用户名: 密码: 验证码:
纹枯病对双季稻倒伏和产量的影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻群体大小及其空间构型与纹枯病流行、倒伏抗性和产量形成密切相关,研究群体结构与它们之间的内在关系,可以为合理调控栽培措施提供理论与技术支撑。本研究以高产杂交稻品种两优287和T优207为试验材料,自2008-2010年在大田条件下采用裂区试验设计,通过不同氮素水平和移栽密度构建不同群体结构,并设置纹枯病接种处理和打药处理来研究不同群体结构下双季稻纹枯病流行、倒伏抗性和产量的变化特点及其相互关系,主要研究结果如下:
     (1)在自然发病区病情指数均随施氮水平和移栽密度的增加而增加。高氮高密条件下具有高茎蘖数、高叶面积指数和高生物量的冠层则具有较为密集的群体结构。密集的群体结构叶片相交频率较大且群体透光率较低,促进了纹枯病的流行。人工接种纹枯病后,由于提供了足够的菌源,纹枯病的流行并不受到蔸与蔸之间的传播速度的影响,它主要受到蔸内垂直扩散速度的影响。即纹枯病扩展的微环境(蔸内)并没有发生较大的改变,因此由氮素水平或移栽密度所构建的群体结构在接种条件下对纹枯病的流行影响较小。
     (2)采用牙签接种方法进行接种并调查接种后病斑长度可以高效准确地评价纹枯病抗性水平。在接种条件下,不同的氮素水平与移栽密度均对纹枯病病斑长度无显著性影响,并且病斑长度与茎蘖数、叶面积指数和生物量相关性均不显著。群体结构对纹枯病抗性的影响不显著,因此,在自然发病条件下,群体结构主要通过改变叶片相交频率对纹枯病流行产生显著影响。
     (3)合理调控氮肥用量和适宜的移栽密度可以改善水稻株型如提高叶基角来提高群体透光率和降低叶片相交频率从而在一定程度上控制纹枯病的流行。
     (4)高氮条件下茎秆倒伏指数上升,茎秆抗折力显著下降,对单位长度干重和茎秆直径无显著影响;密植条件下,茎秆抗折力、弯曲力矩、直径、和单位长度干重均明显下降,同时倒伏指数增加。即随着群体大小的增加,茎秆倒伏指数逐渐增加,群体发生倒伏的风险要明显增大。
     (5)通过提高茎秆抗折力可以降低倒伏指数从而提高水稻抗倒能力。双季稻茎秆抗折力与茎秆直径和单位节间干重都呈显著正相关,而倒伏指数与茎秆直径和单位节间干重都呈显著负相关,即可以通过提高茎秆直径和单位节间干重来提高茎秆抗折力。通过改善群体透光率,例如通过影响群体内部叶片分布规律,提高叶基角,即可以在相似的群体大小条件下提高群体透光率,同时茎秆基部节间抗折力增加,倒伏指数降低。
     (6)早稻产量在氮水平为120-180kg N ha-’并且密植(13.3×20cm)条件下最高。对于晚稻,中密(13.3×26.7cm)和120kg N ha-1有利于获得高产。晚稻倒伏发生的风险要明显高于早稻,其倒伏指数在2009和2010年分别比早稻高58%和45%,选择适宜的密度和氮施用量还可以有效防止晚稻倒伏的发生。
     (7)早稻产量显著低于晚稻,其在2008、2009和2010年分别比晚稻低46%、38%和21%。原因主要由于早稻营养生长期温度过低导致水稻前期生长缓慢,在抽穗期干物质积累不够,早稻库容显著低于晚稻。另外,早稻灌浆期日平均温度要明显高于晚稻,并且早稻在开花前后各一周内容易出现极端高温(大于34℃),这极易导致早稻结实率降低,最终导致早稻产量的下降。
     (8)纹枯病的流行显著降低了茎秆抗折力,倒伏指数明显增加。纹枯病对群体茎蘖数的影响较小,对水稻生育后期叶面积指数和干物质积累的影响较大。特别在群体较大的情况下(高密或高氮)效果更明显,均显著地提高了群体叶面积指数和干物质积累。
     (9)纹枯病接种和不防治纹枯病均明显降低了双季稻产量,一般在高氮或高密植条件下产量损失较大并且其绝对产量最低,纹枯病接种处理在2009和2010年共4季中产量损失最高分别达到了30.1%、23.8%、23.7%和48.6%。纹枯病的流行主要是通过降低干物质积累量而非通过降低收获指数来影响产量的。另一方面纹枯病的流行主要是通过降低结实率而非通过降低单位面积颖花数和千粒重来影响产量。
The canopy structure had a deep influence on rice grain yield and lodging-resistance. Meanwhile, canopy structure and its micro-climatic are essential factors for disease development. Canopy structure may affect sheath blight epidemic directly or indirectly. So, in order to settle present problem, we must investigate the relationships of canopy structure with sheath blight epidemic, lodging-resistance and grain yield performance. Field experiments were conducted in both early and late seasons in2008,2009and2010. The effects of nitrogen rate, hill density, fungicide treatment, and inoculation with R. solani on sheath blight severity, lodging-related traits and grian yield performance were investigated. The main results are as follows:
     (1) Sheath blight index increased with the increase of nitrogen rate and hill density. Tiller number, leaf area index and biomass production was high under dense canopy structure due to high nitrogen and dense density in non-inoculated plants. Dense canopy structure led to higher leaf contact frequency and lesser light transmittance, which was conducive to sheath blight epidemic. In inoculated plants, however, sheath blight severity was not necessarily restricted by autoinfection because enough hypha was available in infected tillers, which is mainly controlled by vertical spread of the pathogen within each hill. Micro-climate within a hill favorable to sheath blight development regardless of nitrogen rate and hill density was not changed. So, canopy structure due to difference in nitrogen rate and hill density has less effect on sheath blight epidemic.
