most agriculturally important plant families (Solanaceae) and has beenused as a model in plant biotechnology for decades due to its ease of transformation andrelatively short generation time. Moreover, the fast growing tobacco cell lines such as BrightYellow-2(BY-2) and Xanthi (used in the present study) are an excellent system for studyinggene expression and secondary metabolism. However, to the best of our knowledge, thefunctional characterization of anthocyanin biosynthesis pathway genes and regulatory factorshas been reported rarely to date. Herein we report the molecular cloning and functionalanalyses of the key regulator, basic helix-loop-helix (bHLH) transcription factors (TFs), andthe key enzymes, Dihydroflavonol-4-reductase (DFRs), of anthocyanin biosynthesis pathwayin tobacco flowers. The main conclusions obtained from this project are as follows:
     1. Two bHLH TFs, NtAn1a and NtAn1b, have been isolated from tobacco (Nicotianatabacum) flowers. Sequences alignment demonstrated that NtAn1a and NtAn1b share highsequence homology with other known flavonoid-related bHLH TFs. Phylogenetic analysisdivided NtAn1a and NtAn1b into the clade close to PhAn1from petunia, TT8fromArabidopsis and VvMYC1from grape.
     2. PCRs by gene-specific primers using cDNA and genomic DNA clarified thatNtAn1a and NtAn1b are originated from two ancestors of tobacco, N. sylvestris and N. tomentosiformis, respectively. Analysis of the genomic sequences revealed that both NtAn1aand NtAn1b contain eight introns and nine exons.
     3. Quantitative PCR (qPCR) revealed that NtAn1a and NtAn1b are predominantlyexpressed in flowers. A1.1kb NtAn1a promoter fragmen was isolated using a PCR-basedgenome walking method. The GUS expression profile driven by the NtAn1a promoter isessentially identical to that of NtAn1genes, indicating this floweral tissue-specific expressionis controlled by the NtAn1promoter
     4. Yeast one-hybrid and transient protoplast assays suggested that both NtAn1a andNtAn1b are transcriptional activators. Ectopic expression of the two genes in tobacco lead toincreased anthocyanin accumulation in flowers and the elevated anthocyanin content isassociated with the increase in NtAn1a or NtAn1b transcripts. In transgenic tobaccoexpressing NtAn1a or NtAn1b, both subsets of early (Chalcone synthase, CHS; Chalconeisomerase, CHI; Flavanone3-hydroxylase, F3H) and late (Dihydroflavonol4-reductase,DFR;Anthocyanidin synthase, ANS) flavonoid pathway genes were up-regulated.
     5. Yeast two-hybrid assays showed that NtAn1a and NtAn1b have strongprotein–protein interactions with R2R3-MYB TF, NtAn2. Transient tobacco protoplast assaysimplied that NtAn1a, NtAn1b and NtAn2cloud not activate the promoters of two keyanthocyanin pathway genes, dihydroflavonol reductase (DFR) and chalcone synthase (CHS)individually. However, in combination (NtAn1a+NtAn2or NtAn1b+NtAn2), they activatethe two promoters. The promoter activation is severely repressed by the dominant repressiveforms either NtAn1a or NtAn2, created by fusing the SRDX repressor domain to the TFs. thisresults pointed out that NtAn1and NtAn2act in concert to regulate the anthocyanin pathwayin tobacco flowers.
     6. RT–PCR manifested that over expression of NtAn2induces expression of bothNtAn1a and NtAn1b in tobacco leaves, while over expression of NtAn1genes has no effecton NtAn2expression. These results indicate that NtAn1a and NtAn1b are regulated by NtAn2,a floral tissue specific MYB TF; however, the NtAn1proteins do not regulate NtAn2.
     7. Yeast two-hybrid assays illustrated that the maize R2R3MYB TF, C1, stronglyinteracts with bHLH TF Lc, but it does not interact with either NtAn1a or NtAn1b. This resultprovides an explanation to why C1fails to induce anthocyanin when expressed alone intobacco.
     8. Two dihydroflavonol4-reductase (Dfr) cDNAs, NtDfr1and NtDfr2, were isolatedfrom tobacco flowers. Sequences alignment revealed that NtDfr1and NtDfr2share highsequence homology with other known Dfr genes isolated from other species. Phylogeneticanalysis divided NtDfr1and NtDfr2into the clade close to the ones from petunia and potato.
     9. Transcript analysis uncovered that both Dfr genes express only in flowers and areunder strict developmental control; highly expressed in young flowers and the expressiongoes down significantly in mature flowers.
     10. RT-PCR on flower cDNA of N. sylvestris and N. tomentosiformis were performedusing allele-specific primers. Sequence analysis of the PCR products revealed that NtDfr1originated from N. tomentosiformis, whereas NtDfr2derived from N. sylvestris.
