用户名: 密码: 验证码:
根瘤菌在苜蓿植株体内的运移及影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根瘤菌与豆科植物的共生固氮作用在改良土壤肥力、提高牧草和作物产量、改善生态环境等方面有着十分重要的意义和作用。前期的工作表明内生根瘤菌普遍存在于豆科植物的种子及植株体内,但对于根瘤菌自植株根系向种子的运移过程和途径还未有直接的证据。为明确内生根瘤菌在苜蓿体内的运移通道、运移规律及影响内生根瘤菌寄主体内运移的因素,本研究利用三亲本杂交技术将cfp荧光蛋白导入苜蓿根瘤菌S.12531(苜蓿根瘤菌标准菌)和R. GN5(分离自甘农5号紫花苜蓿种子的内生根瘤菌)中,得到外源荧光标记根瘤菌S.12531f和内源荧光标记根瘤菌R. GNf。针对芽苗期、幼苗期及栽培1a越冬后返青的甘农5号紫花苜蓿田间植株,在接种方法、接种部位和外源干扰物质对内生根瘤菌和外源侵入根瘤菌在植株体内运移和转运规律的影响方面进行了试验和探讨。结果表明:
     1.内源菌R. GNf和外源菌S.12531f对宿主芽苗的侵染和在芽苗体内的运移过程存在相似性和异质性。相似性在于两种标记菌都能侵染芽苗根系并进入茎内。异质性表现为内源菌在植株茎和根内的菌体密度差异小,并能进入芽苗的子叶,而外源菌24h内不能进入芽苗子叶,且菌体密度在宿主植株根内和茎内差异很大。表明根瘤菌在芽苗内由根系向茎和子叶运移的过程存在选择性屏障,第一个选择性屏障出现在芽苗的根茎之间,可降低外源菌的通过数量而对内源菌没有影响,第二个屏障出现在茎与子叶之间,能够阻断外源菌向子叶的运移。
     2.标记菌通过茎中部的表面创口侵入幼苗和田间植株后,能向下运移至茎和根,但不能由接种部位向上运移,也不能长期定殖在接种部位至茎基的运移通道内,因此形成了侵入标记菌在植物组织中的不连续分布。外源标记菌由茎表创口进入植株并向根系运移的速率高于由茎杆中髓部向根系运移的速率,而内源菌相反。对田间植株而言,由茎表伤口侵入植株有利于外源菌的运移,而由茎杆髓部向根系的运移通道(注射处理)更适宜内源菌的转运。对苜蓿幼苗不同部位叶片进行菌液涂抹后发现,茎杆划伤接种及叶片涂抹接种都能使标记根瘤菌进入植株并向下运移,但并不经由同一路径;涂抹于不同部位叶片的标记菌都能向下转运至茎和根,但不能进入其他部位的叶片,也不能向上运移。在10-12d龄的芽苗中,由真叶叶片向下至根系的根瘤菌运移通道尚未形成,涂抹于划伤页面的菌体不能侵入植株。
     3.由根系侵入的标记根瘤菌在植株生长各个阶段都有自根向地上部分运移的通道。芽苗、幼苗和田间植株在菌液浸根处理后,各检出组织部位的标记菌密度存在很大差异,但两种标记菌都能进入苜蓿植株的根并运移至茎内。内源标记菌R.GNf还能进入芽苗的子叶、幼苗的下部叶片和田间植株的上部叶片,而无外源物质作用时外源菌S.12531f只能由根向上运移到植株茎内。对根系进行切根(芽苗)或切除原有根瘤(田间植株)处理后,受损伤的根系形成了更多的根瘤菌侵染路径,能显著增加标记菌在植株根组织内的数量,促进芽苗中两种标记菌和田间植株中的内源菌向植株茎的运移,能促使内源菌运移至芽苗子叶,但抑制了内源菌向田间植株上部叶片的运移。
     4.低浓度的LaCl3、IAA及相异胞外多糖均能不同程度的提高宿主芽苗和幼苗根系中标记菌的分布密度,但LaCl3会显著降低外源菌S.12531f在宿主茎内的菌体密度,并抑制内源菌向茎和子叶内运移。IAA能提高外源菌在茎内的菌体数量,但会降低内源菌在茎和子叶中的菌体密度。不同作用机理的外源物质对标记菌的侵入和运移会产生不同影响,仅仅依靠破坏根系、改变或破坏胞壁构象的外源物质,只能促使标记菌进入根系,但对进一步向茎和子叶的运移没有积极的作用,使用内源菌的胞外多糖可以降低芽苗体内根-茎运移屏障对外源菌的选择压力,但不能使外源菌通过茎叶之间的选择性运移屏障;外源菌胞外多糖会增加内源菌在幼苗和芽苗茎内的分布密度。
     5.常温下根瘤菌能够在2d内由根部外环境侵入幼苗根系并运移至茎,少量的内源标记菌能进入下部叶片。幼苗的茎部环境对菌种具有选择性,外源菌可以存在于茎内,但数量和在总检出内生菌中的比例均显著低于相同部位的内源菌;4℃低温抑制根瘤菌的侵入和在宿主体内的运移,且对外源根瘤菌的抑制作用强于内源根瘤菌。营养供给的均衡性能促进根瘤菌侵入植株根系,而缺乏氮素营养的微环境则有利于标记菌向幼苗茎部运移。
     6.内源及外源标记根瘤菌侵入根系后都能持续向植株茎部转运,2d时到达植株下部茎,5d时内源菌能进入植株上部叶,而外源菌只到达植株上部茎,此时标记菌菌体密度在根以外的检出部位组织中达到最高,6-7d内茎内标记菌的密度逐渐降低但分布部位不变。
     7.田间营养生长初期的植株菌液浸根接种40d后,标记菌仍由根系向植株地上部分运移,且只有内源菌能进入植株上部叶片。表明返青后的田间植株在营养生长初期,体内存在根瘤菌向上运移的通道,但标记菌在运移通道中的分布是不连续的,在部分通道组织内能只能选择性允许标记菌通过,不能长期定殖。并指出外源菌在宿主根和茎内能够存在40d且菌体密度接近内源菌,但不能像内源菌一样进入植株上部叶片,证明苜蓿植株体内存在菌体运移的选择性屏障。
The symbiotic azotification between Rhizobia and leguminous forages plays an importantrole in ameliorating soil fertilization, enhancing the productivity of forage grass and crop, as wellas improving ecological environment. Previous work indicated that endogenous Rhizobia widelyexisted in the seeds and plants of leguminous forages, while no direct proof was found to provethe migration and pathway of Rhizobia between roots and seeds. In order to make clear themigrational pathway and rules of endogenous rhizobia in alfalfa plants, as well as the factors thatinfluence the migration of endogenous rhizobia in host plants, triparental mating technology wasused to transfer cfp fluorescent protein into Sinorhizobium meliloti.12531(standard alfalfa rhizobia)and Rhizobium meliloti. GN5(isolated from the endogenous rhizobia in seeds of Medicago sativaGannong NO.5) to obtain exogenous fluorescence marked rhizobia S.12531f and endogenousfluorescence marked rhizobia R.GNf. Inoculation methods, inoculation positions and the effect ofexogenous interfering substances on the migration and transferring rules of endogenous rhizobiaand exogenous invasive rhizobia in plants were tested based on the bud stage, seedling stage andreviving Gannong NO.5(1a after cultivation) that cultivated in the open fields. The results showedthat:
     1. Both similarity and heterogeneity were found for endogenous R.GNf and exogenousS.12531f in terms of host seedlings infection and transportational process. For the similarity, boththe two marked bacteria could infect the root of seedling and enter the stem. For the heterogeneity,endogenous bacteria had relatively smaller differnece in bacterial density in stems and roots, andcould enter the cotyledon of seedling, while exogenous bacteria could not enter the cotyledon ofseeding within24h, and the bacterial densities in roots and stems of the host plants was relativelygreater, indicating that in the seedlings, a selective barrier exists in the transportational process ofrhizobia from root to stem and cotyledon, the1stselective barried occurred between root and stem,which could possibly decrease the quantity of exogenous bacteria while play no effect onendogenous, and the2ndselective barrier occurred between stem and cotyledon, which could cutoff the migration of exogenous bacteria to cotyledon.