     (2) An effective inoculation method with short woody toothpicks is a critical component of an accurate disease assay for quantifying levels of sheath blight resistance. Nitrogen rate and hill density have no significant effect on lesion length in infected plants, and the relationships of lesion length with tiller number, leaf area index and biomass production was not consistent and significant. These results suggest that canopy structure deep influences sheath blight epidemic under the common field conditions due to change in leaf contact frequency, light transmittance, leaf area index, tiller number and biomass production, but has little effect on plant resistance to sheath blight in the severe infection condition.
     (3) Adaptation of 'healthy' canopy structure resulting from appropriate crop management practices such as rational use of fertilizers and optimum planting density can suppress sheath blight. Improving plant traits such as erect leaves based on crop management or breeding selection is an efficient way to control disease infestation.
     (4) Lodging index increased and breaking resistance decreased with the increases of nitrogen rate. Nitrogen rate have no consistent effect on dry weigh per unit length and stem diameter. Breaking resistance, bending moment, stem diameter and dry weight per length decreased with the increases of hill density, following by an increase in lodging index. So, lodging index increased with the increases of canopy structure.
     (5) It's feasible to decrease lodging index with increase in breaking resistance. Correlation analysis revealed that breaking resistance was positively related with stem diameter and dry weight per unit length significantly; lodging index was negatively related with stem diameter and dry weight per unit length significantly. So, it is feasible to increase breaking resistance with increase in stem diameter and dry weight per unit length. Improvement light transmittance such as increasing leaf angle, can affect the leaf distributing in canopy under the same canopy structure, and then breaking resistance increased.
     (6) In early season, the attainable yield was higher under dense planting (13.3×20cm) when N was applied at a rate of120-180kg ha-1. However, the effect of hill density on grain yield was relatively small for late season, while moderate hill density (13.3×26.7cm) and low nitrogen rate (120kg ha-1) were recommended for their advantages in terms of grain yield and lodging resistant. The loding index of late season was higher than those of early season by58%and45%in2009and2010, respectively.
     (7) Remarkably higher grain yields were achieved in late season than in early season, as late season had advantages over early season in sink size and biomass production. The comparatively less yield under early season rice resulted due to the slower growth during vegetative phase, which can be ascribed to the lower temperature rather than reduced mean daily radiation. In addition, the averaged air temperature during grain filling and the number of days with maximum temperature above34℃around flowering stage were significantly greater in early season than in late season across the three years, which might have led to a decrease in grain-filling percentage.