     11. Over-expression of NtDfr1or NtDfr2in tobacco results in pigment accumulation inflowers, while RNAi-mediated suppression of NtDfr in tobacco resulted in white to pale pinkflowers. The levels of NtDfr1or NtDfr2mRNA in flowers from transgenic tobacco lines weresignificantly higher than control. However, the NtDfr trascript levels in transgenic line weresignificantly reduced compared to the control flowers. This suggests that the Dfr genesderived from both parents are functional in tobacco.
     12. Tobacco protoplast transient assay demonstrated that NtDfr is a direct target of thebHLH TF, NtAn1and R2R3-MYB, NtAn2. NtDfr expression is regulated by a complex ofNtAn1and NtAn2.
引文
Abe, H., K. Yamaguchi-Shinozaki, T. Urao, T. Iwasaki, D. Hosokawa, and K. Shinizaki.(1997). Roleof Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression.Plant Cell9,1859–1868.
    Allan AC, Hellens RP, Laing WA.2008. MYB transcription factors that colour our fruit. Trends Plant Sci13,99-102.
    Almeida J, Carpenter R, Robbins TP, Martin C, Coen ES.(1989). Genetic interactions underlyingflower color patterns in Antirrhinun majus. Genes Dev3,1758–1767.
    Antoine Baudry, Michel Caboche and Lo c Lepiniec.(2006). TT8controls its own expression in afeedback regulation involving TTG1and homologous MYB and bHLH factors, allowing a strong andcell-specific accumulation of flavonoids in Arabidopsis thaliana. The Plant Journal46,768–779.
    Atchley WR, Terhalle W, Dress A.(1999). Positional Dependence, Cliques, and Predictive Motifs in thebHLH Protein Domain. J Mol Evol48,501-516.
    Atsushi Hoshino, Kyeung-Il Park and Shigeru Iida.(2000). Identification of r mutations conferringwhite flowers in the Japanese morning glory (Ipomoea nil). Journal of Plant Research.122,215-222.
    Baudry A, Caboche M, Lepiniec L.2006. TT8controls its own expression in a feedback regulationinvolving TTG1and homologous MYB and bHLH factors, allowing a strong and cell-specificaccumulation of flavonoids in Arabidopsis thaliana. Plant J46,768-779.
    Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L.2004. TT2, TT8, and TTG1synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis inArabidopsis thaliana. Plant J39,366-380.
    Beld, M., Martin, C., Huits, H., Stuitje, A.R. and Gerats, A.G.M.(1989). Flavonoid synthesis in Petunia:Partial characterization of Dihydroflavonol4-reductase genes. Plant Mol. Biol.13,491-502.
    Bernhardt, J., Stich, K., Schwarz-Sommer, Z., Saedler, H. and Wienand, U.(1998). Molecular analysisof a second functional A1gene (dihydroflavonol4-reductase) in Zea mays. Plant J.14,483–488.
    Bongue-Bartelsman M, O’Neill SD, Tong Y, Yoder JI.(1994). Characterization of the gene encodingdihydroflavonol4-reductase in tomato. Gene.138,153–157.
    Bovy, A., de Vos, R., Kemper, M., Schijlen, E., Almenar Pertejo, M., Muir, S., Collins, G., Robinson,S., Verhoeyen, M., Hughes, S., Santos-Buelga, C., and van Tunen, A.(2002). High-flavonoltomatoes resulting from the heterologous expression of the maize transcription factor genes LC andC1. Plant Cell14,2509-2526.
    Bresnick, E.H., and Felsenfeld, G.(1994). The leucine zipper is necessary for stabilizing a dimer of thehelix-loop-helix transcription factor USF but not for maintenance of an elongated conformation. J BiolChem269,21110-21116.
    Burr FA, Burr B, Scheffler BE, Blewitt M, Wienand U, Matz EC.1996. The maize repressor-like geneintensifier1shares homology with the r1/b1multigene family of transcription factors and exhibitsmissplicing. Plant Cell8,1249-1259.
    Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J,Martin C.2008. Enrichment of tomato fruit with health-promoting anthocyanins by expression ofselect transcription factors. Nat Biotechnol26,1301-1308.
    Castillon A, Shen H, Huq E.(2007). Phytochrome Interacting Factors: central players inphytochrome-mediated light signaling networks. Trends Plant Sci12:514-521.
    Chen M, SanMiguel P, Bennetzen JL.(1998). Sequence organization and conservation insh2/a1-homologous regions of sorghum and rice. Genetics148,435–443.