     2. After infecting into seedlings and field plants, the marked bacteria could be migrated toroot and stem, but could not be migrated upward from inoculation position, or colonized in thepathway between the inoculation position and stem base, and therefore formed a discontinuousdistribution of marked bacteria in the plant tissues. The enter speed of exogenous bacteria from the scar to root was found faster than that from the medulla to root, whereas endogenous bacteria hadreversed situation. To field plants, the scar on the stem was good for the migration of exogenousbacteria, while the pathway between medulla and root was found more appropriate for themigration of endogenous (injected treatments). The daub tests conducted on young leaves ofdifferent parts indicate that both stem-scratching inoculation and leaf-daub inoculation could makethe marked bacteria migrated downward but in different pathways; the marked bacteria thatdaubed on different parts of leaves could move downward to stem and root, but could neither enterthe leaves in other positions nor move upward. In10-12d seedlings, the rhizobia migrationalpathway from euphylla to root hadn't been formed, and the bacteria daubed onto the scratchedleaves could not infect the plants.
     3. In all stages of growth, the infected marked bacteria had the pathway to be migratedupward to the aboveground part. After the roots of bud seedling, young seedling and field plantsbeing treated with bacterial solution, the detected marked bacteria in different positions werefound with significant difference, but both the two marked bacteria could enter the root of alfalfaand been migrated to stem. Endogenous marked bacteria R.GNf could enter cotyledon of buds,lower leaves of seedlings and upper leaves of field plants, whereas exogenous S.12531f could onlymove upward to stems when exogenous substances were absent. When the root (for bud seedlings)or the original nodules (for field plants) been cut off, the injured roots gave more ways to rhizobiainfection, which significantly increased the quantity of marked bacteria in root tissues, andpromoted the migration of the two bacteria in bud seedlings and endogenous bacteria in plants tomake more endogenous bacteria moved to cotyledon of seedlings, but which also inhibited theupward movement of endogenous bacteria in field plants.
     4. Low concentraion LaCl3, IAA and alien extracellular polysaccharides could inordinatelyincrease the distribution density of marked bacteria that existed in the root of host bud seedlingsand young seedlings, while LaCl3significantly decreased the distribution density of S.12531inhost stem, and also inhibited the migration of endogenous bacteria to stem and cotyledon. IAAcould increase the quantity of exogenous bacteria that existed in stems, but decreased the bacterialdensity of endogenous bacteria that existed in stem and cotyledon. Exogenous substances withdifferent mechanisms like root damage, the change or damage of cell wall conformation, playdifferent effects on the infection and migration of marked bacteria, but could only urge the markedbacteria to enter the root, while could not play an positive role in the further transportation of the marked bacteria to stem and cotyledon. The usage of extracelluar polysaccharides of endogenousbacteria could decrease the selective pressure from root-stem barrier in bud seedlings, but couldnot going through the selective barrier between leaf and stem by using exogenous bacteria;exogenous extracellular polysaccharides could increase the distributional density of endogenousbacteria in stems of bud seedlings and young seedlings.
     5. On condition of normal temperature, rhizobia could infected the young seedlings fromoutside and be migrated from root to stem, few endogenous marked bacteria could move to thelower leaves. The stems of young seedlings were selective to bacteria stains, exogenous bacteriacould exist in stem, but the detected quantity takes only a very low proportion in the totalendogenous bacteria, which was significantly lower than other endogenous bacteria existed in thesame part. Low temperature at4℃could inhibit the infection and migration of rhizobia, and theinhibitory effect of which on exogenous rhizobia was found stronger than that on endogenousrhizobia. Balanced nutrition supply could promote rhizobia infecting plant roots, while themicro-environment which is nitrogen deficient was beneficial for the migration of marked rhizobiato seedlings stem.