     (8) The direct effect of sheath blight infestation on lodging resistance was found by using fungicide treatment and inoculation of R. solani. Sheath blight development does not affect tiller number. But, it has a great effect on leaf area index and biomass production after flowering. Compared with control, fungicide treatment has significantly increased leaf area index and biomass production, especially under dense canopy structure.
     (9) Compared with control, inoculation with R. solani treatment has decreased grain yield significantly. Generally, the yield loss was great high under high nitrogen and dense planting, following by the lowest attainable yield. The maximum yield loss by sheath blight inoculation in early-and late-season of2009and2010were30.1%,23.8%,23.7%and48.6%. Sheath blight infestation caused yield loss is driven mainly by the decreased biomass production, rather than decreased harvest index. On the other hand, sheath blight epidemic raised yield loss is contributed by the decreased grain filling, rather than spikelets per m2or grain weight.
引文
1. 宾士友,张皆禄,陀少芳.广西中低产田综合改良技术.广西农业科学,2005,04:348-350
    2.程在全,宋令荣,黄兴奇,普双有,汪增祥,杨宏,杨高群.高产和超高产水稻产量差异比较及其原因探讨.西南农业学报.1997,10(2):20-25
    3.崔一龙,金明淑,朴哲,朴仁哲.密度对不同品种水稻生育及产量构成因素的影响.延边农学院学报.1996,18(1):37-42
    4. 戴元才,刘襄.水稻化调后期防倒防早衰促早熟试验研究.安徽农业科学,1996,01:26-27
    5.邓文,青先国,马国辉,艾治勇.水稻抗倒伏研究进展.杂交水稻,2006,21(6):6-10
    6. 丁克坚,黄义德,汪振华,李挂亭,檀根甲.氮肥、密度对水稻产量及纹枯病、褐飞虱发生程度的影响.安徽农业大学学报,1998,25(4):336-341
    7.都兴林,方秀琴,刘忱,姜亚伦.水稻直立穗型与抗倒伏性关系的理论分析与模拟测定.吉林农业科学,2004,02:3-4,20
    8. 杜永林,苏祖芳.氮肥运筹对水稻抽穗期群体源库质量的影响.耕作与栽培,1999,2:20-23
    9. 范坤成,康霄文,彭绍裘,邹汉玄,杨先跃,万国安.肥、水、菌对水稻纹枯病发生流行的综合效应.植物保护学报.1993,20(2):97-103
    10.冯惟珠,苏祖芳.水稻灌浆期源质量与产量关系及氮素调控的研究.中国水稻科学,2000,14(1):24-30
    11.顾掌根,王岳钧.水稻直播栽培高产机理研究初报.作物研究,2001,02:5-8,12
    12.郭家选,梅旭荣,林琪,赵全胜,卢志光.冬小麦农田暂时水分胁迫状况下水、热通量日变化.生态学报,2006,01:130-137
    13.郭玉华,朱四光,张龙步,都华.不同栽培条件对水稻茎秆材料学特性的影响.沈阳农业大学学报,2003,34(1):4-7
    14.过崇俭,陈志谊,王法明.水稻纹枯病菌致病力分化及品种抗性鉴定技术的研究.中国农业科学.1985,15(5):50-57
    15.胡江,藤本宽,郭龙彪,曾大力,张光恒,董国军,王小虎,朱立煌,钱前.水稻抗倒能力及相关抗倒性状的QTL分析.中国水稻科学,2008,22(2):211-214
    16.胡秀荣,许文耀,吕伟成.福建省水稻纹枯病菌对井冈霉素的抗药性检测.中国农学通报.2006,22(增刊):160-162
    17.华泽田,郝宪彬,沈枫,张忠旭,王岩,王彦荣,马秀芳.东北地区超级杂交粳稻倒伏性状的研究.沈阳农业大学学报,2003,34(3):161-164
    18.黄世文,王玲,王全永,唐绍清,陈惠哲,鄂志国,王磊,朱德峰.纹枯病菌对不同水稻品种叶片中抗病性相关酶活性的影响.中国水稻科学,2008,22(2):219-222
    19.黄义德,张自立,魏凤珍,李金才.水稻覆膜旱作的生态生理效应.应用生态学报.1999,10(3):305-308
    20.黄育民,李义珍,庄占龙,郑景生,余瑞远.杂交稻高产群体干物质的积累运转.福建省农科院学报.1996,11(2):7-11
    21.霍中洋,董明辉,张洪程,戴其根,陈卫中.不同粳稻品种倒伏指数及其相关农艺性状分析.西南农业大学学报(自然科学版),2003,03:234-237
    22.贾汝志,王立余,李忠武,武仲科,李冬梅,姚兰.水稻不同插秧密度试验总结.北方水稻,2007,(2):39-40,44
    23.蒋彭炎,水稻稀少平高产栽培法.农业科技通讯,1985,11:2-3
    24.蒋彭炎,水稻三高一稳栽培法论丛.北京:中国农业科技出版社,1993,2-13
    25.居为民,高苹,武金岗.气候条件对麦类纹枯病发生趋势影响的研究.植物保护,2000,26(2):20-22
    26.李红娇,张喜娟,李伟娟,徐正进.不同穗型的3个粳稻品种的抗倒性研究.种子,2008,27(10):16-19
    27.李木英,潘晓华,石庆华,张荣珍,谭雪明.两系杂交稻结实期茎鞘物质转运特性及其对籽粒灌浆影响的初步研究.江西农业大学学报.1998,20(3):298-302
    28.李荣田,姜廷波,秋太权,崔成焕,龚振平.水稻倒伏对产量影响及倒伏和株高关系的研究.黑龙江农业科学,1996,01:13-17
    29.李文熙.水稻倒伏的原因及减轻危害的对策.韩国作物学会,1991,36(5):383-39
    30.李义珍,黄育民,庄占龙,黄亚昌,余瑞远.杂交稻高产结构的差异.福建省农科院学报.1995,10(1):1-6
    31.李有,宁国华,施琪,王娜.冬小麦田间小气候与大气候比较研究.河南科学,2004,22:487-489
    32.廖皓年,肖陵生,王华生.水稻纹枯病发生历史及演变原因简析.广西植保,1997,3:35-38
    33.凌启鸿等著.水稻精确定量栽培理论与技术.北京:中国农业大学出版社,2007
    34.刘海燕,刘华招,乔金玲.不同密度群体对寒地水稻分蘖及产量的影响.北方水稻,2008,38(3):65-67
    35.刘军,余铁桥.大穗型水稻超高产产量形成特点及物质生产分析.湖南农业大学学报,1998,24(1):1-7
    36.刘立军,袁莉民,王志琴,徐国伟,陈云.旱种水稻倒伏生理原因分析与对策 的初步研究.中国水稻科学,2002,16(3):225-230
    37.刘利华,金再欣,刘小丽,徐云杰.水稻倒伏对产量影响的试验结果分析.中国稻米,2009,2:19-21
    38.刘允芬,李家永.亚热带红壤丘陵区水稻田净全辐射初探.生态农业研究,2000,8:5-9
    39.马国辉,邓启云,万宜珍,王学华.超级杂交稻抗倒生理与形态机能研究Ⅰ.培矮64S/E32与汕优63植株钾、硅和纤维素含量差异.湖南农业大学学报(自然科学版),2000,05:329-331
    40.马均,马文波,田彦华,杨建昌,周开达,朱庆森.重穗型水稻植株抗倒伏能力的研究.作物学报,2004,30(2):143-148