    Da Costa, C.T., Horton, D., and Margolis, S.A.(2000). Analysis of anthocyanins in foods by liquidchromatography, liquid chromatography-mass spectrometry and capillary electrophoresis. JChromatogr A881,403-410.
    Davies KM, Schwinn KE, Deroles SC, Manson DG, Lewis DH, Bloor SJ, Bradley JM (2003)Enhancing anthocyanin production by altering competition for substrate between flavonol synthaseand dihydroflavonol4-reductase. Euphytica131,259-268
    Debeaujon, I., Nesi, N., Perez, P., Devic, M., Grandjean, O., Caboche, M. and Lepiniec, L.(2003).Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role inseed development. Plant Cell,15,2514–2531.
    De Pater, S., Pham, K., Memelink, J., and Kijne, J.(1997). RAP-1is an Arabidopsis MYC-like Rprotein homologue, that binds to G-box sequence motifs. Plant Mol Biol34,169-174.
    Des Marais DL, Rausher MD.(2008). Escape from adaptive conflict after duplication in anthocyaninpathway gene. Nature454,762–765.
    De-Yu Xie, Lisa A. Jackson, John D. Cooper, Daneel Ferreira, and Nancy L. Paiva.(2004). Molecularand Biochemical Analysis of Two cDNA Clones Encoding Dihydroflavonol-4-Reductase fromMedicago truncatula. Plant Physiology134,979–994.
    Dooner, H.K., Robbins, T. and Jorgensen, R.(1991). Genetic and developmental control of anthocyaninbiosynthesis. Ann. Rev. Genet.25,173-199.
    Elomaa P, Mehto M, Kotilainen M, Helariutta Y, Nevalainen L, Teeri TH.(1998). A bHLHtranscription factor mediates organ, region and flower type specific signals ondihydroflavonol-4-reductase (dfr) gene expression in the inflorescence of Gerbera hybrida(Asteraceae). Plant J16,93–99.
    Feller A, Hernandez JM, Grotewold E.2006. An ACT-like domain participates in the dimerization ofseveral plant basic-helix-loop-helix transcription factors. J Biol Chem281,28964-28974.
    Felsenstein J.1985. Confidence-Limits on Phylogenies-an Approach Using the Bootstrap. Evolution39,783-791.
    Ferré-D'Amaré A, Prendergast G, Ziff E, Burley S.(1993). Recognition by Max of its cognate DNAthrough a dimeric b/HLH/Z domain. Nature363,38-45.
    Fiehn, O.(2002). Metabolomics--the link between genotypes and phenotypes. Plant Mol Biol48,155-171.
    Forkmann, G. and Ruhnau, B.(1987). Distinct substrate specificity of dihydrofavonol4-reductase fromfowers of Petunia hybrida. Z. Naturforsch.42,1146±1148.
    Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Current Opinion inBiotechnology12,155-160.
    Franken, P., Niesbach-Klosgen, U., Weydemann, U., Marechal-Drouard, L., Saedler, H., andWienand, U.(1991). The duplicated chalcone synthase genes C2and Whp (white pollen) of Zea maysare independently regulated; evidence for translational control of Whp expression by the anthocyaninintensifying gene in. EMBO J10,2605-2612.
    Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M, Chory J.(2002). Three Redundant Brassinosteroid Early Response Genes Encode Putative bHLH TranscriptionFactors Required for Normal Growth. Genetics162,1445-1456.
    Fukasawa-Akada T, Kung SD, Watson JC.1996. Phenylalanine ammonia-lyase gene structure,expression, and evolution in Nicotiana. Plant Mol Biol30,711-722.
    Gerats, A.G.M., Vlaming, P., Doodeman, M., Al, B. and Schram, A.W.(1982). Genetic control of theconversion of dihydrofavonols into favonols and anthocyanins in fowers of Petunia hybrida. Planta,155,364±368.
    Ghiselli, A., Nardini, M., Baldi, A., and Scaccini, C.(1998). Antioxidant Activity of Different PhenolicFractions Separated from an Italian Red Wine. J Agric Food Chem46,361-367.
    Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR.(1988). An evolutionarilyconserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci USA85,7089-7093.
    Goff SA, Cone KC, Chandler VL.1992. Functional analysis of the transcriptional activator encoded bythe maize B gene: evidence for a direct functional interaction between two classes of regulatoryproteins. Genes Dev6,864-875.
    Gong ZZ, Yamagishi E, Yamazaki M, Saito K.1999. A constitutively expressed Myc-like gene involvedin anthocyanin biosynthesis from Perilla frutescens: molecular characterization, heterologousexpression in transgenic plants and transactivation in yeast cells. Plant Mol Biol41,33-44.
    Gonzalez, A., Zhao, M., Leavitt, J.M., and Lloyd, A.M.(2008). Regulation of the anthocyaninbiosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.Plant J53,814-827.