     6. Both endogenous and exogenous marked rhizobia could keep the continuity of migratingto stems after the infection into roots, and arrived at lower stem2days later,5days later,endogenous bacteria could come into upper leaves, while exogenous bacteria could only arrievedat upper stem, at this time, bacterial density in plant tissues except in root were found the highest,on6-7thday, the density decreased progressively without change in distributional position.
     7. For plants that grown for40d after root-soaked inoculation treatment and that were in theprimary stages of vegetative growth in the fields, the marked bacteria of which could still bedetected move upward to the aboveground part, but only endogenous bacteria could enter upperleaves of plants, indicating that the reviving plants which were in the primary stages of vegetativegrowth had the upward pathway for rhizobia migration, while the distribution of marked bacteriawas discontinued, some pathway and tissue were selective to marked bacteria and could makethem colonized indefinitely. The exogenous bacteria could exist about40d in the stems and rootsof host plants with approximately the same density of endogenous bacteria, but could not enter theupper leaves like endogenous, indicating that selective barriers for rhizobia migration are exist inalfalfa plants.
引文
[1] Agarwal V K. Seed-borne Fungi and of some Iimportant Crops.Pontnagar(Nainital)[D],India: University Press,1981:14-52
    [2] Ahlholm J U, Helander M, Henriksson J, et al. Environmental conditions and hostgenotype direct geneticdiversity of VentuHa ditricha, a fungal endophyte of birchtrees[J].Evolution,2002,56:1566-1573
    [3] Ahlholm J, Helander M L, Elamo P, et al. Micro-fungi and invertebrate herbivores onbirch trees: Fungal mediated plant-herbivore interactions or responses to host quality [J].Ecology Letters,2002,5:648-655and sweet corn[J]. Plant and Soil,1995,173:337-342
    [4] Andrews J H. Biological control in the phyllosphere [J]. Ann. Rev,1992,30:630-635
    [5] Anorld A E, Maynard Z, Gilbert G S, et al. Are tropical fungal endophytes Hyperdiverse?[J]. Ecology Letter,2000,3:267-274
    [6] Baldani J, Caruso L, Baldani V L D, et al. Recent advances in BNF with non-legumeplants[J]. Soil Biology and Biochemistry,1997,29(5-6):911-922
    [7] Barbara S, Christensen B. The endophytic continuum[J]. Mycological Research,2005,109(6):661-686
    [8] Becker A, Puhler A. Production of exopolysaccharides, The Rhizobiaceae, In: Spaink H,Konodorosi A, Hooykaas P J J,(Eds).[M]. Kluwer Academic Publishers, Dordrecht,Boston.1998,97-118
    [9] Biswas J C, Ladha J K, Dazzo F B. Rhizobia inoculation improves nutrient uptake andgrowth in Lowland rice. Soll Sci. Soc. Amer [J].2000,64:1644-1650
    [10] Breedveld M W, Cremers H C, Batley M, et al. Polysaccharide synthesis in relation tonodulation behavior of Rhizobium leguminosarum[J]. J Bacteriol.,1993,175:750-757
    [11] Castillo U F, Strobel G A, Ford E J, et al. Munumbicins, wide-spectrum antibioticsproduced by Streptomyces NRRL30562, endophytic on Kennedia nigriscans [J]. SocGeneral Microbiol.2002,148(9):2675-2685
    [12] Cavalcante V A, D bereiner J. A new acid-tolerant nitrogen fixing bacterium associatedwith sugarcane [J]. Plant Soil,1988,108:23-31
    [13] Chi F, Shen S H, Liang Y, et al. Ascending traveling of rhizobial bacteria fromcolonized roots jnto stems. Ieaves and ovules within tobacco plants [C]. In Wang Y.(ed.).Proceedings of the14th International Congress on Nitrogen Fixation, Beijing, China.2004, P.43
    [14] Chi F, Sherk S H. Cheng H P. Ascending migration of endophytic rhizobia from roots toleaves inside rice plants and assessment of their benefits to the growth physiology ofrice[J]. Appl. Environ. Microbiol.,2005,71:7271-7278
    [15] Clay K, Holah J. Fungal endophyte symbiosis and plant diversity in successional fields[J]. Science,1999,285:1742-1744
    [16] Clemence C, Eric G, Yves P, et al. Phocosyntbetic bradyrhizobia are natural endophytesof the Africa wild rice oryza breviliguulata [J]. Appl.environ. Microbiol.,2000,2:5437-5447
    [17] Cocking E C, At-Mallah M K, Benson E, et a1.Nodulation of non-legumes byrhizoid.In:Gresshoflr P M.Roth L E,Stacey G et al,eds.Nitrogen fixation:Achievements and Objective.New York,Chapman and Hall,1990,8l3-823
    [18] Cook R, Evans K, Brown RH, et al. Resistance and tolerance[M]. In: Brown RH, KerryBR. Principles and practice of nematode control in crops.1987:179-231
    [19] Dazzo F B, Yanni Y G, Rizk R, et a1. Progress in multinational collaborative studies onthe beneficial association betweet Rhizobium leguminosarum bv. trifolii and rice[M]. InJ. K. Ladha and PM. Reddy eds. The Quest for Nitrogen Fixation in Rice. IRRI, LosBanos, Philippines,2000,167-189
    [20] De Felipe M R, Fernández-Pascual M M, Pozuelo J M. Effects of herbicides Lindex andSimazine on chloroplasts and nodule development, nodule activity and grain yield inLupinus albus L. cv. Multolupa [J]. Plant Soil,1987,101:99-105
    [21] De Lorenzo V, Herrero M, Jakubzik U, et al. Mini-Tn5transposon derivatives forinsertion mutagenesis, promotro probing, and chromosomal insertion of cloned DNA ingram-negative Eubacteria[J]. J Bacteriol.,1990,172:6568-6572
    [22] Delille D, Perret E. Influence of Temperature on the Growth Potential of Southern PolarMarine acteria. Microbiology Ecology,1989,18:117-123
    [23] Du Y J, Wang Q, Han L B. The effect of neotyphodium typhinum infected onphotosynthetic characteristics of tall fescue[J]. Ecology and Environmnet,2009,18(2):590-594