    41.穆平,李自超,李春平,张洪亮,王象坤.水、旱条件下水稻茎秆主要抗倒伏性状的QTL分析.遗传学报,2004,(7):717-723
    42.彭少兵.论新时期作物栽培管理在全球水稻增产中的作用.作物研究,2008,22(4):207-208
    43.秦德荣,王沐清,庄文准,张永红,宋胜书.氮肥运筹比例对水稻群体质量的影响.耕作与栽培,1993,3:44-48
    44.申广勒,石英尧,黄艳玲,石扬娟,王维刚,张从合,陈多璞.水稻抗倒伏特性及其与茎秆性状的相关性研究.中国农学通报,2007,45(12):345-348
    45.沈彦裕.优质杂交水稻T优207在陕南宁强试种表现及高产栽培技术,杂交水稻,2005,20(6):42-43
    46.石全红,王宏,陈阜,褚庆全.中国中低产田时空分布特征及增产潜力分析.中国农学通报,2010,19:369-373
    47.苏祖芳,王辉斌,杜永林,张亚洁,季春梅,周培南.水稻生育中期群体质量与产量形成关系的研究.中国农业科学.1998,31(5):19-25
    48.孙旭初.水稻株高遗传规律的研究,安徽农业科学,1980,01:16-21
    49.谭震波,沈利爽,况浩池,陆朝福,陈英,周开达,朱立煌.水稻上部节间长度等数量性状基因的定位及其遗传效应分析,遗传学报,1996,06:439-446
    50.唐启源.水稻冠层的生态生理特性及其影响因素研究.[博士学位论文].长沙:湖南农业大学,2005
    51.唐拴虎,陈建生,徐培智,张发宝,谢春生,严志强.一次性全层施肥增强水稻抗倒伏性效应研究初报.广东农业科学,2004,01:32-34
    52.万宜珍,马国辉. 超级杂交稻抗倒生理与形态机能研究Ⅱ:培矮64S/E32与汕优63茎秆抗倒力学差异.湖南农业大学学报(自然科学版),2003,02:92-94
    53.王文成,张胜景,杜卫军.水稻边际优势利用栽培增产的生态原因分析.中国 农学通报,2005,21:122-125
    54.王秀凤,党立华,都华,郭玉华,苗雨佳.水稻茎秆抗倒性构成因素的研究.北方水稻,2008,38(2):16-21
    55.王艳青.近年来中国水稻病虫害发生及趋势分析.中国农学通报,2006,22(2):343-347
    56.王勇,向波,冼季夏,江立庚,张元昶.水稻抗倒伏研究现状及存在的问题.广西农业科学,2007,38(2):141-144
    57.魏朝富,杨剑虹,高明,谢德体,全珍,李海林,李杰,向天常.紫色水稻土硅有效性的研究.植物营养与肥料学报,1997,03:229-236
    58.巫伯舜.从京郊生产实践看杂交稻旱种问题.杂交水稻,1986,02:6-7
    59.吴文革,陈烨,钱银飞,王小军,吴一梅.水稻直播栽培的发展概况与研究进展. 中国农业科技导报,2006,04:32-36
    60.向波,刘丕庆,王锋尖.水稻倒伏相关性状的QTL定位研究综述.安徽农业科学,2008,36(25):564-569
    61.肖应辉,罗丽华,闫晓燕,高艳红,王春明,江玲,矢野昌裕,翟虎渠,万建民.水稻品种倒伏指数QTL分析.作物学报,2005,31(3):348-354
    62.谢学文,许美容,藏金萍,孙勇,朱苓华,徐建龙,周永力,黎志康.水稻抗纹枯病QTL表达的遗传背景及环境效应.作物学报,2008,(11):456-458
    63.徐思俭.中稻稻桩处农田小气候观测试验.四川气象,1996,56:31-32
    64.徐正进,薛亚杰,东正昭.水稻超高产品种物质生产与产量分析.辽宁农业科学.1992,3:1-4
    65.徐正进,张树林,周淑清,刘丽霞.水稻穗型与抗倒伏性关系的初步分析.植物生理学通讯,2004,05:561-563
    66.杨长明,杨林章,颜廷梅,欧阳竹.不同养分和水分管理模式对水稻抗倒伏能力的影响.应用生态学报,2004,04:646-650
    67.杨惠杰,李义珍,黄育民,郑景生,姜照伟,林文超.高产水稻的产量构成和库源结构.福建农业学报,1999,14(1):1-5
    68.杨惠杰,杨仁崔,李义珍,姜照伟,郑景生.水稻茎秆性状与抗倒性的关系.福建农业学报,2000,02:1-7
    69.杨建昌,朱庆森,曹显祖.水稻群体冠层结构与光合特性对产量形成作用的研究.中国农业科学.1992,25(4):7-14
    70.姚铭辉,蔡金川,梁连胜.水稻植冠之气象因素垂直剖面与通量之量测.中华农业研究,2003,52:50-61
    71.叶永印,张时龙.不同施氮方式对水稻群体结构的影响.耕作与栽培, 2001(2):21-22,48
    72.袁隆平.依靠科技创新发展杂交水稻确保我国粮食安全.中国农业科技导报,2001,3(2):54-56
    73.袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1-6
    74.袁隆平.杂交水稻的育种战略设想.杂交水稻,1987,1:1-3
    75.袁筱萍,魏兴华,余汉勇,王一平,汤圣祥.不同品种及有关外因对水稻纹枯病抗性的影响.作物学报,2004,30(8):768-773
    76.张邦馄,张路,陈官文.水稻田间小气候特征与生产潜力关系研究.贵州气象1998,22:13-16
    77.张福锁,王激情,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物氮肥利用率现状与提高途径.土壤学报,2008,5(45):915-924
    78.张秋英,欧阳由男,戴伟民,禹盛苗,庄杰云,金千瑜,程式华.水稻基部伸长节间性状与倒伏相关性分析及QTL定位.作物学报,2005,31(6):712-717
    79.张四海,吴文革,黄义德,李泽福,陈周前,张玉海.密肥条件对杂交中籼稻产量及其构成因素的影响.安徽农业科学,2008,36(9):3563-3564,3573
    80.张旭,黄秋妹,黄农荣,刘彦卓,邱润恒,梁祖杨.高产早籼稻群体动态结构的差异.热带亚热带植物学报.1999,14:23-29
    81.张忠旭,陈温福,杨振玉,华泽田,高日玲,高勇,赵迎春.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响.沈阳农业大学学报,1999,30(2):81-85
    82.钟旭华,彭少兵,Buresh R J,黄农荣,郑海波.影响杂交水稻纹枯病发生的若干植株群体指标.中国水稻科学,2006,20(5):535-542
    83.周丽华,吴厚雄,刘辉,赵龙益,李光清,邓鑫,张德宁.杂交水稻茎秆形态学优势性状与抗倒伏能力研究.种子,2006,25(6):10-13
    84.周青,潘国庆,施作家,陈风华.不同时期施用硅肥对水稻群体质量及产量的影响.耕作与栽培,2001,03:25-27
    85.周勇,居超明,徐国成,谢攀,高明鑫.优质两系超级杂交早稻新组合两优287,杂交水稻,2008,23(1):71-72
    86.朱德峰,程式华,张玉屏,林贤青,陈惠哲.全球水稻生产现状与制约因素分析.中国农业科学,2010,43(3):474-479
    87.朱军.作物杂种后代基因型值和杂种优势的预测方法,生物数学学报,1993,01:32-44
    88.邹德堂,秋太权,赵宏伟,崔成焕.水稻倒伏指数与其它性状的相关和通径分析.东北农业大学学报,1997,02:8-14
    89.邹应斌.长江流域双季稻栽培技术发展.中国农业科学,2011,44(2):254-262
    90.邹应斌.亚洲直播稻栽培的研究与应用.作物研究,2004,03:133-136
    91. Abraha M G, Savage M J.2008. Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations. Agr Forest Meteorol, 148:401-416.