    Gonzali, S., Mazzucato, A., and Perata, P.(2009). Purple as a tomato: towards high anthocyanintomatoes. Trends Plant Sci14,237-241.
    Goodrich J, Carpenter R, Coen ES.1992. A common gene regulates pigmentation pattern in diverseplant species. Cell68,955-964.
    Gremski K, Ditta G, Yanofsky MF.(2007). The HECATE genes regulate female reproductive tractdevelopment in Arabidopsis thaliana. Development134,3593-3601.
    Grotewold E.2006. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol57,761-780.
    Hatier, J.-H.B., and Gould, K.S.(2009). Anthocyanin Function in Vegetative Organs. In Anthocyanins:Biosynthesis, Functions, and Applications (New York: Springer), pp.1-19.
    Heim, K.E., Tagliaferro, A.R., and Bobilya, D.J.(2002). Flavonoid antioxidants: chemistry, metabolismand structure-activity relationships. J Nutr Biochem13,572-584.
    Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC.2003. The basic helix-loop-helixtranscription factor family in plants: a genome-wide study of protein structure and functional diversity.Mol Biol Evol20,735-747.
    Helariutta Y, Elomaa P, Kotilainen M, Sepp nen P, Teeri TH.(1993). Cloning of cDNA coding fordihydroflavonol-4-reductase (DFR) and characterization of dfr expression in the corollas of Gerberahybrida var. Regina (Compositae). Plant Mol Biol.22,183-193.
    Heller, W., Forkmann, G., Britsch, L. and Grisebach, H.(1985). Enzymatic reduction of (+)-dihydrofavonols to favan-3,4-cisdiols with fower extracts from Matthiola incana and its role inanthocyanin biosynthesis. Planta,165,284±287.
    Henk S.M. Huits, Anton G.M. Greats, Marja M. Kreike, Joseph N.M. Mol and Ronnald E. Koes.(1994). Genetic control of dihydroflavonol4-reductase gene expression in Petunia hybrid. The plantjournal.6,295-310.
    Hichri I, Heppel SC, Pillet J, Leon C, Czemmel S, Delrot S, Lauvergeat V, Bogs J.2010. The BasicHelix-Loop-Helix Transcription Factor MYC1Is Involved in the Regulation of the FlavonoidBiosynthesis Pathway in Grapevine. Mol Plant3,509-523.
    Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M.2003. Dominant repression of target genes bychimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J34,733-739.
    Holton, T.A., Brugliera, F., Lester, D.R., Tanaka, Y., Hyland, C.D., Menting, J.G., Lu, C.Y., Farcy,E., Stevenson, T.W., and Cornish, E.C.(1993). Cloning and expression of cytochrome P450genescontrolling flower colour. Nature366,276-279.
    Holton TA, Cornish E.(1995). Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell.7,1071–1083.
    Hrazdina G, Jensen RA (1992) Spatial organization of enzyme in plant metabolic pathways. AnnualReview of Plant Physiology and Plant Molecular Biology43,241-267.
    Inagaki Y, Johzuka-Hisatomi Y, Mori T, Takahashi S, Hayakawa Y, Peyachoknagul S, Ozeki Y, IidaS.(1999). Genomic organization of the genes encoding dihydroflavonol4-reductase for flowerpigmentation in the Japanese and common morning glories. Gene226,181–188.
    Jin, H., and Martin, C.(1999). Multifunctionality and diversity within the plant MYB-gene family. PlantMol Biol41,577-585.
    Johnson, C.S., Kolevski, B., and Smyth, D.R.(2002). TRANSPARENT TESTA GLABRA2, a trichomeand seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell14,1359-1375.
    Johnson ET, Ryu S, Yi H, Shin B, Cheong H, Choi G.(2001). Alteration of a single amino acid changesthe substrate specificity of dihydroflavonol4-reductase. The Plant Journal,25,325–333.
    Johnson, E.T., Yi, H., Shin, B., Oh, B.J., Cheong, H. and Choi, G.(1999). Cymbidium hybridadihydrofavonol4-reductase does not efficiently reduce dihydrokaempferol to produce orangepelargonidin-type anthocyanins. Plant J.19,81±85.
    Jones S.(2004). An overview of the basic helix-loop-helix proteins. Genome Biol5:226.
    Joseph, J.A., Shukitt-Hale, B., Denisova, N.A., Bielinski, D., Martin, A., McEwen, J.J., and Bickford,P.C.(1999). Reversals of age-related declines in neuronal signal transduction, cognitive, and motorbehavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci19,8114-8121.