    [24] Egener T, Martin D E, Sarkar A, et al. Role of a Ferredoxin Gene Cotranscribed withthenifHDK Operon in N2Fixation and Nitrogenase “Switch-Off” of Azoarcus sp. StrainBH72[J]. Journal of Bacteriology,2001,183(12):3752-3760
    [25] Elhai J, Vepritskiy A, Muro-Pastor A M, et al. Reduction of conjugal transfer efficiencyby three restriction activities of Anabaena sp. strain PCC7120.[J]. Journal Bacteriology,1997,179(6):1998-2005
    [26] Elhai J, Wolk C P. A versatile class of positive-selection vectors based on thenonviability of palindrome-containing plasmids that allows cloning into longpolylinkers[J]. Gene,1988,68(1):119-138
    [27] Evtushenko L I, Akimov V N, Dobrista S V, et al. A new species of actinomycete,Amycolata alni[J]. International Journal of Systematic and Evolutionary Microbiology,1989,29:72-77
    [28] Faeth S H, Helander M L, Saikkonen K T. Asexual neotyphodium endophytes in anative grass reduces competitive abilities [J]. Ecology Letters,2004,7:304-313
    [29] Fonseca C E L, Viands D R, Hanse J L, et al. Association among ForageEqualityTraits[J]. Crop Science,1999:1271-1276
    [30] Freeman S, Rodriguez R J. Genetic conversion of a fungal plant pathogen to anonpathogenic, entophytic mutualist. Science,1993,260:75-78
    [31] Freeman S,Rodriguez R J. Genetic conversion of a fungal plant pathogen to anonpathogenic, entophytic mutualist, Science,1993,260:75-78
    [32] Funk C R, White R H, Breen J P. Importance of Acremonium endophytes in turf-grassbreeding and management [J]. Agric. Ecosystems Environ,1993,44:215-232
    [33] Garwal V K, Singh O V. Relative PercentageIncidence of Seed-borne Fungi Associatewith Different Varieties of Rice Seeds[J]. Seed Research,1974,2:23-25
    [34] Glickmann E, Dessaux Y. A critical examination of the specificity of the Salkowskireagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied andEnvironmental Microbiology,1995,2:793-796
    [35] Hallmann A Q, Hallmann J, Kloepper J W. Bacterial endophytes in cotton: location andinteraction with other plant-associated bacteria[J]. Can. J. Microbiol.,1997,43:254-259
    [36] Hallmann J, Quadt-Hallmann A,Mahaffee W F,et a1.. BacteriaI endophytes inagricultural crops[J]. Can. J. Microbi.,1997,43:895·914
    [37] Hardoim P R, Leo S, van Overbeek, Jan D. van Elsas. Properties of bacterial endophytesand their proposed role in plant growth[J]. Trends in Microbiology,2008,16(10):463-471
    [38] Hardoim P R, van Overbeek L S. Properties of bacterial endophytes and their proposedrole in plant growth [J]. Trends in Microbiology,2008,16:463-471
    [39] Hardy R W F, Holsten R D, Jackson E K, et al. The acetylene-ethylene assay for N2fixation: laboratory and field evaluation [J]. Plant Physiol.,1968,43:1185-1207
    [40] Hein R, Tsien R T. Engineering green fluorescent protein for improved brightness,longerWavelengths and fluorescence resonance energy transfer[J]. Curr Biol,1996,6:178-182
    [41] Hennig K, Villforth F. Experimentelle untersuchungen zur frage der bakteriensymbiosein hoheren pflanzen undihrer beeinflussung durch leitelemente [J]. Biochem. Z.,1940,305,299-309
    [42] Hilali A, Prevost D, Broughton W, et al. Effets de I’inoculation a Vecdes souches deRhizobium leguminosarum biovar trifolii surla croissance der ble dans deux sols derMaroc. Can [J]. Microbiol.,2001,4l:590-593
    [43] Hoagland D, Arnon D I. The water culture method for growing plants without soil [J].Califo rnia Agricultural Experiment Station Bulletin,1938,1:1-39
    [44] Hoch M, Kirchman D L. Seasonal and inter-annual variability in bacterial productionand biomass in a temperate estuary[J]. Marine Ecology Progress Series,1993,98:283-295
    [45] Hurek T, Reinhold-Hurek B. Azoarcus spstrain BH72as a model for nitrogen-fixinggrass endophytes[J]. Journal of Biotechnology,2003,106(2-3):169-178
    [46] Hurek T, Reinhold-Hurek B, Montagu M V, et al. Root colonization and systemicspreading of Azoarcus sp. strain BH72in grasses[J]. Journal of Bacteriology,1994,176(7):1913-1923
    [47] Jianfeng Li, Shuqing Zhang, Shangli Shi, et al. Mutational approach for N2-fixing andP-solubilizing mutant strains of Klebsiella pneumoniae RSN19by microwavemutagenesis[J]. World J Microbiol Biotechnol,2011,27:1481-1489
    [48] Kannenberg E L, Brewin N J. Host-plant invasion by Rhizobium: the role of cell-surfacecomponents[J]. Trends Microbiol.,1994,2:277-283
    [49] Kannenberg E L, Reuhs B L, Forsberg L S, et al. Lipopolysaccharides and K-antigens:their structures, biosynthesis, and functions[J]. See Ref.,1998,160:120-154
    [50] Khush G S, Bennett J. Nodulation and nitrogen fixation in rice: potential andprospects[M]. Intemational Rice Research Institute. Manila (Philippines),1992,36
    [51] Knoblauch C, Jirgensen B B. Effect of temperature on sulphate reduction, growth rateand growth yield in five psychrophilic sulphate-reducing bacteria from Arcticsediments. Environmental Microbiology,1999,1(5):457-467
    [52] Kunkel B A, Grewal P S. A mechanism of acquired resistance against anentomopathogenic nematode by Agrotis ipsilon feeding on perennial ryegrass harboringa fungal endophyte[J]. Biological Control,2004,29:100-108
    [53] Lappalainen J H, Yli-Mattila T. Genetic diversity in Finland of the birch endophyteGnomonia setacea as determined by RAPD-PCR markers[J]. Mycol Res,1999,103:328-332
    [54] Leuchtman A. Sysrematics, distribution, and host specificity of grass endophytes[J]. NatToxins,1992,1(2):150-162.