    92. Ahn S W, Dela Pena R, Candole, B L, Mew T W. A new scale for rice sheath blight (ShB) assessment. Int. Rice Res Newsl,1986,11:17
    93. Amano T, Zhu Q, Wang Y, Inoue N, Tanaka H. Case studies on high yields of paddy rice in Jiangsu Province, Chian. Ⅱ. Analysis of characters related to lodging. Jpn J Crop Sci,1993,62(2):275-281
    94. Ando K, Grumet R, Terpstra K, Kelly J D. Manipulation of plant architecture to enhance crop disease control. CAB Reviews:Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources,2007,2,026,8 pp
    95. Ao H, Peng S, Zou Y, Tang Q, Visperas R M. Reduction of unproductive tillers did not increase the grain yield of irrigated rice. Field Crop Res,2010,116:108-115
    96. Ball R A, Purcell L C, Carey S K.2004. Evaluation of solar radiation prediction models in North America. Agron J,96:391-397.
    97. Bannon F J, Cooke B M. Studies on dispersal of Septoria tritici pycnidiospores in wheat-clover intercrops, Plant Pathol,1998,47:49-56
    98. Basu A, Gupta P K S. Effect of nitrogen fertilizers on sheath blight of rice. Indian phytopath,1996,49(1):87-88
    99. Bonmann J M, Kush G S, Nelson R J. Breeding for resistance to pests. Annu Rev Phytopathol,1992,30:507-523
    100.Bruinsma J,2009, "The resource outlook to 2050:by how much do land, water, and crop yields need to increase by 2050?" In:Expert Meeting on How to Feed the World in 2050, FAO, Website:www.fao.org/fileadmin/templates/esa/Global_persepctives /Presentations/Bruinsma pres.pdf (verified at 15.01.12).
    101.Bueno C S, Lafarge T. Higher crop performance of rice hybrids than of elite inbreds in the tropics:1. Hybrids accumulate more biomass during each phonological phase. Field Crop Res,2009,112:229-237
    102.Calderini D F, Dreccer M F, Slafer G A. Consequences of breeding on biomass, radiation interception and radiation-use efficiency in wheat. Field Crop Res,1997, 52:271-281
    103.Cassman K G. Ecological intensification of cereal production systems:Yield potential, soil quality, and precision agriculture. Proc Natl Acad Sci,1999,96:5952-5959
    104.Castilla N P, LeaNo R M, Elazegui F A, Teng P S, Savary S. Effects of plant contact, inoculation pattern, leaf wetness regime, and nitrogen supply on inoculum efficiency in rice sheath blight. J Phytopathol,1996,144:189-192
    105.Chang T T, Varietal differences in lodging resistance. Int Rice Comm Newsl,1964, 13(4):1-11
    106.Chau N M, Bhargava S C. Physiological basis of higher productivity in rice. Indian J Plant Physiol,1993,36(4):215-219
    107.Chet I, Baker R. Isolation and biocontrol potential of Trichoderma hamatum from soil naturally suppressive to Rhizoctonia solani. Phytopathology,1981,71:286-290
    108.Cu R M, Mew T W, Cassman K G, Teng P S. Effect of sheath blight on yield in tropical, intensive rice production system. Plant Dis,1996,80:1103-1108
    109.Du V P. Sheath blight dynamics as affected by changes in microclimate and nitrogen application in different rice plant types. (Ph D dissertation). Los. Banos.:UPLB, 1995
    110.Duy P Q, Abe A, Hirano M, Sagawa S, Kuroda E. Analysis of lodging-resistant characteristics of different rice genotypes grown under the standard and nitrogen-free basal dressing accompanied with sparse planting density practices. Plant Prod Sci, 2004a,7:243-251
    111.Duy P Q, Hirano M, Sagawa S, Kuroda E. Analysis of the dry matter production process related to yield and yield components of rice plants grown under the practice of nitrogen-free basal dressing accompanied with sparse planting density. Plant Prod Sci,2004b,7(2):155-164
    112.Duy P Q, Hirano M, Sagawa S, Kuroda E. Varietal differences in tillering and yield responses of rice plants to nitrogen-free basal dressing accompanied with sparse planting density in the Tohoku region of Japan. Plant Prod Sci,2004c,7:3-10
    113.Duy P Q, Sagawa S, Hirano M, Kuroda E. Varietal differences in the responses of yield components of rice plants to nitrogen-free basal dressing accompanied with sparse planting density in the Tohoku region of Japan. Plant Prod Sci,2004d, 7:109-117
    114.FAO,2001. Statistical databases, Food and agriculture Organization (FAO) of the United Nations. Database available online:http://www.fao.org
    115.FAOSTAT,2009. Database available online:http://faostat.fao.org/site/339/default. aspx.