    Kazuko Yoshida, Rieko Iwasaka, Norimoto Shimada, Shin-ichi Ayabe, Toshio Aoki, Masaaki Sakuta.(2010). Transcriptional control of the dihydroflavonol4-reductase multigene family in Lotusjaponicas. J. Plant Res.,123(6)801-805.
    Klein, A.S., and Oliver E. Nelson, J.(1983). The allelic state at intensifier influences the accumulation ofUDP glucose: Flavonoid3-O-glucosyltransferase in maize. Phytochemistry22,2634-2635.
    Koes R, Verweij W, Quattrocchio F.2005. Flavonoids: a colorful model for the regulation and evolutionof biochemical pathways. Trends Plant Sci10,236-242.
    Kong, J.M., Chia, L.S., Goh, N.K., Chia, T.F., and Brouillard, R.(2003). Analysis and biologicalactivities of anthocyanins. Phytochemistry64,923-933.Kranz, H.D., Denekamp, M., Greco, R., Jin, H., Leyva, A., Meissner, R.C., Petroni, K.,Urzainqui, A., Bevan, M., Martin, C., Smeekens, S., Tonelli, C., Paz-Ares, J., and Weisshaar, B.(1998). Towards functional characterisation of the members of the R2R3-MYB gene family fromArabidopsis thaliana. Plant J16,263-276.
    Kristiansen KN, Rohde W.(1991). Structure of the Hordeum vulgare gene encoding dihydroflavonol4-reductase and molecular analysis of ant18mutants blocked in flavonoid synthesis. Mol Gen Genet.230,49–59.
    Lee D, Douglas CJ.1996. Two divergent members of a tobacco4-coumarate:coenzyme A ligase (4CL)gene family. cDNA structure, gene inheritance and expression, and properties of recombinant proteins.Plant Physiol112,193-205.
    Lee, M. M., and J. Schiefelbein.(2001). Developmentally distinct MYB genes encode functionallyequivalent proteins in Arabidopsis. Development128,1539–1546.
    Lim KY, Matyasek R, Kovarik A, Leitch AR.2004. Genome evolution in allotetraploid Nicotiana.Biological Journal of the Linnean Society82,599-606.
    Lipsick, J.S.(1996). One billion years of MYB. Oncogene13,223–235.
    Liu T, Ohashi-Ito K, Bergmann DC.(2009). Orthologs of Arabidopsis thaliana stomatal bHLH genes andregulation of stomatal development in grasses. Development136,2265-2276.
    Li X, Duan X, Jiang H et al.(13co-authors).(2006b). Genome-Wide Analysis ofBasic/Helix-Loop-Helix Transcription Factor Family in Rice and Arabidopsis. Plant Physiol141,1167-1184.
    Lloyd AM, Walbot V, Davis RW.1992. Arabidopsis and Nicotiana anthocyanin production activated bymaize regulators R and C1. Science258,1773-1775.
    Ludwig SR, Habera LF, Dellaporta SL, Wessler SR.1989. Lc, a member of the maize R gene familyresponsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptionalactivators and contains the myc-homology region. Proc Natl Acad Sci U SA86,7092-7096.
    Lukaszewicz M, Matysiak-Kata I, Skala J, Fecka I, Cisowski W, Szopa J (2004) Antioxidant capacitymanipulation in transgenic potato tuber by changes in phenolic compounds content. Journal ofAgricultural and Food Chemistry52,1526-1533.
    Marchetti, A., Abril-Marti, M., Illi, B., Cesareni, G., and Nasi, S.(1995). Analysis of the Myc and Maxinteraction specificity with lambda repressor-HLH domain fusions. J Mol Biol248,541-550.
    Martin, C., and Paz-Ares, J.(1997). MYB transcription factors in plants. Trends Genet13,67-73.
    Martínez-García JF, Huq E, Quail PH.(2000). Direct Targeting of Light Signals to a PromoterElement-Bound Transcription Factor. Science288,859-863.
    Massari ME, Murre C.(2000). Helix-Loop-Helix Proteins: Regulators of Transcription in EucaryoticOrganisms. Mol Cell Biol20:429-440.
    Matsui K, Ohme-Takagi M.2010. Detection of protein-protein interactions in plants using thetransrepressive activity of the EAR motif repression domain. Plant J61,570-578.
    Matus JT, Poupin MJ, Canon P, Bordeu E, Alcalde JA, Arce-Johnson P.2010. Isolation of WDR andbHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). Plant Mol Biol72,607-620.
    Meyer, P., Heidmann, I., Forkmann, G. and Saedler, H.(1987). A new petunia fower colourgenerated by transformation of a mutant with a maize gene. Nature,330,677±678.
    Mola, J., Grotewold, E., and Koesa, R.(1998). How genes paint flowers and seeds Trends Plant Sci3,212-217.