    [55] Li J F, Zhang S Q, Shi S L, et al. Mutational approach for N2-fixing and P-solubilizingmutant strains of Klebsiella pneumoniae RSN19by microwave mutagenesis [J]. WorldJournal of Microbiology and Biotechnology,2011c,27(6):1481-1489
    [56] Liu Peng, Liu Yia, Lu Zhexue, et al. Study on biological effect of La3+on Escherichiacoli by atomic forcemicros-copy[J]. Journal of Inorganic Biochemistry,2004,98:68-72
    [57] Lupway N, Clayton Q, Hanson K. et a1. Endophytic rhizobia in barley, wheat, andcanola roots[J]. Can. J. Plant Sci.,2004,84:37-45
    [58] Lyons P C, Evans J J, Bacon C W. Effects of the fungal endophytes Acremoniumcoeno-phialum on nitrogen accumulation and metabolism in tall fescue [J]. Plantphysiology,1990,92:726-732
    [59] Lyons R M. Transforming growth factors and the regulation of cell proliferation [J].European Journal of Biochemistry,1990,187:467-673
    [60] Mahaffee W E, Klopper J W, Van Vuurde, et a1. Endophytic colonization of paseilusvulgaris by Pseudomonas fluorescens strain89B-27and Enderobscter asburiae strainJM22[C]. In Improving plant productivity in rhizosphere bacteria. Edited by M. H.Ryder, RM. Stephens. and GD. Bowen. CSIRO, Melbourne, Australia.1997, P.180
    [61] Malinowski D P, Brauer D K, Belesky D P. The endophyte Neotyphodiumcoenophialum affects root morphology of tall fescue grown under phosphorus deficiency.J Agron Crop Sci,1999,183:53-60
    [62] McCully M E. Niches for bacterial endophytes in crop plants: a plant biologist's view.Australian Journal of Plant Physiology,2001,28(9):983-990
    [63] Mccutcheon T L, Carroll G C, Schwab S. Genotypic diversity in populations of a fungalendophyte from Douglas fir[J]. Mycologia,1993,85:180-186
    [64] McInroy J A, Kloepper J W. Survey of indigenous bacterial endophytes from cotton andsweet corn [J]. Plant and soil,1995,173(2):337-342
    [65] Miller K J, Kennedy E P, Reinhold V N. Osmotic adaptation by Gram-negative bacteria:possible role for periplasmic oligosaccharides[J]. Science,1986,231:48-51
    [66] Muhammad Z, Asif T, Zahid A Z, et al. Weed-crop competition effects on growth andyield of sugarcane planted using two methods [J]. Pak. J. Bot.,2010,42(2):815-823
    [67] Mundt J O, Hinkle N F. Bacteria within ovules and seeds[J]. Applied and environmentalmicrobiology,1976:694-698
    [68] Nico Stuurman, Cristina pacios Bras, Helmi R M, et al. Guido Bloemberg,and HermanP.SPaink,Use of green fluorescent protein color variants expressed on stableroad-host-range vectors to visualize Rhizobia interacting with plants[J]. The AmericanPhytopatho-logical society,2000,13(11):1163-1169
    [69] Nishijima F, EvansW R&Vesper S J. Enhanced nodulation of soybean byBradyhizobium in the presence of Pseudomonas fluorescens[J]. Plant and Soil,1988,111:149-150
    [70] Pablo R, Hardoim L S, van Overbeek, et al. Properties of bacterial endophytes and theirproposed role in plant growth[J]. Trends in microbiology,2008,16(10):463-471
    [71] Pan F, Jackson M, Ma Y, et al. Cell Wall Core Galactofuran Synthesis Is Essential forGrowth of Mycobacteria[J]. Journal of bacteriology,2001,183(13):3991-3998
    [72] Perotti R. On the limits of biological enquiry in soil science[J]. Proc. Int. Soc. Soil Sci.Proc.1926,2:146-161
    [73] Peters S, Draeger S, Aust H J, et al. Interactions in dual cultures of endophytic fungiwith host and nonhost plant calli[J]. Mycologia,1998,90:360-367
    [74] Pleban S, Ingel F, Chet I. Control of Rhizoctonia solani and Sclerotium rolfsii in thegreenhouse using endo-phytic Bacillus spp.[J]. European Journal of Plant Pathology,1995,101:665-672
    [75] Porsser J I. Molecular maker systems for detection of genetical]y engineeredmicroorganisms in the environment[J]. Microbiology,1994,140:5-17
    [76] Prayitno J, Stefaniak J, Mclver J, et al. Interactions of rice seedlings withnitrogen-fixing bacteria isolated from rice roots[J]. Austr. J. Plant Physiol.,1999,26:52-535
    [77] Ravel F, Courty C, Coret A, et al. Beneficial effects of Neotyphodium lolii on thegrowth and the water status in perennial ryegrass culitivated under nitrogen deficienty ordrought stress[J]. Agronomie,1997,17:173-181