    116.Frolking S, Qiu J, Boles S, Xiao X, Liu J, Zhuang Y, Li C, Qin X. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Global Biogeochem Cycles,2002,16:1091
    117.Groth D E, Bond J A. Effects of cultivars and fungicides on rice sheath blight, yield, and quality. Plant Dis,2007,91:1647-1650
    118.Groth D E, Bond, J A. Initiation of rice sheath blight epidemics and effects of application timing of azoxystrobin on disease incidence, severity, yield and milling yields. Plant Dis,2005b,90:1073-1078
    119.Groth D E. Azoxystrobin rate and timing effects on rice sheath blight incidence and severity and rice grain and milling yields. Plant Dis,2005a,89:1171-1174
    120.Groth D E. Effects of cultivar resistance and single fungicide application on rice sheath blight, yield, and quality. Crop Prot,2008,27:1125-1130
    121.Guo H J, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science,2010,327:1008-1010
    122.Han Y P, Xing Y, Gu S, Chen Z, Pan X, Chen X. Effect of morphological traits on sheath blight resistance in rice. Acta Bot Sin,2003,45 (7):825-831
    123.Hargreaves, G.H., Samani, Z.A.,1982. Estimating potential evapotranspiration. J Irrig Drain Eng,108:225-230.
    124.Hasegawa S. Agroclimatological studies on C3-plants and C4-plants, Diurnal variations of leaf temperature and transpiration rates of rice and Japanese barnyard millet. J Agric Meteorol,1978,34:119-124
    125.Hitaka H. Studies on the lodging of rice plants. Jpn Agric Res Quart,1969,4 (3):1-6
    126.Hoshikawa K A, Wang S B. Studies on lodging in rice plants. I. A general observation on lodged rice culms. Jpn J Crop Sci,1990,59:809-814
    127.Howell C R. Relevance of mycoparasitism in the biological control of Rhizoctonia solani by Gliocladium virens. Phytopathology,1987,77:992-994
    128.Huang M, Zou Y, Feng Y, Cheng Z, Mo Y, Ibrahim M, Xia B, Jiang P. No-tillage and direct seeding for super hybrid rice production in rice-oilseed rape cropping system. Eur J Agron,2011,34:278-286.
    129.Islam M S, Peng S, Visperas R M, Ereful N, Bhuiya M S U, Julfiquar A W. Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field Crop Res,2007,101:240-248
    130.Jacobsen B J, Backman P A. Biological and cultural plant disease controls: alternatives and supplements to chemicals in IPM systems. Plant Dis,1993, 77:311-315
    131.Jia Y, Correa-Victoria F, McClung A, Zhu L, Liu G, Wamishe Y, Xie J, Marchetti M A, Pinson S, Rutger J, Correll J C. Rapid determination of rice cultivar responses to the sheath blight pathogen rhizoctonia solani using a micro-chamber screening method. Plant Dis,2007,91:485-489
    132.Kashiwagi T, Ishimaru K. Identification and functional analysisi of a locus for improvement of lodging resistance in rice. Plant physiol,2004,134:676-683
    133.Kashiwagi T, Sasaki H, Ishimaru K. Factors responsible for decreasing sturdiness of the lower part in lodging of rice (Oryza sativa L.). Plant Prod Sci,2005,8 (2):166-172
    134.Kashiwagi T, Togawa E, Hirotsu N, Ishimaru K. Improvement of lodging resistance with QTL for stem diameter in rice (Oryza sativa L.). Theor Appl Genet,2008, 117:749-757
    135.Katsura K, Maeda S, Lubis I, Horie T, Cao W, Shiraiwa T. The high yield of irrigated rice in Yunnan, China'A cross-location analysis'. Field Crop Res,2008,107:1-11
    136.Katsura K, Okami M, Mizunuma H, Kato Y. Radiation use efficiency, N accumulation and biomass production of high-yielding rice in aerobic culture. Field Crop Res,2010,117(1):81-89
    137.Khushu M K, Mavi H S, Kachroo D. Canopy temperature in rice under different transplanting dates. Agron J,1991,36:243-245
    138.Kim J, Shon J, Lee C, Yang W, Yoon Y, Yang W, Kim Y, Lee B.. Relationship between grain filling duration and leaf senescence of temperature rice under high temperature. Field Crop Res,2011,122:207-213
    139.Korndorfer G H, Snyder G H, Ulloa M, Powell G, Datnoff L E. Calibration of soil and plant silicon analysis for rice production. J Plant Nutr,2001,24(7):1071-1084
    140.Koutroubas S D, Ntanos D A. Genotypic differences for grain yield and nitrogen utilization in indica and japonica rice under Mediterranean conditions. Field Crop Res,2003,83:251-260
    141.Kozaka T. Ecological studies on sheath blight of rice plant caused by Pellicularia sasakii (Shirai) S. Ito, and its chemical control. Chugoka Agri Res,1961,20:1-133
    142.Laza R C, Peng S, Akita S, Saka H. Contribution of biomass partitioning and translocation of grain yield under sub-optimum growing conditions in irrigated rice. Plant Prod Sci,2003,6:28-35
    143.Lee F N, Rush M C. Rice sheath blight:a major rice disease. Plant Dis,1983, 67:829-832
    144.Liu G, Jia Y, Correa-Victoria F J, Prado G A, Yeater K M, McClung A, Correll J C. Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology,2009,99:1078-1084
    145.Lobell D B, Cassman K G, Field C B. Crop yield gaps:their importance, magnitudes, and causes. Annu Rev Environ Resour,2009,34:179-204