    Mol J GEaKR.1998. How genes paint flowers and seeds. Trends in Plant Science3,212-217.
    Mol J, Grotewold E, Koes R.1998. How genes paint flowers and seeds. Trends in Plant Science3,212-217.
    Muir SR, Collins GJ, Robinson S, Hughes SG, Bovy AG, de Vos CH, van Tunen AJ, Verhoeyen ME.(2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containingdramatically increase levels of flavonols. Nature Biotechnology19,470-474.
    Murad L, Lim KY, Christopodulou V, Matyasek R, Lichtenstein CP, Kovarik A, Leitch AR.2002.The origin of the paternal genome of tobacco is traced back to a particular lineage within Nicotianatomentosiformis (Solanaceae). American Journal of Botany89,921-928.
    Murre C, McCaw PS, Baltimore D.(1989). A new DNA binding and dimerization motif inimmunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell56:777-783.
    Nadeau JA.(2009). Stomatal development: new signals and fate determinants. Curr Opin Plant Biol12,29-35.
    Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L.2000. The TT8gene encodes a basichelix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsissiliques. Plant Cell12,1863-1878.
    Nesi, N., Debeaujon, I., Jond, C., Stewart, A.J., Jenkins, G.I., Caboche, M., and Lepiniec, L.(2002).The TRANSPARENT TESTA16locus encodes the ARABIDOPSIS BSISTER MADS domain proteinand is required for proper development and pigmentation of the seed coat. Plant Cell14,2463-2479.
    Nesi, N., Jond, C., Debeaujon, I., Caboche, M., and Lepiniec, L.(2001). The Arabidopsis TT2geneencodes an R2R3MYB domain protein that acts as a key determinant for proanthocyanidinaccumulation in developing seed. Plant Cell13,2099-2114.
    Nick de vetten, Francesca Quattrocchio, Joseph Mol, and Ronald Koes.(1997). The An11locuscontrolling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast,plants and animals. Genes Dev.11,1422-1434.
    Norimoto Shimada, Ryohsuke Sasaki, Shusei Sato, Takakazu Kaneko, Satoshi Tabata, Toshio Aokiand Shin-ichi Ayabe.(2005). A comprehensive analysis of six dihydroflavonol4-reductases encodedby a gene cluster of the Lotus japonicus genome. Journal of Experimental Botany,419,2573–2585.
    Nuno Pires and Liam Dolan.(2009). Origin and Diversification of Basic-Helix-Loop-Helix Proteins inPlants.(Molecular Biology and Evolution) MBE Advance Access published November25,2009.
    Oud JSN, Schneiders H, Kool AD J, van Grinsven MQJM (1995) Breeding of transgenic orangePetunia hybrida varieties. Euphytica85,403-409.
    Pattanaik S, Xie CH, Kong Q, Shen KA, Yuan L.2006. Directed evolution of plant basichelix-loop-helix transcription factors for the improvement of transactivational properties. BiochimBiophys Acta1759,308-318.
    Pattanaik S, Xie CH, Yuan L.2008. The interaction domains of the plant Myc-like bHLH transcriptionfactors can regulate the transactivation strength. Planta227,707-715.
    Pattanaik S, Kong Q, Zaitlin D, Werkman JR, Xie CH, Patra B, Yuan L.2010a. Isolation andfunctional characterization of a floral tissue-specific R2R3MYB regulator from tobacco. Planta231,1061-1076.
    Pattanaik S, Werkman JR, Kong Q, Yuan L.2010b. Site-directed mutagenesis and saturationmutagenesis for the functional study of transcription factors involved in plant secondary metabolitebiosynthesis. Methods Mol Biol643,47-57.
    Pattanaik S, Xie CH, Yuan L (2008) The interaction domains of the plant Myc-like bHLH transcriptionfactors can regulate the transactivation strength. Planta227:707–715.
    Payne CT, Zhang F, Lloyd AM.2000. GL3encodes a bHLH protein that regulates trichome developmentin arabidopsis through interaction with GL1and TTG1. Genetics156,1349-1362.
    Paz-Ares, J.(1987). The regulatory c1locus of Zea mays encodes a protein with homology to mybproto-oncogene products and with structural similarities to transcriptional activators. EMBO J.6,3553–3558.
    Polashock JJ, Griesbach RJ, Sullivan RF, Vorsa N (2002) Cloning of a cDNA encoding the cranberrydihydroflavonol-4-reductase (DFR) and expression in transgenic tobacco. Plant Science163,241-251.
    Prior, R.L., and Wu, X.(2006). Anthocyanins: structural characteristics that result in unique metabolicpatterns and biological activities. Free Radic Res40,1014-1028.