    [78] Reddy R M, Ladha R S R, Hemandez F B, et al. Rhizobial communication with rice:induction of phenotypic changes, mode of invasion. And extent of colonization inroots[J]. Plant and Soil,1997,94:81-99
    [79] Reis V M, Baldani J I, Baldani V L D, et al. Biological dinitrogen fixation in Graminesaand palm trees[J]. Critical Rev Plant Sci,2000,19:227-247
    [80] Remirez F. Acetobacter diazotrophicus, an IAA producing bacterium isolated from sugarcane cultivates of Mexico[J]. Plant and Soil,1993,154:145-150
    [81] Rosenblueth M. Martinez-Romero E. Bacterial endophytes and their interactions withhosts [J]. Molecular Plant-Microbe interactions,2006,19:827-837
    [82] Rudrappa T, Biedrzycki M L, Bsis H P. Causes and consequences of plant-associatedbiofilms[J]. FEMS Microbiology Ecology,2008,64: l53-166
    [83] Rutter M, Nedwell D B. Influence of changing temperature on growth rate andcompetition between two psychrotolerant Antarctic bacteria: competition and survival innon-steadystate temperature environments. Applied and Environmental Microbiology,1994,60(6):1993-2002
    [84] Schardl C L, Leuchtmann A, Spiering M J. Symbioses of grasses with seedborne fungalendophytes[J]. Annual Review of Plant Biology,2004,55:315-340
    [85] Schipper K. A comparison of equity carve-outs and seasoned equity offerings*1:: Shareprice effects and corporate restructuring[J]. Journal of Financial Economics,1986,15(1-2):153-186
    [86] Schulz B, Rommert A, Dammann U, et al. The endophyte-host interaction: a balancedantagonism[J]. Mycological Research.1999,103:1275-1283
    [87] Sessitsch A, Wilson K J, Akkermans A D L, et al. simultaneous detection of differentRhizobium strains marked with either the Escherichia coli gusA or the pyrococcusfuriosus celB gene [J]. Appl Environ Microbil,1996,62:4194-4194
    [88] Shi D C, Zhao K F. Effects of sodium chloride and carbonate on growth of Puccinelliatunuiflora and on present state of mineral elements in nutrient solution[J]. Acta Pratacult,1997,6:51-61
    [89] Sieber T N, Sieber-Canavesi F, Dorworth C E. Simultanceous stimulation of endophyticCryptodiaporthe hystrix and inhibition of Acer macrophyllum callus in dual culture[J].Mycologia,1990,82:569-575
    [90] Siegel M R, Johnson M C, varney D R, et al. A fungal endophyte in tall fescue:incidence and dissemination[J]. Phytopathology,1984.74:932-937
    [91] Sledge M K, Pechter P, Payton M E. Aluminum Tolerance in Medicago truncatulaGermplasm[J]. CROP SCIENCE,2005,45:2001-2004
    [92] Somasegaran P, Hoben H J. Methods in legume-rhizobium technology [M].1985:7-29
    [93] Spaink, H P. Root nodulation and infection faxtors produced by rhizobial bacteria[J].Annu Rev. Microbiol.,2000,54:257-288
    [94] Stone E J, Callaghan O, Davey K J, et al. Azorhizobium caulmodans ORS571Colonizesthe Xylem of Arabidopsis thaliana[J]. MPMI.,2001,14(1):93-97
    [95] Stone J K, Bacon C W, White J F. An overview of endophytic microbes: endophyphytesdefined. Bacon CW, White JF Jr. Microbial Endophytes[M]. New YorK: Marcel Dekker,2000,3-29
    [96] Stone J M, Heard J E, Asai T, et al. Simulation of fungal-mediated cell death byfumonisin B1and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants [J]. ThePlant Cell Online,2000,12:1811-1822
    [97] Streit W, Botero L, Werner D, et al. Soil Biol Biochem,1995,28(8):1075-1081
    [98] Strobel G A, Hess W M. Glucosylarton of the peptide leucinostarin A, produced by anendophytic fungus of European yew, may protect the host from lene i nos afin toxicity[J].Chem. Biol.,1997,4:529-536
    [99] Strobel G, Stierle A, Stierle D. Taxomyces andreana a proposed new taxon for abulbilliferous by phomycete associated with pacific yew(taxus brevifolia)[J].Mycotoxon,1993,0(7):71-81
    [100] Sturz A V, Christie B R, Matheson B G, et al. Biodiversity of endophytic bacteriawhich colonize red clover nodules,roots, stems and foliage and their influence on hostgrowth[J]. Biol Fertil Soils,1997,25:13-19