    146.Lovell D J, Parker S R, Hunter T, Royle D J, Coker R R. Influence of crop growth and structure on the risk of epidemics by Mycosphaerella graminicola (Septoria tritici) in winter wheat. Plant Pathol,1997,46:126-138
    147.Mann C C. Crop scientists seek a new revolution. Science,1999,283:310-314
    148.Marchetti M A, Bollich C N. Quantification of the relationship between sheath blight severity and yield loss in rice. Plant Dis,1991,75:773-775
    149.Mark P M, Jacqueline G. Enzyme production by the Mycoparasite Verticillium biguttatum against Rhizoctonia solani. Mycopathologia,2004,157(2):201-205
    150.Marois J J, Wright D L, Wiatrak P J, Vargas M A. Effect of row width and nitrogen on cotton morphology and canopy microclimate. Crop Sci,2004,44:870-877
    151.Matsui T, Namuco O S, Ziska L H, Horie T. Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crop Res,1997,51:213-219
    152.Miller B, Hill J, Roberts S. Plant population effects on growth and yield in water-seeded rice. Agron J,1991,83:291-297
    153.Muthukumar A, Bhaskaran R. Efficacy of anti-microbial metabolites of Pseudomonas fluorescens (Trevisan) Migula against Rhizoctonia solani Kuhn. And Pythium sp. J Biol Control,2007,21(1):105-110
    154.Nakajima T, Yoshida M, Tomimura K. Effect of lodging on the level of mycotoxins in wheat, barley, and rice infected with the Fusarium graminearum species complex. J Gen Plant Pathol,2008,74:289-295
    155.Nobutaka S, Masami N, Ken W T H, Katsumi A. Influence of bacteria isolated from rice plants and Rhizospheres on antibiotic production by the antagonistic bacterium Serratia marcescens strain B2. J Gen Plant Pathol,2003,69:342-247
    156.Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crop Res,2002, 74:93-101
    157.Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochia Y, Ikeda M, Nishitani R, Ebitani T, Hidenobu O, Angeles E, Hirasawa T, Matsuoka M. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat Commun,2010a,1:132
    158.Ookawa T, Ishihara K. Varietal differences of physical characteristics of the culm related to lodging in paddy rice. Jpn J Crop Sci,1992,61:419-425
    159.Ookawa T, Yasuda K, Kato H, Sakai M, Seto M, Sunaga K, Motobayashi T, Tojo S, Hirasawa T. Biomass production and lodging resistance in 'leaf star', a new long-culm rice forage cultivar. Plant Prod Sci,2010b,13(1):58-66
    160.Pan X B, Rush M C, Sha X Y, Xie Q J, Stetina S D, Oard J H. Major gene, nonallelic sheath blight resistance from the rice cultivars 'Jamine 85' and 'Tequing'. Crop Sci, 1999,39:338-346
    161.Papademetriou M K, Dent F J, Herath E M, eds.2000. Bridging the rice yield gap in the Asia-Pacific Region. Bangkok, Thailand; UN Food and Agric Organ
    162.Peng S, Cassman K G, Virmani S S, Sheehy J E, Khush G S. Yield potential trends of tropical rice since release of IR8 and the challenge of increasing rice yield potential. Crop Sci,1999,39:1552-1559
    163.Peng S, Khush G S, Virk P, Tang Q, Zou Y. Progress in ideotype breeding to increase rice potential. Field Crop Res,2008,108:32-38
    164.Peng S, Laza R C, Visperas R M, Sanico A L, Cassman K G, Khush G S. Grain yield of rice cultivars and lines developed in the Philippines since 1966. Crop Sci,2000, 40:307-314
    165.Pielaat A, Van den Bosch F, Fitt B D L, Jeger M J. Simulation of vertical spread of plant diseases in a crop canopy by stem extension and splash dispersal. Ecol Model, 2002,151:195-212
    166.Pinson S R M, Capdevielle F M, Oard J H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci,2005,45:503-510
    167.Prasad B, Eizenga G C. Rice sheath blight disease resistance in Oryza spp. accessions. Plant Dis,2008,92:1503-1509
    168.Robert C, Fournier C, Andrieu B, Ney B. Coupling a 3D virtual wheat (Triticum aestivum) plant model with a Septoria tritici epidemic model (Septo3D):a new approach to investigate plant-pathogen interactions linked to canopy architecture. Funct Plant Biol,2008,35,997-1013
    169.Rodrigues F A, Vale F X R, Datnoff L E, Prabhu A S, Korndorfer G H. Effect of rice growth stages and silicon on sheath blight development. Phytopathology,2003a, 93:256-261
    170.Rodrigues F A, Vale F X R, KorndOrfer G H, Prabhu A S, Datnoff L E, Oliveira A M A, Zambolim L. Influence of silicon on sheath blight of rice in Brazil. Crop Prot, 2003b,22:23-29
    171.San-oh Y, Mano Y, Ookawa T, Hirasawa T. Comparison of dry matter production and associated characteristics between direct-sown and transplanted rice plants in a submerged paddy field and relationships to planting patterns. Field Crop Res,2004, 87:43-58
    172.San-oh Y, Oclarit R P, Ookawa T, Motobayashi T, Hirawawa T. Effects of planting pattern on the interception of solar radiation by the canopy and the light extinction coefficient of the canopy in rice plants direct-sown in a submerged paddy field. Plant Prod Sci,2006,9:334-342
    173.SAS Institute. SAS Version 9.1.2.2002-2003. SAS Institute, Inc., Cary, NC,2003