    Ptashne M.1988. How eukaryotic transcriptional activators work. Nature335,683-689.
    Qian W, Tan G, Liu H, He S, Gao Y, An C.(2007). Identification of a bHLH-type G-box binding factorand its regulation activity with G-box and Box I elements of the PsCHS1promoter. Plant Cell Rep26,85-93.
    Quattrocchio F, Wing JF, van der Woude K, Mol JN, Koes R.1998. Analysis of bHLH and MYBdomain proteins: species-specific regulatory differences are caused by divergent evolution of targetanthocyanin genes. The Plant Journal13,475-488.
    Rabino I, Mancinelli AL.1986. Light, temperature, and anthocyanin production. Plant Physiol81,922-924.
    Radicella, J. P., D. Turks, and V. L. Chandler.(1991). Cloning and nucleotide sequence of a cDNAencoding B-Peru, a regulatory protein of the anthocyanin pathway in maize. Plant Mol. Biol.17,127–130.
    Ramsaya, N.A., and Glover, B.J.(2000). MYB-bHLH-WD40protein complex and the evolution ofcellular diversity. Trends Plant Sci10,63-70.
    Ramsaya NA, and Glover, BJ.(2005). MYB-bHLH-WD40protein complex and the evolution of cellulardiversity. Trends Plant Sci10:63-70.
    Reddy, A., Britsch, L., Salamini. F., Saedler, H. and Rohde, W.(1987). The A1(anthocynin-1) locus inzea mays encodes dihydroquercitine reductase. Plant Sci.52,7-13.
    Rerie, W. G., K. A. Feldmann, and M. D. Marks.(1994). The GLABRA2gene encodes a homeo domainprotein required for normal trichome development in Arabidopsis. Genes Dev.8,1388–1399.
    Richard V. Espley, Cyril Brendolise, David Chagné, et al.,(11co-authors).(2009). Multiple Repeats ofa Promoter Segment Causes Transcription Factor Autoregulation in Red Apples. The Plant Cell21,168–183.
    Robinson KA, Lopes JM.(2000). Saccharomyces cerevisiae basic helix-loop-helix proteins regulatediverse biological processes. Nucl Acids Res28:1499-1505.
    Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X, Laudeman TW, Timko MP.2008. Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae.Plant Physiol147,280-295.
    Sagasser, M., Lu, G.H., Hahlbrock, K., and Weisshaar, B.(2002). A. thaliana TRANSPARENT TESTA1is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins.Genes Dev16,138-149.
    Saitou N, Nei M.1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees.Mol Biol Evol4,406-425.
    Schiefelbein, J.(2003). Cell-fate specification in the epidermis: a common patterning mechanism in theroot and shoot. Curr Opin Plant Biol6,74-78.
    Serna L.(2009). Emerging Parallels between Stomatal and Muscle Cell Lineages. Plant Physiol149,1625-1631.
    Setsuko Shimada, Kana Takahashi, Yuka Sato and Masaaki Sakuta.(2004).Dihydroflavonol4-reductase cDNA from non-Anthocyanin-Producing Species in the Caryophyllales. Plant CellPhysiol.45,1290–1298.
    Simona Digiuni, Swen Schellmann, Florian Geier et al.,(12co-authors).(2008). A competitivecomplex formation mechanism underlies trichome patterning on Arabidopsis leaves. MolecularSystems Biology217,1-11.
    Smolen, G. A., L. Pawlowski, S. E. Wilensky, and J. Bender.(2002). Dominant alleles of the basichelix–loop–helix transcription factor ATR2activate stress-responsive genes in Arabidopsis. Genetics161,1235–1246.
    Sparvoli, F., Martin, C., Scienza, A., Gavazzi, G. and Tonelli, C.(1994) Cloning and molecular analysisof structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). PlantMol. Biol.24,743–755.
    Spelt C, Quattrocchio F, Mol JN, Koes R.2000. Anthocyanin1of petunia encodes a basichelix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell12,1619-1632.
    Spelt C, Quattrocchio F, Mol J, Koes R.2002. ANTHOCYANIN1of petunia controls pigment synthesis,vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell14,2121-2135.
    Stich, K., Eidenberger, T., Wurst, F. and Forkman, G.(1992). Enzymatic conversion ofdihydrofavonols to favan-3¢,4-diols using fower extracts of Dianthus caryophyllus L.(carnation).Planta,187,103±108.
    Stobiecki, M., Matysiak-Kata, I., Fra ski, R., Ska a, J., Szopa, J.(2002). Monitoring changes inanthocyanin and steroid alkaloid glycoside content in lines of transgenic potato plants using liquidchromatography/mass spectrometry. Phytochemistry.62,959–969.