    [101]Sturz A V, Matheson B G. Population of endophytic bacteria which influencehost-resistance to Erwinio-induced bacterical softrot in potsto [J]. Plant and Soil,1996,184:256-271
    [102]Sturz1A V, Christie B R. Endophytic bacteria of red clover as agents of allelopathicclover-maize syndromes[J]. Soil Biology and Biochemistry,1996,28(4-5):583-588
    [103]Taechowisan T, Peberdy J F, Lumyyong S. Isolation of endophytic actinomycetes fromselected plants and their antifungal activity[J]. World J. Microbiol Biotech,2003,19:381-385
    [104]Tan G Y. Genetic variation for acetylene reduction rate and other character in alfalfa[J].Crop Science,1981,21:485-488
    [105]Thakuria D, Talukdar N C, Goswami C, et al. Characterization and screening ofbacteria from rhizosphere of rice grown in acidic soils of assam [J]. Current Science,2004,86(7):978-985
    [106]Urquiaga S, Cruz K H S. Boddey R M. Contribution of nitrogen fixation to sugar cane:nitrogen-15and nitrogen balance estimates[J].Soil Science Society of America Journal,1992,56(1):105-114
    [107]Yanni Y G, Rizk R Y. Corich V. Natural endoph qic associmion between Rhizobiwnlegwninosarwn bv. Trifolii and rice roots and assessment of its potential to promote ricegrowth[J]. Plant and Soil,1997,194:99-114
    [108]Yanni Y G, Rizk R Y. El-Fattah F A, et al. Beneficial plant growth-promotingassociation of Rhizobium leguminosarum biovar trifolii with rice roots[J]. Austr. J. PlantPhysiol.,2001,62:845-870
    [109]Zaied K A, Kosba Z A, Nassef M A, et al. Induction of Rhizobium InoculantsHarboring Salicylic Acid Gene. Australian Journal of Basic and Applied Sciences [J].2009,3(2):1386-1411
    [110]Zimmer M. Green fluorescent protein (GFP): applications,structure,and relatedphotophysical behavior [J]. Chem Rev,2002,102(3):759-781
    [111]Zong H, Liu E E, Guo Z F, et al.Preliminary report on relationship between Ca2+, CaMmessenger system and stress resistance of rice seedling[J]. J South China Agric Univ,2000,21(1):64-67
    [112]Zou W X, Tan R X. Biological and chemical diversity of endophytes and their potentialapplications in Li CS. Advances in Plant Sciences[M]. Vol.2. Beijing: China HigherEducation Press,1999,183-190
    [113]曹理想,周世宁.植物内生放线菌研究[J].微生物学通报,2004,31(4):93-96
    [114]陈立军,孙广宇,张荣等.油菜内生真菌的分离鉴定[C].石河子大学学报(自然科学版)2004,22(增刊):66-68
    [115]陈熙.西瓜叶枯病种子带菌及其传病作用的研究[J].中国蔬菜,1994,4:1-3
    [116]程志明,梁力.水稻内生真菌检测[J].植物保护,1995,2:14-16
    [117]迟峰.根瘤菌在植物内的迁移运动及其与植物相互作用的蛋白质组学研究[D].北京:中国科学院植物研究所,2006
    [118]崔长征,沈萍,张甲耀等.利用绿色荧光蛋白标记革兰氏阴性细菌的研究[J].环境科学学报.2011,31(2):276-282
    [119]段灿星,张青文,徐静,等.抗虫内生工程菌对亚洲玉米螟的杀虫效果及其在植物体内的动态变化[J].中国农业大学学报,2002,7:75-79
    [120]宫世勇.高效重组首摘中华根瘤菌的构建及其耐盐性初探[D].武汉:华中农业大学,2006
    [121]龚月娟,李健强.关于五种牧草及三种草坪草种子寄藏真菌的检测初探[J].草业学报,2004,(5):116-120
    [122]韩瑞宏,毛凯.我国牧草种带真菌做了初步的检测[J].草业科学,2003,20(5):23-25
    [123]何红,邱思鑫,蔡学清等.辣椒内生细菌BS-1和BS-2在植物体内的定殖及鉴定[J].微生物学报,2004,44(1):13-18
    [124]华致甫,袁美丽.烟草种子带菌分析及种子处理[J].中国烟草,1994,4:40-42
    [125]黄宝灵,吕成群.罗汉松根瘤内生细菌的分离和特性[J].微生物学报,2002,42(5):620-623
    [126]霍春芳,张东艳,刘进荣等.稀土对芽孢菌的抑菌机理研究[J].化学学报,2002,60(6):1065-1071
    [127]姜怡,杨颖,陈华红,等.植物内生菌资源[J].微生物学通报,2005,32(6):146-147
    [128]李爱江,张敏,辛莉.发酵生产过程中发酵条件对微生物生长的影响[J].农技服务,2007,24(4):124,126
    [129]李春杰,南志标.苜蓿种带真菌及其致病性测定[J].草业学报,2000,1:27-36
    [130]李福祥.新疆小麦根腐病的种子带菌分析[J].植物保护,1995,4:21-22
    [131]李剑峰,师尚礼,张淑卿等.酸性环境中亚铁离子对紫花苜蓿WL525早期生长和生理的影响[J].草业学报,2009a,18(5):10-17
    [132]李剑峰,张淑卿,师尚礼等.苜蓿内生根瘤菌分布部位与数量变化动态[J].中国生态农业学报,2009b,17(6):1200-1205
    [133]李杰,陈丽华,李希臣.一种应用luxAB基因标记大豆根瘤菌的新方法[J].大豆科学,2003,22(3):172-175
    [134]李强,刘军,周东坡,等.植物内生菌的开发与研究进展[J].生物技术通报,2006,3:33-37
    [135]李友国,周俊初.导入dctABD和nifA基因对费氏中华根瘤菌共生固氮的影响研究[J].遗传学报,2002,29(2):181-188
    [136]廖德聪,罗明云,张小平等.分子标记技术在根瘤菌生态研究中的应用[J].西南农业学报,2001,14(增刊):117-119
    [137]凌瑶.用cfp标记基因法研究菜豆根瘤菌的竞争性和有效性[D].雅安:四川农业大学,2005
    [138]刘安国.芝麻茎点枯病种子带菌的研究[J].江西植保,1994,2:26-28
    [139]刘慧媛,辛正,王永明.稀土元素抑菌喷剂抗菌效果观察[J].中国消毒学杂志,2006,23(6):528-529
    [140]刘西莉,李健强.不同水稻品种种子带菌检测及药剂消毒处理效果[J].中国农业大学学报2000,5(5):42-47
    [141]刘帧付.费氏中华根瘤菌的基因标记与竞争结瘤的研究[D].武汉:华中农业大学,2001
    [142]刘忠梅,王霞,赵金焕等.有益内生细菌B946在小麦体内的定殖规律[J].中国生物防治,2005,21(2):113-116
    [143]刘忠梅.防治小麦纹枯病微生态制剂菌株的作用机理研究[D].北京:中国农业大学,2004
    [144]龙良鲲,肖崇刚.内生细菌01-144在番茄茎内定殖的初步研究[J].微生物学报,2003,30:53-56.