    174.Sato H, Ideta O, Ando I, Kunihiro Y, Hirabayashi H, Iwano M, Miyasaka A, Nemoto H, Imbe T. Mapping QTLs for sheath blight resistance in the rice line WSS2. Breed Sci,2004,54:265-271
    175.Savary S, Castilla N P, Elazegui F A, McLaren C G, Ynalvez M A, Teng P S. Direct and indirect effects of nitrogen supply and disease source structure on rice sheath blight spread. Phytopathology,1995,85:959-965
    176.Savary S, Castilla N P, Willocquet L. Analysis of the spatiotemporal structure of rice sheath blight epidemics in a farmer's field. Plant Pathol,2001,50:53-68
    177.Savary S, Willocquet L, Teng P S. Modelling sheath blight epidemics on rice tillers. Agr Syst,1997,55:359-384
    178.Setter T L, Laureles E V, Mazaredo A M. Lodging reduces yield of rice by self-shading and reduction in canopy photosynthesis. Field Crop Res,1997, 49:95-106
    179.Sha X. Measurement and inheritance of resistance to sheath blight caused by Rhizoctonia solani Kuhn in rice. (Ph D dissertation). Louisiana, USA:Louisiana State University,1998
    180.Sharma N R, Akanda S I, Shahjahan A K M. Development of sheath blight in short, tall, early and late maturing rice cultivars. Bangl J Bot,1995,24:143-146
    181.Sing R, Tripath R P. Production function:as valuable tools in crop planning and measurements of rice. New Agriculturist.1991,2(2):141-144
    182.Slaton N A, Cartwright R D, Meng J, Gbur E E, Norman R J. Sheath blight severity and rice yield as affected by nitrogen fertilizer rate, application method, and fungicide. Agron J,2003,95:1489-1496
    183.Srinivasachary, Willocquet L. Savary S. Resistance to rice sheath (Rhizoctonia solani Kuhn) [teleomorph:Thanatephorus cucumeris (A.B. Frank) Donk.] disease:current status and perspectives. Euphytica,2011,178:1-22
    184.Sun W, Huang Y. Global warming over the period 1961-2008 did not increase high-temperature stress but did reduce low-temperature stress in irrigated rice across China. Agr Forest Meteorol,2011,151:1193-1201
    185.Takai T, Matsuura S, Nishio T, Ohsumi A, Shiraiwa T, Horie T. Rice yield potential is closely related to crop growth rate during late reproductive period. Field Crop Res, 2006,96:328-335
    186.Tang Q, Peng S, Buresh R J, Zou Y, Castilla N P, Mew T W, Zhong X. Rice varietal difference in sheath blight development and its association with yield loss at different levels of N fertilization. Field Crop Res,2007,102:219-227
    187.Teng P S, Torres C Q, Nuque F L, Calvero S B. Current knowledge on crop losses in tropical rice. In:Crop Loss Assessment in Rice. Los Banos, Philippines:IRRI,1990, 39-54
    188.Tweddell R J, Jabaji-Hare S H, Charest P M. Production of Chitinases and (beta)-1, 3-Glucanases by Stachybotrys elegans, a Mycoparasite of Rhizoctonia solani. Appl Environ Microbiol,1994,60(2):489-495
    189.Walters D R, Bingham I J. Influence of nutrition on disease development caused by fungal pathogens:implications for plant disease control. Ann of Appl Biol,2007, 151:307-324
    190.Willocquet L, Fernandez L, Savary S. Effect of various crop establishment methods practiced by Asian farmers on epidemics of rice sheath blight caused by Rhizoctonia solani. Plant Pathol,2000,49:346-354
    191.Wu G, Wilson L T. Contribution of rice tillers to dry matter accumulation and yield. Agron J,1998,90:317-323
    192.Wu W, Huang J, Cui K, Nie L, Wang Q, Yang F, Shah F, Yao F, Peng S. Sheath blight reduces stem breaking resistance and increases lodging susceptibility of rice plants. Field Crop Res,2012,128:101-108
    193.Xie J, Fu Y, Jiang D, Li G, Huang J, Li B, Hsiang T, Peng Y.2008, Intergeneric transfer of ribosomal genes between two fungi. BMC Evol Biol, Website: http://www.biomedcentral.com/1471-2148/8/87
    194.Yang W, Peng S, Laza R C, Visperas R M, Dionisio-Sese M L. Yield gap analysis between dry and wet season rice crop grown under high-yielding management conditions. Agron J,2008,100:1390-1395
    195.Yao F, Huang J, Cui K, Nie L, Xiang J, Liu X, Wu W, Chen M, Peng S. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crop Res,2012,126:16-22
    196.Ying J, Peng S, He Q, Yang H, Yang C, Visperas R M, Cassman K G. Comparison of high-yield rice in tropical and subtropical environments. I. Determinants of grain and dry matter yields. Field Crop Res,1998,57:71-84
    197.Yolanda J L, Das L D V. Correlation and path analysis in rice. Madras Agr J,1995, 82(11):576-578
    198.Yoo Y K, Yun I J. Using synoptic data to predict air temperature within rice canopies across geographic area. Korean J Agric Forest Meteorol,2001,3:199-205
    199.Yun J I, Shin J C, Yun Y D. Canopy microclimate of water-seeding rice during internode elongation period. Korean J Crop Sci,1997,42:473-482
    200.Zhu D,2000. Bridging the rice yield gap in China. Website:http://www.fao.org/ docrep/003/x6905e/x6905e08.htm
    201.Zou J, Pan X, Chen Z, Xu J, Lu J, Zhai W, Zhu L. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor Appl Genet,2000,101:569-573

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700