    Stracke, R., Werber, M., and Weisshaar, B.(2001). The R2R3-MYB gene family in Arabidopsisthaliana. Curr Opin Plant Biol4,447-456.
    Suttipanta N, Pattanaik S, Gunjan S, Xie CH, Littleton J, Yuan L.2007. Promoter analysis of theCatharanthus roseus geraniol10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis.Biochim Biophys Acta1769,139-148.
    Tamura K, Dudley J, Nei M, Kumar S.2007. MEGA4: Molecular Evolutionary Genetics Analysis(MEGA) software version4.0. Mol Biol Evol24,1596-1599.
    Tanaka, Y., Fukui, Y., Fukuchi-Mizutani, M., Holton, T.A., Higgins, E. and Kusumi, T.(1995).Molecular cloning and characterization of Rosa hybrida dihydrofavonol4-reductase gene. Plant CellPhysiol.36,1023±1031.
    Tanaka Y, Katsumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell,Tissue and Organ Culture80,1-24.
    Tanaka, Y., Sasaki, N., and Ohmiya, A.(2008). Biosynthesis of plant pigments: anthocyanins, betalainsand carotenoids. Plant J54,733-749.
    Tanaka, Y., Tsuda, S. and Kusumi, T.(1998). Metabolic engineering to modify fower color. Plant CellPhysiol.39,1119±1126.
    Tohge, T., Nishiyama, Y., Hirai, M.Y. et al.(2005). Functional genomics by integrated analysis ofmetabolome and transcriptome of Arabidopsis plants overexpressing an MYB transcription factor.Plant J.42,218–235.
    Toledo-Ortiz G, Huq E, Quail PH.2003. The Arabidopsis basic/helix-loop-helix transcription factorfamily. Plant Cell15,1749-1770.
    Urao T, Yamaguchi-Shinozaki K, Mitsukawa N, Shibata D, Shinozaki K.1996. Molecular cloning andcharacterization of a gene that encodes a MYC-related protein in Arabidopsis. Plant Mol Biol32,571-576.
    Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ,Marks MD, Gray JC.(1999). The TRANSPARENT TESTA GLABRA1locus, which regulatestrichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40repeat protein.Plant Cell11,1337–1350.
    Willits, M.G., Kramer, C.M., Prata, R.T., De Luca, V., Potter, B.G., Steffens, J.C., and Graser, G.(2005). Utilization of the genetic resources of wild species to create a nontransgenic high flavonoidtomato. J Agric Food Chem53,1231-1236.
    Winkel-Shirley B.2001a. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cellbiology, and biotechnology. Plant Physiol126,485-493.
    Winkel-Shirley B.2001b. It takes a garden. How work on diverse plant species has contributed to anunderstanding of flavonoid metabolism. Plant Physiol127,1399-1404.
    Winkel-Shirley B, Hanley S, Goodman HM.(1992). Effects of ionizing radiation on a plant genome:analysis of two Arabidopsis transparent testa mutations. Plant Cell4,333–347.
    Winkel-Shirley B, Kubasek W, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM.(1995). Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J.8,659–671.
    Xie DY, Jackson LA, Cooper JD, Ferreira D, Paiva NL.(2004). Molecular and biochemical analysis oftwo cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant Physiology,134,979–994.
    Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M.(2005). Transcription Factors in Rice: A Genome-wideComparative Analysis between Monocots and Eudicots. Plant Mol Biol59,191-203.
    Yanhong B, Sitakanta P, Barunava P, Joshua R. W, Claire H. X, Ling Y.2011. Flavonoid-relatedbasic helix-loop-helix regulators, NtAn1a and NtAn1b, of tobacco have originated from two ancestorsand are functionally active. Planta234(2):363-75.
    Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A.2003. A network of redundant bHLH proteinsfunctions in all TTG1-dependent pathways of Arabidopsis. Development130,4859-4869.
    Zhao, M., Morohashi, K., Hatlestad, G., Grotewold, E., and Lloyd, A.(2008). The TTG1-bHLH-MYBcomplex controls trichome cell fate and patterning through direct targeting of regulatory loci.Development135,1991-1999.
    Zimmermann, I., Heim, M.A., Weisshaar, B. and Uhrig, J.F.(2004). Comprehensive identification ofArabidopsis thaliana MYB transcription factors interacting with R/B-like bHLH proteins. Plant J.40,22–34.
    Zuker A, Tzfira T, Ben-Meir H, Ovadis M, Shklarman E, Itzhaki H, Forkmann G, Martens S,Neta-Sharir I, Weiss D, Vainstein A (2002) Modification of flower color and fragrance by antisensesuppression of the flavanone3-hydroxylase gene. Molecular Breeding9,33-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700