    [145]罗明云,张小平.用发光酶基因(LuxAB)标记法研究慢生型花生根瘤菌的竞争结瘤能力[J].生态学报,2003,23(2):278-283
    [146]马占鸿.宁夏部分牧草种子带菌检验初报[J].宁夏农学院学报,1994,3:15-17
    [147]孟颂东,张忠泽.应用Gus基因研究弗氏中华根瘤菌的结瘤及效果[J].应用生态学报,1997,8(6):595-598
    [148]莫才清,覃雅丽,周俊初等.应用发光酶基因对快生型大豆根瘤菌HN01结瘤作用进行检测[J].微生物学报,1998,38(3):213-218
    [149]南志标.内生真菌对布顿大麦草生长的影响[J].草业科学,1994,1:13-17
    [150]祁娟.苜蓿种子根瘤菌筛选及其促生能力研究[D].兰州:甘肃农业大学,2006:21-23
    [151]任毓忠,李晖.哈蜜瓜种带细菌性果斑病菌检测技术的研究[J].八一农垦大学学报,2003,15(3):30-33
    [152]商鸿生,崔铁军.向日葵霜霉病种子带菌研究[J].西北农业大学学报,1996,6:12-15
    [153]施邑屏.温度与微生物[J].微生物学通报,1982,6:291-294
    [154]孙冬梅,杨谦,宋金柱.铈对黄绿木霉菌拮抗大豆菌核病菌能力的影响[J].稀土,2005,26(6):65-69
    [155]孙延忠,曾洪梅,石义萍等.武夷菌素对番茄灰霉菌的作用方式[J].植物病理学报,2003,33(5):434-438
    [156]台莲梅,郑雯.水稻种子真菌种群研究[J].黑龙江八一农垦大学学报,2003,15(1):31-33
    [157]王浩,绳志雅,隋新华等.用gfp基因标记法研究大豆根瘤菌在大豆根部定殖结瘤情况[J].微生物学杂志,2006,26(2):1-4
    [158]王莉衡.植物内生菌的研究进展[J].化学与生物工程,2011,28(3):5-11
    [159]王鹏.中慢生天山根瘤菌胞外多糖在共生过程中的功能研究[D].南京:南京农业大学,2010:4-12
    [160]文才艺,吴元华,田秀玲.植物内生菌研究进展及其存在的问题[J].生态学杂志,2004,23(2):86-91
    [161]吴蔼民,顾本康,傅正擎等.内生菌73a在不同抗性品种棉花体内的定殖和消长动态研究[J].植物病理学报2001,31:289-294.
    [162]吴瑛,席琳乔.燕麦根际固氮菌分泌IAA的动态变化研究[J].安徽农业科学,2007,35(15):4424-4425,4441
    [163]谢关林.中国长江三角洲地区及日本水稻种子细菌多样性研究[J].中国水稻科学,2000,14(4):233-236
    [164]徐亚军,赵龙飞.根瘤菌胞外多糖的结构与功能研究进展[J].饮料工业,2008,11(12):7-9
    [165]杨海莲,孙晓璐,宋未等.水稻内生联合固氮细菌的筛选、鉴定及其分布特性[J].植物学报,1999,41(9):927-931
    [166]杨坤,巩振辉,李大伟.大肠杆菌高效感受态细胞的制备及快捷转化体系的建立[J].北方园艺,2010,14:127-130
    [167]姚领爱,胡之璧,王莉莉等.植物内生菌与宿主关系研究进展[J].生态环境学报,2010,19(7):1750-1754
    [168]叶海仁,钟卫鸿.绿色荧光标记在环境微生物学中的应用[J].环境污染与防治,2003,25(6):352-355
    [169]易婷,缪煜轩,冯永君.内生菌与植物的相互作用:促生与生物薄膜的形成[J].微生物学通报,2008,35(11):1774-1780
    [170]张集慧,王春兰,郭顺星等.兰科药用植物的5种内生菌产生的植物激素[J].中国医学科学院学报,1999,2l(6):460-465
    [171]张淑卿,李剑峰,师尚礼等.内生根瘤菌在苜蓿芽苗与种子内的数量及优势度[J].中国草地学报,2009a,31(5):90-95
    [172]张淑卿,李剑峰,师尚礼.苜蓿繁殖器官发育过程与内生根瘤菌侵染数量的关系[J].江苏农业学报,2009b,25(5):997-1001
    [173]张淑卿.根瘤菌在苜蓿植株体内的数量分布及其运移动态研究[D].兰州:甘肃农业大学,2009c
    [174]张晓霞,王平.从水稻种子表面分离的紫云英根瘤菌与不同水稻品种亲合性的研究应用[J].环境生物学报,2002,8(2):195-199
    [175]赵华,梁婉琪,杨永华等.绿色荧光蛋白及其在植物分子生物学研究中的应用[J].植物生理学通讯,2003,39(2):171-178
    [176]赵可夫,王韶唐.作物抗性生理[M].北京:农业出版社,1990:304
    [177]中国草原学会.中国草地科学进展[M].北京:中国农业大学出版社,1998,132-135
    [178]钟文文.高效苜蓿根瘤菌的筛选[D].临沂:临沂师范学院,2006
    [179]钟颜麟,彭志英,赵谋明等.放射形土壤杆菌Q9415胞外多糖的发酵工艺[J].华南理工大学学报(自然科学版),2000,28(8):16-21
    [180]周东坡,平文祥,孙剑秋等.紫杉醇产生菌分离的研究[J].微生物学杂志,2001,21(1):18-19,32
    [181]周肇蕙,严进.大豆种子带菌及检测[J].植物检疫,1996,(6):5-7
    [182]朱光富,周俊初,陈华癸.外源质粒(基因)导入花生根瘤菌的行为分析[J].遗传学报,1996,23(2):131-141
    [183]邹文欣,谭仁祥.内生菌的生物多样性及其应用.李承森.植物科学进展[M].第2卷.北京:中国高等教育出版社,1999:183190
    [184]邹文欣,谭仁祥.植物内生菌研究新进展[J].植物学报,2001,43(9):881-892
    [185]左玉萍,贾敬肖,杨一心.混合稀土抗菌活性测定及与抗生素联用效果[J].稀土,1996,17(4):34-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700